1
|
Heidrich L, Wiener J, Castro-Camus E, Koch M, Ornik J. Automated in-situ monitoring of accelerated crystallization processes of nifedipine using terahertz time-domain spectroscopy. Sci Rep 2024; 14:29928. [PMID: 39622901 PMCID: PMC11611916 DOI: 10.1038/s41598-024-81316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
We developed and tested an automated measurement platform which can fit multiple samples for their investigation in transmission mode using terahertz time-domain spectroscopy. The temperature inside the platform can be varied to simulate different storage conditions of the samples, in our case, pharmaceuticals. As a proof-of-concept, the setup was successfully tested to monitor the crystallization process of amorphous nifedipine, as a model drug, at 24 °C, 30 °C and 35 °C for over 144 h. To the best of our knowledge, this is the first study to follow the crystallization of nifedipine with quasi-continuous measurements over a time frame of several days. The influence of the storage temperature on the crystallization rate was monitored including the appearance of polymorphic intermediate states of nifedipine throughout the process. The platform developed in combination with terahertz time-domain spectroscopy is a helpful tool for deepening the understanding of the crystallization behavior of amorphous and polymorphic materials and can be, for example, of great importance for the development of novel amorphous pharmaceutical formulations.
Collapse
Affiliation(s)
- Lara Heidrich
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany.
| | - Julian Wiener
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
| | - Enrique Castro-Camus
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
- Centro de Investigaciones en Optica A.C, Loma del Bosque 115, Lomas del Campestre, Leon, Guanajuato, 37150, Mexico
| | - Martin Koch
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany.
| | - Jan Ornik
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance, Leibniz Health Technologies, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
2
|
Pisay M, Padya S, Mutalik S, Koteshwara KB. Stability Challenges of Amorphous Solid Dispersions of Drugs: A Critical Review on Mechanistic Aspects. Crit Rev Ther Drug Carrier Syst 2024; 41:45-94. [PMID: 38037820 DOI: 10.1615/critrevtherdrugcarriersyst.2023039877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/02/2023]
Abstract
The most common drawback of the existing and novel drug molecules is their low bioavailability because of their low solubility. One of the most important approaches to enhance the bioavailability in the enteral route for poorly hydrophilic molecules is amorphous solid dispersion (ASD). The solubility of compounds in amorphous form is comparatively high because of the availability of free energy produced during formulation. This free energy results in the change of crystalline nature of the prepared ASD to the stable crystalline form leading to the reduced solubility of the product. Due to the intrinsic chemical and physical uncertainty and the restricted knowledge about the interactions of active molecules with the carriers making, this ASD is a challenging task. This review focused on strategies to stabilize ASD by considering the various theories explaining the free-energy concept, physical interactions, and thermal properties. This review also highlighted molecular modeling and machine learning computational advancement to stabilize ASD.
Collapse
Affiliation(s)
- Muralidhar Pisay
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Kunnatur B Koteshwara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
3
|
Olsson M, Govender R, Diaz A, Holler M, Menzel A, Abrahmsén-Alami S, Sadd M, Larsson A, Matic A, Liebi M. Multiscale X-ray imaging and characterisation of pharmaceutical dosage forms. Int J Pharm 2023:123200. [PMID: 37414373 DOI: 10.1016/j.ijpharm.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
A correlative, multiscale imaging methodology for visualising and quantifying the morphology of solid dosage forms by combining ptychographic X-ray computed nanotomography (PXCT) and scanning small- and wide-angle X-ray scattering (S/WAXS) is presented. The methodology presents a workflow for multiscale analysis, where structures are characterised from the nanometre to millimetre regime. Here, the method is demonstrated by characterising a hot-melt extruded, partly crystalline, solid dispersion of carbamazepine in ethyl cellulose. Characterisation of the morphology and solid-state phase of the drug in solid dosage forms is central as this affects the performance of the final formulation. The 3D morphology was visualised at a resolution of 80 nm over an extended volume through PXCT, revealing an oriented structure of crystalline drug domains aligned in the direction of extrusion. Scanning S/WAXS, showed that the nanostructure is similar over the cross section of the extruded filament, with minor radial changes in domain sizes and degree of orientation. The polymorphic forms of carbamazepine were qualified with WAXS, showing a heterogeneous distribution of the metastable forms I and II. This demonstrates the methodology for multiscale structural characterization and imaging to enable a better understanding of the relationships between morphology, performance, and processing conditions of solid dosage forms.
Collapse
Affiliation(s)
- Martina Olsson
- Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Rydvikha Govender
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Ana Diaz
- Photon Science Division, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Mirko Holler
- Photon Science Division, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Andreas Menzel
- Photon Science Division, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Susanna Abrahmsén-Alami
- Innovation Strategies & External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden
| | - Matthew Sadd
- Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Anette Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; FibRe-Centre for Lignocellulose-based Thermoplastics, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Aleksandar Matic
- Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; FibRe-Centre for Lignocellulose-based Thermoplastics, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Marianne Liebi
- Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Photon Science Division, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland; Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| |
Collapse
|
4
|
Heidrich L, Ornik J, Keck CM, Castro-Camus E, Koch M. Polyvinylpyrrolidone as co-inhibitor of crystallization of nifedipine in paper tablets. Int J Pharm 2023; 635:122721. [PMID: 36781082 DOI: 10.1016/j.ijpharm.2023.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Techniques to maintain drugs amorphous that would otherwise crystallize is an extensively studied approach to enhance the dissolution characteristics of poorly soluble drugs. However, their performance is limited by the low physical stability of the amorphous phase which can lead to recrystallization which in turn results in decreased solubility and bioavailability of the drug. In this work, the crystallinity of nifedipine loaded into a cellulose-based paper matrix, so called smartFilms, was determined by terahertz time-domain spectroscopy. By adding polyvinylpyrrolidone as an extra carrier, the capability of smartFilms to transfer nifedipine into its amorphous state improved. Moreover, the performance of the formulation to inhibit recrystallization of the amorphous drug over a period of six months increased. For formulations containing up to 10 w% drug loading and additional polyvinylpyrrolidone (nifedipine/polyvinylpyrrolidone: 4:1 mass ratio), nifedipine was found to be completely amorphous after six months of storage.
Collapse
Affiliation(s)
- Lara Heidrich
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany.
| | - Jan Ornik
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert‑Koch‑Str. 4, 35037 Marburg, Germany
| | - Enrique Castro-Camus
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| | - Martin Koch
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| |
Collapse
|
5
|
Wang P, Zhao J, Zhang Y, Zhu Z, Liu L, Zhao H, Yang X, Yang X, Sun X, He M. The fingerprints of nifedipine/isonicotinamide cocrystal polymorph studied by terahertz time-domain spectroscopy. Int J Pharm 2022; 620:121759. [PMID: 35460849 DOI: 10.1016/j.ijpharm.2022.121759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2022] [Revised: 04/04/2022] [Accepted: 04/17/2022] [Indexed: 11/15/2022]
Abstract
Cocrystal is constructed to improve physicochemical properties of active pharmaceutical ingredient and prevent polymorphism via intermolecular interactions. However, recent examples on cocrystal polymorphs display significantly different properties. Even though some analytical techniques have been used to characterize the cocrystal polymorphic system, it remains unclear how intermolecular interactions drive and stabilize the structure. In this work, we study the cocrystal polymorphs of nifedipine (NFD) and isonicotinamide (INA) using terahertz (THz) spectroscopy. Form I and form II of NFD-INA cocrystals show spectral fingerprints in THz region. Temperature-dependent THz spectra display distinguished frequency shifts of each fingerprint. Combined with solid-state density functional theory (DFT) calculations, the experimental fingerprints and their distinct responses to temperature are elucidated by specific collective vibrational modes. The vibrations of hydrogen bonding between dihydropyridine ring of NFD and INA are generally distributed below 1.5 THz, which play important roles in stabilizing cocrystal and preventing the oxidation of NFD. The rotations of methyl group in NFD are widely distributed in the range of 1.5-4.0 THz, which helps the steric recognition. The results demonstrate that THz spectroscopy is a sensitive tool to discriminate cocrystal polymorphs. It has the potential to be used as a non-invasive technique for pharmaceutical screening.
Collapse
Affiliation(s)
- Pengfei Wang
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, PR China; Henan Key Laboratory of Laser and Opto-electric Information Technology, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China
| | - Juntong Zhao
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuman Zhang
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Liyuan Liu
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Hongwei Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Xianchao Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Xiaohong Sun
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, PR China; Henan Key Laboratory of Laser and Opto-electric Information Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mingxia He
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China; Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
6
|
Nakanishi A, Akiyama K, Hayashi S, Satozono H, Fujita K. Spectral imaging of pharmaceutical materials with a compact terahertz difference-frequency generation semiconductor source. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5549-5554. [PMID: 34780588 DOI: 10.1039/d1ay01670a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Spectral imaging of pharmaceutical material using a compact ultra-broadband (1-4 THz) terahertz semiconductor source was demonstrated. False-color RGB images could be obtained using a simple procedure (calibration free). The ability to distinguish the polymorphism of carbamazepine (CBZ), the hydrate forms of D-(+)-glucose and caffeine, and the crystallinity of nifedipine was demonstrated using the THz DFG source. Crystal forms of pharmaceutical materials can be distinguished using this method.
Collapse
Affiliation(s)
- Atsushi Nakanishi
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Shizuoka, Japan.
| | - Koichiro Akiyama
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Shizuoka, Japan.
| | - Shohei Hayashi
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Shizuoka, Japan.
| | - Hiroshi Satozono
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Shizuoka, Japan.
| | - Kazuue Fujita
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Shizuoka, Japan.
| |
Collapse
|
7
|
Han J, Tong M, Li S, Yu X, Hu Z, Zhang Q, Xu R, Wang J. Surfactant-free amorphous solid dispersion with high dissolution for bioavailability enhancement of hydrophobic drugs: a case of quercetin. Drug Dev Ind Pharm 2021; 47:153-162. [PMID: 33295808 DOI: 10.1080/03639045.2020.1862173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
At present, saccharides as hydrophilic matrixes, have been gradually used in amorphous solid dispersions (ASD) for dispersing poorly water-soluble drugs without surfactants. In this study, an amorphous chitosan oligosaccharide (COS) was applied as a water-soluble matrix to form surfactant-free ASD via the ball milling to vitrify quercetin (QUE) and enhance the dissolution and bioavailability. Solid-state characterization (DSC, XRPD, FTIR, SEM and PLM) and physical stability assessments verified that the prepared ASDs showed excellent physical stability with complete amorphization due to potential interactions between QUE and COS. In vitro sink dissolution tests suggested all QUE-COS ASDs (w:w, 1:1, 1:2 and 1:4) significantly enhanced the dissolution rate of QUE. Meanwhile, in vitro non-sink dissolution exhibited that the maximum supersaturated concentration ranged from 112.62 to 138.00 µg/mL for all QUE-COS ASDs, which was much higher than that of pure QUE. Besides, the supersaturation of QUE-COS ASD kept for at least 24 h. In rat pharmacokinetics, the oral bioavailability of QUE-COS ASDs showed 1.64 ∼ 2.25 times increase compared to the pure QUE (p < .01). Hence, the present study confirms the amorphous COS could be applied as a promising hydrophilic matrix in QUE-COS ASDs for enhancing dissolution performance and bioavailability of QUE.
Collapse
Affiliation(s)
- Jiawei Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng Tong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shukun Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiangyu Yu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqi Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Quan Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Runze Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Rodríguez I, Gautam R, Tinoco AD. Using X-ray Diffraction Techniques for Biomimetic Drug Development, Formulation, and Polymorphic Characterization. Biomimetics (Basel) 2020; 6:1. [PMID: 33396786 PMCID: PMC7838816 DOI: 10.3390/biomimetics6010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
Drug development is a decades-long, multibillion dollar investment that often limits itself. To decrease the time to drug approval, efforts are focused on drug targets and drug formulation for optimal biocompatibility and efficacy. X-ray structural characterization approaches have catalyzed the drug discovery and design process. Single crystal X-ray diffraction (SCXRD) reveals important structural details and molecular interactions for the manifestation of a disease or for therapeutic effect. Powder X-ray diffraction (PXRD) has provided a method to determine the different phases, purity, and stability of biological drug compounds that possess crystallinity. Recently, synchrotron sources have enabled wider access to the study of noncrystalline or amorphous solids. One valuable technique employed to determine atomic arrangements and local atom ordering of amorphous materials is the pair distribution function (PDF). PDF has been used in the study of amorphous solid dispersions (ASDs). ASDs are made up of an active pharmaceutical ingredient (API) within a drug dispersed at the molecular level in an amorphous polymeric carrier. This information is vital for appropriate formulation of a drug for stability, administration, and efficacy purposes. Natural or biomimetic products are often used as the API or the formulation agent. This review profiles the deep insights that X-ray structural techniques and associated analytical methods can offer in the development of a drug.
Collapse
Affiliation(s)
- Israel Rodríguez
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00925, USA
| | - Ritika Gautam
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00925, USA
| |
Collapse
|
9
|
Otsuka Y, Ito A, Takeuchi M, Sasaki T, Tanaka H. Effects of temperature on terahertz spectra of caffeine/oxalic acid 2:1 cocrystal and its solid-state density functional theory. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
10
|
Solid-state analysis of amorphous solid dispersions: Why DSC and XRPD may not be regarded as stand-alone techniques. J Pharm Biomed Anal 2019; 178:112937. [PMID: 31679845 DOI: 10.1016/j.jpba.2019.112937] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2019] [Accepted: 10/15/2019] [Indexed: 11/23/2022]
Abstract
Amorphous solid dispersions (ASDs) are single-phase amorphous systems, where drug molecules are molecularly dispersed (dissolved) in a polymer matrix. The molecular dispersion of the drug molecules is responsible for their improved dissolution properties. Unambiguously establishing the phase behavior of the ASDs is of utmost importance. In this paper, we focused on the complementary nature of (modulated) differential scanning calorimetry ((m)DSC) and X-ray powder diffraction (XRPD) to elucidate the phase behavior of ASDs as demonstrated by a critical discussion of practical real-life examples observed in our research group. The ASDs were manufactured by either applying a solvent-based technique (spray drying), a heat-based technique (hot melt extrusion) or mechanochemical activation (cryo-milling). The encountered limiting factors of XRPD were the lack of sensitivity for small traces of crystallinity, the impossibility to differentiate between distinct amorphous phases and its impossibility to detect nanocrystals in a polymer matrix. In addition, the limiting factors of (m)DSC were defined as the well-described heat-induced sample alteration upon heating, the interfering of residual solvent evaporation with other thermal events and the coinciding of enthalpy recovery with melting events. In all of these cases, the application of a single analytical technique would have led to erroneous conclusions, whilst the combination of (m)DSC and XRPD elucidated the true phases of the ASD.
Collapse
|
11
|
|
12
|
Otsuka Y, Ito A, Takeuchi M, Tanaka H. Effect of amino acid on calcium phosphate phase transformation: attenuated total reflectance-infrared spectroscopy and chemometrics. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4438-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
|
13
|
Takeuchi I, Otsuki M, Kuroda H, Makino K. Estimation of crystallinity of indomethacin by usage of terahertz time-domain spectroscopy and calibration curve: Correlation between crystallinity and solubility. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
14
|
|
15
|
Drug release behavior of hydrophobic drug-loaded poly (lactide-co-glycolide) nanoparticles: Effects of glass transition temperature. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
|
16
|
Effects of physicochemical properties of poly(lactide-co-glycolide) on drug release behavior of hydrophobic drug-loaded nanoparticles. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
|