1
|
Bridglalsingh S, Archer-Hartmann S, Azadi P, Barbier de La Serre C, Remillard RL, Sunvold GD, Bartges JW. Association of four differently processed diets with plasma and urine advanced glycation end products and serum soluble receptor for advanced glycation end products concentration in healthy dogs. J Anim Physiol Anim Nutr (Berl) 2024; 108:735-751. [PMID: 38279966 PMCID: PMC11327896 DOI: 10.1111/jpn.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 01/29/2024]
Abstract
Advanced glycation end products (AGEs), formed via the Maillard reaction (MR) during processing of foods, have been implicated in inflammatory and degenerative diseases in human beings. Cellular damage is primarily caused by AGE binding with the receptor for AGEs (RAGE) on cell membranes. An isoform of RAGE, soluble RAGE (sRAGE), acts as a decoy receptor binding circulating AGEs preventing cellular activation. Pet food manufacturing involves processing methods similar to human food processing that may increase dietary AGEs (dAGEs). We hypothesized that diet, plasma and urine AGEs, and serum sRAGE concentrations would differ between thermally processed diets. This study examined the association of four differently processed diets: ultra-processed canned wet food (WF); ultra-processed dry food (DF); moderately processed air-dried food (ADF) and minimally processed mildly cooked food (MF) on total plasma levels of the AGEs, carboxymethyllysine (CML), carboxyethyllysine (CEL), methylglyoxal hydroimidazolone-1, glyoxal hydroimidazolone-1, argpyrimidine, urine CML, CEL and lysinoalanine, and serum sRAGE concentration. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used to measure AGEs. sRAGE concentration was measured using a commercial canine-specific enzyme-linked immunosorbent assay kit. Total dAGEs (mg/100 kcal as fed) were higher in WF than in other diets. Plasma total AGEs (nM/50 μL) were significantly higher with WF, with no difference found between DF, ADF, and MF; however, ADF was significantly higher than MF. Urine CML (nmol AGEs/mmol creatinine) was significantly higher with DF than with WF and MF. There were no significant differences in total urine AGEs or serum sRAGE concentration between diets. In conclusion, different methods of processing pet foods are associated with varied quantities of AGEs influencing total plasma AGE concentration in healthy dogs. Serum sRAGE concentration did not vary across diets but differences in total AGE/sRAGE ratio were observed between MF and WF and, ADF and DF.
Collapse
Affiliation(s)
- Siobhan Bridglalsingh
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia, USA
| | - Stephanie Archer-Hartmann
- Analytical Services, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Analytical Services, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | | | | | - Joseph W Bartges
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Hosseini E, Mokhtari Z, Poustchi H, Khoshnia M, Dawsey SM, Boffetta P, Abnet CC, Kamangar F, Etemadi A, Pourshams A, Sharafkhah M, Brennan P, Malekzadeh R, Hekmatdoost A. Dietary Advanced Glycation End Products and Risk of Overall and Cause-Specific Mortality: Results from the Golestan Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3788. [PMID: 36900799 PMCID: PMC10001649 DOI: 10.3390/ijerph20053788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Controversy exists regarding the association of dietary advanced glycation end products (dAGEs) with the risk of disease outcomes and mortality. We aimed to examine, prospectively, the association between dAGEs intake and the risk of overall and cause-specific mortality in the Golestan Cohort Study. The cohort was conducted between 2004 and 2008 in Golestan Province (Iran) recruiting 50,045 participants aged 40-75 years. Assessment of dietary intake over the last year was performed at baseline using a 116-item food frequency questionnaire. The dAGEs values for each individual were calculated based on published databases of AGE values of various food items. The main outcome was overall mortality at the time of follow-up (13.5 years). Hazard ratios (HRs) and 95% confidence intervals (CIs) for overall and cause-specific mortality were estimated according to the dAGEs quintiles. During 656, 532 person-years of follow-up, 5406 deaths in men and 4722 deaths in women were reported. Participants at the highest quintile of dAGE had a lower risk of overall mortality (HR: 0.89, 95% CI: 0.84, 0.95), CVD mortality (HR: 0.89, 95% CI: 0.84, 0.95), and death from other causes (HR: 0.89, 95% CI: 0.84, 0.95) compared to those in the first quintile after adjusting for confounders. We found no association of dAGEs with risk of mortality from cancer (all), respiratory and infectious diseases, and injuries. Our findings do not confirm a positive association between dAGEs and the risk of mortality in Iranian adults. There is still no agreement among studies investigating dAGEs and their health-related aspects. So, further high-quality studies are required to clarify this association.
Collapse
Affiliation(s)
- Elham Hosseini
- Nutrition and Food Security Research Center, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hossein Poustchi
- Liver and Pancreaticobiliary Disease Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Masoud Khoshnia
- Golestan Research Center of Gasteroenterology and Hepatology (GRCGH), Golestan University of Medical Sciences, Gorgan 49178-67439, Iran
| | - Sanford M. Dawsey
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paolo Boffetta
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christian C. Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Farin Kamangar
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Arash Etemadi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Akram Pourshams
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Maryam Sharafkhah
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC/WHO), CEDEX 07, 69366 Lyon, France
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 19816-19573, Iran
| |
Collapse
|
3
|
Geng Y, Mou Y, Xie Y, Ji J, Chen F, Liao X, Hu X, Ma L. Dietary Advanced Glycation End Products: An Emerging Concern for Processed Foods. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2169867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| |
Collapse
|
4
|
Yan Y, Hemmler D, Schmitt-Kopplin P. HILIC-MS for Untargeted Profiling of the Free Glycation Product Diversity. Metabolites 2022; 12:metabo12121179. [PMID: 36557217 PMCID: PMC9783660 DOI: 10.3390/metabo12121179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Glycation products produced by the non-enzymatic reaction between reducing carbohydrates and amino compounds have received increasing attention in both food- and health-related research. Although liquid chromatography mass spectrometry (LC-MS) methods for analyzing glycation products already exist, only a few common advanced glycation end products (AGEs) are usually covered by quantitative methods. Untargeted methods for comprehensively analyzing glycation products are still lacking. The aim of this study was to establish a method for simultaneously characterizing a wide range of free glycation products using the untargeted metabolomics approach. In this study, Maillard model systems consisting of a multitude of heterogeneous free glycation products were chosen for systematic method optimization, rather than using a limited number of standard compounds. Three types of hydrophilic interaction liquid chromatography (HILIC) columns (zwitterionic, bare silica, and amide) were tested due to their good retention for polar compounds. The zwitterionic columns showed better performance than the other two types of columns in terms of the detected feature numbers and detected free glycation products. Two zwitterionic columns were selected for further mobile phase optimization. For both columns, the neutral mobile phase provided better peak separation, whereas the acidic condition provided a higher quality of chromatographic peak shapes. The ZIC-cHILIC column operating under acidic conditions offered the best potential to discover glycation products in terms of providing good peak shapes and maintaining comparable compound coverage. Finally, the optimized HILIC-MS method can detect 70% of free glycation product features despite interference from the complex endogenous metabolites from biological matrices, which showed great application potential for glycation research and can help discover new biologically important glycation products.
Collapse
Affiliation(s)
- Yingfei Yan
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| | - Daniel Hemmler
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| |
Collapse
|
5
|
Lim JM, Yoo HJ, Lee KW. High Molecular Weight Fucoidan Restores Intestinal Integrity by Regulating Inflammation and Tight Junction Loss Induced by Methylglyoxal-Derived Hydroimidazolone-1. Mar Drugs 2022; 20:md20090580. [PMID: 36135768 PMCID: PMC9505531 DOI: 10.3390/md20090580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fucoidan from brown seaweeds has several biological effects, including preserving intestinal integrity. To investigate the intestinal protective properties of high molecular weight fucoidan (HMWF) from Undaria pinnatifida on intestinal integrity dysfunction caused by methylglyoxal-derived hydroimidazolone-1 (MG-H1), one of the dietary advanced-glycation end products (dAGEs) in the human-colon carcinoma-cell line (Caco-2) cells and ICR mice. According to research, dAGEs may damage the intestinal barrier by increasing gut permeability. The findings of the study showed that HMWF + MG-H1 treatment reduced by 16.8% the amount of reactive oxygen species generated by MG-H1 treatment alone. Furthermore, HMWF + MGH-1 treatment reduced MG-H1-induced monolayer integrity disruption, as measured by alterations in transepithelial electrical resistance (135% vs. 75.5%) and fluorescein isothiocyanate incorporation (1.40 × 10-6 cm/s vs. 3.80 cm/s). HMWF treatment prevented the MG-H1-induced expression of tight junction markers, including zonula occludens-1, occludin, and claudin-1 in Caco-2 cells and mouse colon tissues at the mRNA and protein level. Also, in Caco-2 and MG-H1-treated mice, HMWF plays an important role in preventing receptor for AGEs (RAGE)-mediated intestinal damage. In addition, HMWF inhibited the nuclear factor kappa B activation and its target genes leading to intestinal inflammation. These findings suggest that HMWF with price competitiveness could play an important role in preventing AGEs-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Jae-Min Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
- Department of Food Bioscience and Technology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-3290-3027
| |
Collapse
|
6
|
Sudha M, Banita, Ram AK, Bhatia A. Effect of dietary AGEs on the transcriptional profile of peripheral blood lymphocytes. APPLIED FOOD RESEARCH 2022; 2:100086. [DOI: 10.1016/j.afres.2022.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Aganovic K, Hertel C, Vogel RF, Johne R, Schlüter O, Schwarzenbolz U, Jäger H, Holzhauser T, Bergmair J, Roth A, Sevenich R, Bandick N, Kulling SE, Knorr D, Engel KH, Heinz V. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr Rev Food Sci Food Saf 2021; 20:3225-3266. [PMID: 34056857 DOI: 10.1111/1541-4337.12763] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
The last two decades saw a steady increase of high hydrostatic pressure (HHP) used for treatment of foods. Although the science of biomaterials exposed to high pressure started more than a century ago, there still seem to be a number of unanswered questions regarding safety of foods processed using HHP. This review gives an overview on historical development and fundamental aspects of HHP, as well as on potential risks associated with HHP food applications based on available literature. Beside the combination of pressure and temperature, as major factors impacting inactivation of vegetative bacterial cells, bacterial endospores, viruses, and parasites, factors, such as food matrix, water content, presence of dissolved substances, and pH value, also have significant influence on their inactivation by pressure. As a result, pressure treatment of foods should be considered for specific food groups and in accordance with their specific chemical and physical properties. The pressure necessary for inactivation of viruses is in many instances slightly lower than that for vegetative bacterial cells; however, data for food relevant human virus types are missing due to the lack of methods for determining their infectivity. Parasites can be inactivated by comparatively lower pressure than vegetative bacterial cells. The degrees to which chemical reactions progress under pressure treatments are different to those of conventional thermal processes, for example, HHP leads to lower amounts of acrylamide and furan. Additionally, the formation of new unknown or unexpected substances has not yet been observed. To date, no safety-relevant chemical changes have been described for foods treated by HHP. Based on existing sensitization to non-HHP-treated food, the allergenic potential of HHP-treated food is more likely to be equivalent to untreated food. Initial findings on changes in packaging materials under HHP have not yet been adequately supported by scientific data.
Collapse
Affiliation(s)
- Kemal Aganovic
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Christian Hertel
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Rudi F Vogel
- Technical University of Munich (TUM), Munich, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Oliver Schlüter
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | | | - Henry Jäger
- University of Natural Resources and Life Sciences (BOKU), Wien, Austria
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut (PEI), Langen, Germany
| | | | - Angelika Roth
- Senate Commission on Food Safety (DFG), IfADo, Dortmund, Germany
| | - Robert Sevenich
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Technical University of Berlin (TUB), Berlin, Germany
| | - Niels Bandick
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Volker Heinz
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| |
Collapse
|
8
|
van der Lugt T, Opperhuizen A, Bast A, Vrolijk MF. Dietary Advanced Glycation Endproducts and the Gastrointestinal Tract. Nutrients 2020; 12:nu12092814. [PMID: 32937858 PMCID: PMC7551018 DOI: 10.3390/nu12092814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
The prevalence of inflammatory bowel diseases (IBD) is increasing in the world. The introduction of the Western diet has been suggested as a potential explanation of increased prevalence. The Western diet includes highly processed food products, and often include thermal treatment. During thermal treatment, the Maillard reaction can occur, leading to the formation of dietary advanced glycation endproducts (dAGEs). In this review, different biological effects of dAGEs are discussed, including their digestion, absorption, formation, and degradation in the gastrointestinal tract, with an emphasis on their pro-inflammatory effects. In addition, potential mechanisms in the inflammatory effects of dAGEs are discussed. This review also specifically elaborates on the involvement of the effects of dAGEs in IBD and focuses on evidence regarding the involvement of dAGEs in the symptoms of IBD. Finally, knowledge gaps that still need to be filled are identified.
Collapse
Affiliation(s)
- Timme van der Lugt
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
- Correspondence:
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| | - Misha F. Vrolijk
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| |
Collapse
|
9
|
Healthy eating recommendations: good for reducing dietary contribution to the body's advanced glycation/lipoxidation end products pool? Nutr Res Rev 2020; 34:48-63. [PMID: 32450931 DOI: 10.1017/s0954422420000141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present review aims to give dietary recommendations to reduce the occurrence of the Maillard reaction in foods and in vivo to reduce the body's advanced glycation/lipoxidation end products (AGE/ALE) pool. A healthy diet, food reformulation and good culinary practices may be feasible for achieving the goal. A varied diet rich in fresh vegetables and fruits, non-added sugar beverages containing inhibitors of the Maillard reaction, and foods prepared by steaming and poaching as culinary techniques is recommended. Intake of supplements and novel foods with low sugars, low fats, enriched in bioactive compounds from food and waste able to modulate carbohydrate metabolism and reduce body's AGE/ALE pool is also recommended. In conclusion, the recommendations made for healthy eating by the Spanish Society of Community Nutrition (SENC) and Harvard University seem to be adequate to reduce dietary AGE/ALE, the body's AGE/ALE pool and to achieve sustainable nutrition and health.
Collapse
|
10
|
Leonova T, Popova V, Tsarev A, Henning C, Antonova K, Rogovskaya N, Vikhnina M, Baldensperger T, Soboleva A, Dinastia E, Dorn M, Shiroglasova O, Grishina T, Balcke GU, Ihling C, Smolikova G, Medvedev S, Zhukov VA, Babakov V, Tikhonovich IA, Glomb MA, Bilova T, Frolov A. Does Protein Glycation Impact on the Drought-Related Changes in Metabolism and Nutritional Properties of Mature Pea ( Pisum sativum L.) Seeds? Int J Mol Sci 2020; 21:E567. [PMID: 31952342 PMCID: PMC7013545 DOI: 10.3390/ijms21020567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Protein glycation is usually referred to as an array of non-enzymatic post-translational modifications formed by reducing sugars and carbonyl products of their degradation. The resulting advanced glycation end products (AGEs) represent a heterogeneous group of covalent adducts, known for their pro-inflammatory effects in mammals, and impacting on pathogenesis of metabolic diseases and ageing. In plants, AGEs are the markers of tissue ageing and response to environmental stressors, the most prominent of which is drought. Although water deficit enhances protein glycation in leaves, its effect on seed glycation profiles is still unknown. Moreover, the effect of drought on biological activities of seed protein in mammalian systems is still unstudied with respect to glycation. Therefore, here we address the effects of a short-term drought on the patterns of seed protein-bound AGEs and accompanying alterations in pro-inflammatory properties of seed protein in the context of seed metabolome dynamics. A short-term drought, simulated as polyethylene glycol-induced osmotic stress and applied at the stage of seed filling, resulted in the dramatic suppression of primary seed metabolism, although the secondary metabolome was minimally affected. This was accompanied with significant suppression of NF-kB activation in human SH-SY5Y neuroblastoma cells after a treatment with protein hydrolyzates, isolated from the mature seeds of drought-treated plants. This effect could not be attributed to formation of known AGEs. Most likely, the prospective anti-inflammatory effect of short-term drought is related to antioxidant effect of unknown secondary metabolite protein adducts, or down-regulation of unknown plant-specific AGEs due to suppression of energy metabolism during seed filling.
Collapse
Affiliation(s)
- Tatiana Leonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Veronika Popova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Christian Henning
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Kristina Antonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Nadezhda Rogovskaya
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 Leningrad Oblast, Russia
| | - Maria Vikhnina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Tim Baldensperger
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Ekaterina Dinastia
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Postovsky Institute of Organic Synthesis of Ural Division of Russian Academy of Sciences, 620137 Yekaterinburg, Russia
| | - Mandy Dorn
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Olga Shiroglasova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Gerd U Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A Zhukov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Vladimir Babakov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 Leningrad Oblast, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Marcus A Glomb
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Tatiana Bilova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| |
Collapse
|
11
|
Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health. Biomolecules 2019; 9:biom9120888. [PMID: 31861217 PMCID: PMC6995512 DOI: 10.3390/biom9120888] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
The Maillard reaction is a simple but ubiquitous reaction that occurs both in vivo and ex vivo during the cooking or processing of foods under high-temperature conditions, such as baking, frying, or grilling. Glycation of proteins is a post-translational modification that forms temporary adducts, which, on further crosslinking and rearrangement, form permanent residues known as advanced glycation end products (AGEs). Cooking at high temperature results in various food products having high levels of AGEs. This review underlines the basis of AGE formation and their corresponding deleterious effects on the body. Glycated Maillard products have a direct association with the pathophysiology of some metabolic diseases, such as diabetes mellitus type 2 (DM2), acute renal failure (ARF), Alzheimer’s disease, dental health, allergies, and polycystic ovary syndrome (PCOS). The most glycated and structurally abundant protein is collagen, which acts as a marker for diabetes and aging, where decreased levels indicate reduced skin elasticity. In diabetes, high levels of AGEs are associated with carotid thickening, ischemic heart disease, uremic cardiomyopathy, and kidney failure. AGEs also mimic hormones or regulate/modify their receptor mechanisms at the DNA level. In women, a high AGE diet directly correlates with high levels of androgens, anti-Müllerian hormone, insulin, and androstenedione, promoting ovarian dysfunction and/or infertility. Vitamin D3 is well-associated with the pathogenesis of PCOS and modulates steroidogenesis. It also exhibits a protective mechanism against the harmful effects of AGEs. This review elucidates and summarizes the processing of infant formula milk and the associated health hazards. Formulated according to the nutritional requirements of the newborn as a substitute for mother’s milk, formula milk is a rich source of primary adducts, such as carboxy-methyl lysine, which render an infant prone to inflammation, dementia, food allergies, and other diseases. We therefore recommend that understanding this post-translational modification is the key to unlocking the mechanisms and physiology of various metabolic syndromes.
Collapse
Affiliation(s)
- Vidhu Gill
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| | - Kritanjali Singh
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Ashok Kumar
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| |
Collapse
|
12
|
Chauveau P, Lasseur C, Azar R, Niu W, Combe C, Aparicio M. [Hygieno-dietetic recommendations in the prevention of accumulation of advanced glycation products]. Nephrol Ther 2019; 15:485-490. [PMID: 31680065 DOI: 10.1016/j.nephro.2019.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 10/25/2022]
Abstract
Advanced glycation products are proteins whose structural and functional properties have been modified by a process of oxidative glycation. The accumulation of advanced glycation products in most tissues and the oxidative stress and inflammatory reactions that accompany it, account for the multi-systemic impairment observed particularly in the elderly, diabetics and in chronic renal failure. The advanced glycation products endogenous production is continuous, related to oxidative stress, but the most important source of advanced glycation products is exogenous, mainly of food origin. Exogenous advanced glycation products are developed during the preparation of food and beverages. The advanced glycation products content is higher for animal foods, but it is mainly the preparation and cooking methods that play a decisive role. Dietary advice is based on the selection of foods and the choice of methods of preparation. Several randomized controlled studies have confirmed the favorable effect of these recommendations on serum advanced glycation products concentrations. In humans, as in animals, regular physical activity also results in a reduction of serum and tissue concentrations of advanced glycation products. There is a need for prospective clinical study to confirm the effects of hygienic and dietary recommendations that have only been appreciated, so far, on biological markers.
Collapse
Affiliation(s)
- Philippe Chauveau
- Service hémodialyse, Aurad Aquitaine, 2 allée des demoiselles, 33170 Gradignan, France.
| | - Catherine Lasseur
- Service hémodialyse, Aurad Aquitaine, 2 allée des demoiselles, 33170 Gradignan, France
| | - Raymond Azar
- Service de néphrologie, centre hospitalier de Dunkerque, 59240 Dunkerque, France
| | - Wenli Niu
- Laboratoire de science de la vie, université de Bordeaux, 33615 Bordeaux, France
| | - Christian Combe
- Service de néphrologie, hôpital Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| | - Michel Aparicio
- Service de néphrologie, hôpital Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
13
|
Delgado-Andrade C, Fogliano V. Dietary Advanced Glycosylation End-Products (dAGEs) and Melanoidins Formed through the Maillard Reaction: Physiological Consequences of their Intake. Annu Rev Food Sci Technol 2018; 9:271-291. [PMID: 29350563 DOI: 10.1146/annurev-food-030117-012441] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The main purpose of this review is to clarify whether the consumption of food rich in melanoidins and dietary advanced glycosylation end-products (dAGEs) is harmful or beneficial for human health. There are conflicting results on their harmful effects in the literature, partly due to a methodological issue in how dAGEs are determined in food. Melanoidins have positive functions particularly within the gastrointestinal tract, whereas the intake of dAGEs has controversial physiological consequences. Most of the in vivo intervention trials were done comparing boiled versus roasted diet (low and high dAGE, respectively). However, these studies can be biased by different lipid oxidation and by different calorie density of foods in the two conditions. The attraction that humans have to cooked foods is linked to the benefits they have had during mankind's evolution. The goal for food technologists is to design low-energy-dense products that can satisfy humans' attraction to rewarding cooked foods.
Collapse
Affiliation(s)
| | - Vincenzo Fogliano
- Food Quality & Design Group, Wageningen University & Research, NL-6708 WG, Wageningen, Netherlands;
| |
Collapse
|
14
|
ALJahdali N, Gadonna-Widehem P, Delayre-Orthez C, Marier D, Garnier B, Carbonero F, Anton PM. Repeated Oral Exposure to N ε-Carboxymethyllysine, a Maillard Reaction Product, Alleviates Gut Microbiota Dysbiosis in Colitic Mice. Dig Dis Sci 2017; 62:3370-3384. [PMID: 28965192 DOI: 10.1007/s10620-017-4767-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/13/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Diet is suggested to participate in the etiology of inflammatory bowel diseases (IBD). Repeated exposure to Maillard reaction products (MRPs), molecules resulting from reduction reactions between amino acids and sugars during food heating, has been reported to be either potentially detrimental or beneficial to health. AIMS The aim of this study is to determine the effect of repeated oral ingestion of N ε-carboxymethyllysine (CML), an advanced MRP, on the onset of two models of experimental IBD and on the gut microbiota composition of mice. METHODS Mice received either saline (control) or N ε-carboxymethyllysine daily for 21 days. For the last week of treatment, each group was split into subgroups, receiving dextran sulfate sodium salt (DSS) or trinitrobenzenesulfonic acid (TNBS) to induce colitis. Intensity of inflammation was quantified, and cecal microbiota characterized by bacterial 16S ribosomal RNA (rRNA) amplicon sequencing. RESULTS Daily oral administration of N ε-carboxymethyllysine did not induce intestinal inflammation and had limited impact on gut microbiota composition (Bacteroidaceae increase, Lachnospiraceae decrease). DSS and TNBS administration resulted in expected moderate experimental colitis with a shift of Bacteroidetes/Firmicutes ratio and a significant Proteobacteria increase but with distinct profiles: different Proteobacteria taxa for DSS, but mainly Enterobacteriaceae for TNBS. While N ε-carboxymethyllysine exposure failed to prevent the inflammatory response, it allowed maintenance of healthy gut microbiota profiles in mice treated with DSS (but not TNBS). CONCLUSIONS Repeated oral exposure to CML limits dysbiosis in experimental colitis. IBD patients may modulate their microbiota profile by regulating the level and type of dietary MRP consumption.
Collapse
Affiliation(s)
- Nesreen ALJahdali
- Cell and Molecular Biology Program, University of Arkansas, 2650 Young Avenue, Fayetteville, AR, 72704, USA
| | - Pascale Gadonna-Widehem
- Expression des Gènes et Régulation Epigénétique par l'Aliment UP 2012.10.101., Institut Polytechnique UniLaSalle, 19 rue Pierre Waguet, 60000, Beauvais, France
| | - Carine Delayre-Orthez
- Expression des Gènes et Régulation Epigénétique par l'Aliment UP 2012.10.101., Institut Polytechnique UniLaSalle, 19 rue Pierre Waguet, 60000, Beauvais, France
| | - David Marier
- Expression des Gènes et Régulation Epigénétique par l'Aliment UP 2012.10.101., Institut Polytechnique UniLaSalle, 19 rue Pierre Waguet, 60000, Beauvais, France
| | - Benjamin Garnier
- Expression des Gènes et Régulation Epigénétique par l'Aliment UP 2012.10.101., Institut Polytechnique UniLaSalle, 19 rue Pierre Waguet, 60000, Beauvais, France
| | - Franck Carbonero
- Cell and Molecular Biology Program, University of Arkansas, 2650 Young Avenue, Fayetteville, AR, 72704, USA. .,Department of Food Science and Center for Human Nutrition, University of Arkansas, 2650 Young Avenue, Fayetteville, AR, 72704, USA.
| | - Pauline M Anton
- Expression des Gènes et Régulation Epigénétique par l'Aliment UP 2012.10.101., Institut Polytechnique UniLaSalle, 19 rue Pierre Waguet, 60000, Beauvais, France
| |
Collapse
|
15
|
DeChristopher LR. Perspective: The Paradox in Dietary Advanced Glycation End Products Research-The Source of the Serum and Urinary Advanced Glycation End Products Is the Intestines, Not the Food. Adv Nutr 2017; 8:679-683. [PMID: 28916568 PMCID: PMC5593110 DOI: 10.3945/an.117.016154] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inconsistent research results have impeded our understanding of the degree to which dietary advanced glycation end products (dAGEs) contribute to chronic disease. Early research suggested that Western-style fast foods, including grilled and broiled meats and French fries, contain high levels of proinflammatory advanced glycation end products (AGEs). However, recent studies with state-of-the-art ultraperformance LC-tandem mass spectrometry (UPLC-MS) found that there is no evidence that these foods have elevated levels of dAGEs relative to other foods. Paradoxically, observational research found that the intake of fruits (mainly apples), fruit juices (apple juice), vegetables, nuts, seeds, soy, and nonfat milk, which are foods synonymous with healthy eating, as well as the intake of cold breakfast cereals, whole grains (breads), and sweets, which are sources of high-fructose corn syrup (HFCS), were associated with elevated serum and urinary N-ε-carboxymethyl-lysine (CML). Ironically, these are the same foods found to have lower CML levels, as measured by UPLC-MS. One possible explanation for this paradox is that the source of the elevated CML is the intestines, not the food. When considered collectively, dAGE research results are consistent with the "fructositis" hypothesis, which states that intake of foods and beverages with high fructose-to-glucose ratios (HFCS-sweetened foods and beverages, agave syrup, crystalline fructose, apple juice, and apple juice blends) promotes the intestinal in situ formation of readily absorbed, proinflammatory extracellular, newly identified, fructose-associated AGE, an overlooked source of immunogenic AGEs.
Collapse
|
16
|
Kidney, heart and brain: three organs targeted by ageing and glycation. Clin Sci (Lond) 2017; 131:1069-1092. [PMID: 28515343 DOI: 10.1042/cs20160823] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
Abstract
Advanced glycation end-product (AGE) is the generic term for a heterogeneous group of derivatives arising from a non-enzymatic reaction between reducing sugars and proteins. In recent years, evidence has accumulated that incriminates AGEs in pathogenic processes associated with both chronic hyperglycaemia and age-related diseases. Regardless of their exogenous or endogenous origin, the accumulation of AGEs and their derivatives could promote accelerated ageing by leading to protein modifications and activating several inflammatory signalling pathways via AGE-specific receptors. However, it remains to be demonstrated whether preventing the accumulation of AGEs and their effects is an important therapeutic option for successful ageing. The present review gives an overview of the current knowledge on the pathogenic role of AGEs by focusing on three AGE target organs: kidney, heart and brain. For each of these organs we concentrate on an age-related disease, each of which is a major public health issue: chronic kidney disease, heart dysfunction and neurodegenerative diseases. Even though strong connections have been highlighted between glycation and age-related pathogenesis, causal links still need to be validated. In each case, we report evidence and uncertainties suggested by animal or epidemiological studies on the possible link between pathogenesis and glycation in a chronic hyperglycaemic state, in the absence of diabetes, and with exogenous AGEs alone. Finally, we present some promising anti-AGE strategies that are currently being studied.
Collapse
|
17
|
Advanced glycation endproducts form during ovalbumin digestion in the presence of fructose: Inhibition by chlorogenic acid. Fitoterapia 2017; 120:1-5. [PMID: 28527897 DOI: 10.1016/j.fitote.2017.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 01/12/2023]
|
18
|
Yang Y, Yan B, Cheng X, Ding Y, Tian X, Shi Y, Le G. Metabolomic studies on the systemic responses of mice with oxidative stress induced by short-term oxidized tyrosine administration. RSC Adv 2017. [DOI: 10.1039/c7ra02665j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidized tyrosine (O-Tyr) has attracted more interest in recent years because many researchers have discovered that it and its product (dityrosine) are associated with pathological conditions, especially various age-related disorders in biological systems.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Xiangrong Cheng
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yinyi Ding
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Xu Tian
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
19
|
Kocadağlı T, Gökmen V. Effects of Sodium Chloride, Potassium Chloride, and Calcium Chloride on the Formation of α-Dicarbonyl Compounds and Furfurals and the Development of Browning in Cookies during Baking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7838-7848. [PMID: 27690415 DOI: 10.1021/acs.jafc.6b03870] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effects of NaCl, KCl, CaCl2, NaHCO3, and NH4HCO3 on the formation of glucosone, 1-deoxyglucosone, 3-deoxyglucosone, glyoxal, methylglyoxal, diacetyl, 5-hydroxymethyl-2-furfural, and 2-furfural and browning were investigated in cookies. The presence of 1.5% NaCl, 1% KCl, and 1% CaCl2 on flour basis had no effect on α-dicarbonyl compounds, except 1-deoxyglucosone increased in the presence of KCl and CaCl2. The increase in 5-hydroxymethyl-2-furfural formation in the presence of NaCl, KCl, and CaCl2 did not relate to 3-deoxyglucosone formation and pH changes. NaCl, KCl, and CaCl2 increased browning in cookies. Model reaction systems indicated that NaCl, KCl, and CaCl2 enhance browning by increasing furfurals in caramelization. NaCl, KCl, and CaCl2 decreased browning intensity in a heated glucose-glycine system. Use of CaCl2 in cookies may considerably increase furfurals but not α-dicarbonyl compounds. Sodium reduction can be obtained by replacement with potassium without sacrificing the desired consequences of caramelization in sugar-rich baked goods.
Collapse
Affiliation(s)
- Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University , 06800 Beytepe Campus, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University , 06800 Beytepe Campus, Ankara, Turkey
| |
Collapse
|
20
|
Arena S, Renzone G, D'Ambrosio C, Salzano AM, Scaloni A. Dairy products and the Maillard reaction: A promising future for extensive food characterization by integrated proteomics studies. Food Chem 2016; 219:477-489. [PMID: 27765254 DOI: 10.1016/j.foodchem.2016.09.165] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Heating of milk and dairy products is done using various technological processes with the aim of preserving microbiological safety and extending shelf-life. These treatments result in chemical modifications in milk proteins, mainly generated as a result of the Maillard reaction. Recently, different bottom-up proteomic methods have been applied to characterize the nature of these structural changes and the modified amino acids in model protein systems and/or isolated components from thermally-treated milk samples. On the other hand, different gel-based and shotgun proteomic methods have been utilized to assign glycation, oxidation and glycoxidation protein targets in diverse heated milks. These data are essential to rationalize eventual, different nutritional, antimicrobial, cell stimulative and antigenic properties of milk products, because humans ingest large quantities of corresponding thermally modified proteins on a daily basis and these molecules also occur in pharmaceuticals and cosmetics. This review provides an updated picture of the procedures developed for the proteomic characterization of variably-heated milk products, highlighting their limits as result of concomitant factors, such as the multiplicity and the different concentration of the compounds to be detected.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Chiara D'Ambrosio
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy.
| |
Collapse
|
21
|
Navarro M, Morales FJ. In vitro investigation on the antiglycative and carbonyl trapping activities of hydroxytyrosol. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-015-2614-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Obando M, Papastergiadis A, Li S, De Meulenaer B. Impact of Lipid and Protein Co-oxidation on Digestibility of Dairy Proteins in Oil-in-Water (O/W) Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9820-9830. [PMID: 26466987 DOI: 10.1021/acs.jafc.5b03563] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Enrichment of polyunsaturated fatty acids (PUFAs) is a growing trend in the food industry. However, PUFAs are known to be susceptible to lipid oxidation. It has been shown that oxidizing lipids react with proteins present in the food and that as a result polymeric protein complexes are produced. Therefore, the aim of this work was to investigate the impact of lipid and protein co-oxidation on protein digestibility. Casein and whey protein (6 mg/mL) based emulsions with 1% oil with different levels of PUFAs were subjected to respectively autoxidation and photo-oxidation. Upon autoxidation at 70 °C, protein digestibility of whey protein based emulsions containing fish oil decreased to 47.7 ± 0.8% after 48 h, whereas in the controls without oil 67.8 ± 0.7% was observed. Upon photo-oxidation at 4 °C during 30 days, mainly casein-based emulsions containing fish oil were affected: the digestibility amounted to 43.9 ± 1.2%, whereas in the control casein solutions without oil, 72.6 ± 0.2% of the proteins were digestible. Emulsions containing oils with high PUFA levels were more prone to lipid oxidation and thus upon progressive oxidation showed a higher impact on protein digestibility.
Collapse
Affiliation(s)
- Mónica Obando
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
- Agroindustrial Engineering, Department of Sanitation and Vegetable Production, Faculty of Agronomic Engineering, Universidad del Tolima , Santa Helena, 564 Ibagué, Colombia
| | - Antonios Papastergiadis
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Shanshan Li
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Bruno De Meulenaer
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
23
|
Bastos DHM, Gugliucci A. Contemporary and controversial aspects of the Maillard reaction products. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2014.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Renzone G, Arena S, Scaloni A. Proteomic characterization of intermediate and advanced glycation end-products in commercial milk samples. J Proteomics 2015; 117:12-23. [PMID: 25638024 DOI: 10.1016/j.jprot.2014.12.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/19/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED The Maillard reaction consists of a number of chemical processes affecting the structure of the proteins present in foods. We previously accomplished the proteomic characterization of the lactosylation targets in commercial milk samples. Although characterizing the early modification derivatives, this analysis did not describe the corresponding advanced glycation end-products (AGEs), which may be formed from the further oxidation of former ones or by reaction of oxidized sugars with proteins, when high temperatures are exploited. To fill this gap, we have used combined proteomic procedures for the systematic characterization of the lactosylated and AGE-containing proteins from the soluble and milk fat globule membrane fraction of various milk products. Besides to confirm all lactulosyl-lysines described previously, 40 novel lactosylation sites were identified. More importantly, 308 additional intermediate and advanced glyco-oxidation derivatives (including cross-linking adducts) were characterized in 31 proteins, providing the widest qualitative inventory of modified species ascertained in commercial milk samples so far. Amadori adducts with glucose/galactose, their dehydration products, carboxymethyllysine and glyoxal-, 3-deoxyglucosone/3-deoxygalactosone- and 3-deoxylactosone-derived dihydroxyimidazolines and/or hemiaminals were the most frequent derivatives observed. Depending on thermal treatment, a variable number of modification sites was identified within each protein; their number increased with harder food processing conditions. Among the modified proteins, species involved in assisting the delivery of nutrients, defense response against pathogens and cellular proliferation/differentiation were highly affected by AGE formation. This may lead to a progressive decrease of the milk nutritional value, as it reduces the protein functional properties, abates the bioavailability of the essential amino acids and eventually affects food digestibility. These aspects are of particular importance in products intended for infant diet, such as milk powders and infant formulas. BIOLOGICAL SIGNIFICANCE We used combined shotgun proteomic procedures for the systematic characterization of intermediate and advanced glycoxidation protein products in various raw and commercial milk samples. Several hundreds of modified species were characterized as deriving from 31 milk proteins, providing the widest qualitative inventory of assigned components in this fluid. Amadori adducts with glucose/galactose, their dehydration products, carboxymethyl-lysine, and glyoxal-, 3-deoxyglucosone/3-deoxygalactosone- and 3-deoxylactosone-derived dihydroxyimidazolines and/or hemiaminals were the most frequent derivatives observed. Proteins involved in nutrient delivery, defense response against pathogens and cellular proliferation/differentiation were highly subjected to intermediate and advanced glyco-oxidation modification. This may lead to a progressive decrease of the milk nutritional value, as it reduces the protein functional properties, diminishes the bioavailability of the essential amino acids, eventually affects food digestibility and determines a potential increase of specific allergens. These information are important points of interest to connect the extent of the Maillard reaction present in different commercial samples with the potential nutritional aspects mentioned above. These themes have to be fully evaluated in a next future for a complete estimation of the nutritional and toxicological properties of the dairy products deriving from severe heat processing.
Collapse
Affiliation(s)
- Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy.
| |
Collapse
|
25
|
Jiao L, Stolzenberg-Solomon R, Zimmerman TP, Duan Z, Chen L, Kahle L, Risch A, Subar AF, Cross AJ, Hollenbeck A, Vlassara H, Striker G, Sinha R. Dietary consumption of advanced glycation end products and pancreatic cancer in the prospective NIH-AARP Diet and Health Study. Am J Clin Nutr 2015; 101:126-34. [PMID: 25527756 PMCID: PMC4266882 DOI: 10.3945/ajcn.114.098061] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) are a heterogeneous group of compounds present in uncooked foods as well as in foods cooked at high temperatures. AGEs have been associated with insulin resistance, oxidative stress, and chronic inflammation in patients with diabetes. Dietary AGEs are an important contributor to the AGE pool in the body. N(ϵ)-(carboxymethyl)lysine (CML) AGE is one of the major biologically and chemically well-characterized AGE markers. The consumption of red meat, which is CML-AGE rich, has been positively associated with pancreatic cancer in men. OBJECTIVES With the use of a published food CML-AGE database, we estimated the consumption of CML AGE in the prospective NIH-AARP Diet and Health Study and evaluated the association between CML-AGE consumption and pancreatic cancer and the mediating effect of CML AGE on the association between red meat consumption and pancreatic cancer. DESIGN Multivariate Cox proportional hazard regression models were used to estimate HRs and 95% CIs for pancreatic cancer. RESULTS During an average of 10.5 y of follow-up, we identified 2193 pancreatic cancer cases (1407 men and 786 women) from 528,251 subjects. With the comparison of subjects in the fifth and the first quintiles of CML-AGE consumption, we observed increased pancreatic cancer risk in men (HR: 1.43; 95% CI: 1.06, 1.93, P-trend = 0.003) but not women (HR: 1.14; 95% CI: 0.76, 1.72, P-trend = 0.42). Men in the highest quintile of red meat consumption had higher risk of pancreatic cancer (HR: 1.35; 95% CI: 1.07, 1.70), which attenuated after adjustment for CML-AGE consumption (HR: 1.20; 95% CI: 0.95, 1.53). CONCLUSION Dietary CML-AGE consumption was associated with modestly increased risk of pancreatic cancer in men and may partially explain the positive association between red meat and pancreatic cancer.
Collapse
Affiliation(s)
- Li Jiao
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Rachael Stolzenberg-Solomon
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Thea Palmer Zimmerman
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Zhigang Duan
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Liang Chen
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Lisa Kahle
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Adam Risch
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Amy F Subar
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Amanda J Cross
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Albert Hollenbeck
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Helen Vlassara
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Gary Striker
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| | - Rashmi Sinha
- From the Sections of Gastroenterology and Hepatology (LJ and LC) and Health Services Research (LJ, ZD, and LC), Department of Medicine, Baylor College of Medicine, Houston, TX; the Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics (RS-S and RS) and the Applied Research Program, Division of Cancer Control and Population Sciences (AFS), National Cancer Institute, NIH, Rockville, MD; Westat, Rockville, MD (TPZ); Information Management Services, Rockville, MD (LK and AR); the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom (AJC); the Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, NY (HV and GS); and AARP, Washington, DC (AH)
| |
Collapse
|
26
|
Hellwig M, Henle T. Backen, Altern, Diabetes: eine kurze Geschichte der Maillard-Reaktion. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed Engl 2014; 53:10316-29. [PMID: 25044982 DOI: 10.1002/anie.201308808] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/12/2013] [Indexed: 01/11/2023]
Abstract
The reaction of reducing carbohydrates with amino compounds described in 1912 by Louis-Camille Maillard is responsible for the aroma, taste, and appearance of thermally processed food. The discovery that non-enzymatic conversions also occur in organisms led to intensive investigation of the pathophysiological significance of the Maillard reaction in diabetes and ageing processes. Dietary Maillard products are discussed as "glycotoxins" and thus as a nutritional risk, but also increasingly with regard to positive effects in the human body. In this Review we give an overview of the most important discoveries in Maillard research since it was first described and show that the complex reaction, even after over one hundred years, has lost none of its interdisciplinary actuality.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden (Germany) http://www.chm.tu-dresden.de/lc1
| | | |
Collapse
|
28
|
Wautier MP, Tessier FJ, Wautier JL. [Advanced glycation end products: A risk factor for human health]. ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 72:400-8. [PMID: 25438650 DOI: 10.1016/j.pharma.2014.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/27/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Advanced glycation end products (AGE) result from a chemical reaction between the carbonyl group of reducing sugar and the nucleophilic NH2 of a free amino acid or a protein; lysine and arginine being the main reactive amino acids on proteins. Following this first step, a molecular rearrangement occurs, rearrangement of Amadori resulting to the formation of Maillard products. Glycation can cause the clouding of the lens by inducing reactions crosslinking proteins. Specialized receptors (RAGE, Galectin 3…) bind AGE. The binding to the receptor causes the formation of free radicals, which have a deleterious effect because they are powerful oxidizing agents, but also play the role of intracellular messenger, altering the cell functions. This is especially true at the level of endothelial cells: the attachment of AGE to RAGE receptor causes an increase in vascular permeability. AGE binding to endothelium RAGE and to monocytes-macrophages, led to the production of cytokines, growth factors, to the expression of adhesion molecules, and the production of procoagulant activity. Diabetic retinopathy is related to excessive secretion of vascular growth factor (vascular endothelial growth factor [VEGF]). AGE-RAGE receptor binding causes the synthesis and secretion of VEGF. Increased permeability, facilitation of leukocyte migration, the production of reactive oxygen species, cytokines and VEGF suggest that the AGE could be an element of a cascade of reactions responsible for the diabetic angiopathy and vascular damages observed during aging and chronic renal failure. Balanced diet or some drugs can limit the deleterious effect of AGE.
Collapse
Affiliation(s)
- M-P Wautier
- Faculté de médecine, université Denis-Diderot Paris 7, 8, avenue Léopold-II, 75016 Paris, France
| | - F J Tessier
- Unité EGEAL, institut polytechnique LaSalle-Beauvais, rue Pierre-Waguet, 60026 Beauvais, France
| | - J-L Wautier
- Faculté de médecine, université Denis-Diderot Paris 7, 8, avenue Léopold-II, 75016 Paris, France.
| |
Collapse
|
29
|
|
30
|
Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals. Eur J Nutr 2013; 53:661-72. [DOI: 10.1007/s00394-013-0574-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/01/2013] [Indexed: 01/02/2023]
|
31
|
The Maillard reaction and pet food processing: effects on nutritive value and pet health. Nutr Res Rev 2013; 26:130-48. [PMID: 23916186 DOI: 10.1017/s0954422413000103] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Maillard reaction, which can occur during heat processing of pet foods or ingredients, is known to reduce the bioavailability of essential amino acids such as lysine due to the formation of early and advanced Maillard reaction products (MRP) that are unavailable for utilisation by the body. Determination of the difference between total and reactive lysine by chemical methods provides an indication of the amount of early MRP present in foods, feeds and ingredients. Previous research reported that the difference between total and reactive lysine in pet foods can be up to 61.8%, and foods for growing dogs may be at risk of supplying less lysine than the animal may require. The endogenous analogues of advanced MRP, advanced glycation endproducts, have been associated with age-related diseases in humans, such as diabetes and impaired renal function. It is unknown to what extent advanced MRP are present in pet foods, and if dietary MRP can be associated with the development of diseases such as diabetes and impaired renal function in pet animals. Avoidance of ingredients with high levels of MRP and processing conditions known to favour the Maillard reaction may be useful strategies to prevent the formation of MRP in manufactured pet food. Future work should further focus on understanding the effects of ingredient choice and processing conditions on the formation of early and advanced MRP, and possible effects on animal health.
Collapse
|
32
|
Physical and chemical properties of tomato, green tea, and ginseng-supplemented corn extrudates produced by conventional extrusion and CO2 injection process. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2053-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bügel S, Nielsen J, Skibsted LH, Dragsted LO. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 2013; 60:10-37. [PMID: 23867544 DOI: 10.1016/j.fct.2013.06.052] [Citation(s) in RCA: 534] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/23/2013] [Accepted: 06/26/2013] [Indexed: 12/27/2022]
Abstract
Advanced glycation endproducts (AGEs) form by Maillard-reactions after initial binding of aldehydes with amines or amides in heated foods or in living organisms. The mechanisms of formation may include ionic as well as oxidative and radical pathways. The reactions may proceed within proteins to form high-molecular weight (HMW) AGEs or among small molecules to form low-molecular weight (LMW) AGEs. All free amino acids form AGEs, but lysine or arginine side chains dominate AGE formation within proteins. The analysis of AGEs in foods and body fluids is most often performed by ELISA or LC-MS; however, none of the methodologies cover all HMW and LMW AGEs. Most research is, therefore, carried out using 'representative' AGE compounds, most often N(ε)-carboxymethyl-lysine (CML). Only LMW AGEs, including peptide-bound forms, and carbonyls may be absorbed from the gut and contribute to the body burden of AGEs. Some AGEs interact with specific pro- or anti-inflammatory receptors. Most studies on the biological effects of AGEs have been carried out by administering heated foods. The pro-inflammatory and deteriorating biological effects of AGEs in these studies, therefore, need further confirmation. The current review points out several research needs in order to address important questions on AGEs in foods and health.
Collapse
Affiliation(s)
- Malene W Poulsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Release of pyrraline in absorbable peptides during simulated digestion of casein glycated by 3-deoxyglucosone. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2027-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Han L, Li L, Li B, Zhao D, Li Y, Xu Z, Liu G. Review of the characteristics of food-derived and endogenous ne-carboxymethyllysine. J Food Prot 2013; 76:912-8. [PMID: 23643138 DOI: 10.4315/0362-028x.jfp-12-472] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ne-Carboxymethyllysine (CML), a representative of advanced glycation end products (AGEs), is commonly found in food and is considered a potential hazard to human health. Food scientists have begun to investigate the formation of CML in food processes. As the understanding of CML is mainly based on that of endogenous CML from the fields of biology and medicine, this review summarizes the different characteristics of food-derived CML and endogenous CML with respect to food safety, detection methods, formation environment, formation mechanism, and methods for inhibiting the formation of CML. Additionally, future research directions for the study of food-derived CML are proposed, including understanding its digestion, absorption, and metabolism in human health, developing rapid, reliable, and inexpensive detection methods, revealing its relationship with food components and production processes, and controlling the formation of CML through the addition of inhibitors and/or modification of food processing conditions, so as to contribute to the methods for controlling food-derived AGEs.
Collapse
Affiliation(s)
- Lipeng Han
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, China 510640
| | | | | | | | | | | | | |
Collapse
|
36
|
N-ε-fructosyllysine and N-ε-carboxymethyllysine, but not lysinoalanine, are available for absorption after simulated gastrointestinal digestion. Amino Acids 2013; 46:289-99. [DOI: 10.1007/s00726-013-1501-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/10/2013] [Indexed: 01/13/2023]
|
37
|
Troise AD, Dathan NA, Fiore A, Roviello G, Di Fiore A, Caira S, Cuollo M, De Simone G, Fogliano V, Monti SM. Faox enzymes inhibited Maillard reaction development during storage both in protein glucose model system and low lactose UHT milk. Amino Acids 2013; 46:279-88. [DOI: 10.1007/s00726-013-1497-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/05/2013] [Indexed: 12/20/2022]
|
38
|
Microorganisms and Maillard reaction products: a review of the literature and recent findings. Amino Acids 2013; 46:267-77. [PMID: 23588491 DOI: 10.1007/s00726-013-1496-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/05/2013] [Indexed: 10/27/2022]
Abstract
Research on the impact of Maillard reaction products (MRPs) on microorganisms has been reported in the literature for the last 60 years. In the current study, the impact of an MRP-rich medium on the growth of three strains of Escherichia coli was measured by comparing two classic methods for studying the growth of bacteria (plate counting and optical density at 600 nm) and by tracing MRP utilisation. Early stage and advanced MRPs in the culture media were assessed by quantifying furosine and N (ε) -carboxymethyllysine (CML) levels, respectively, using chromatographic methods. These measures were performed prior to and during bacterial growth to estimate the potential use of these MRPs by Escherichia coli CIP 54.8. Glucose and lysine, the two MRP precursors used in the MRP-rich medium, were also quantified by chromatographic means. Compared to control media, increased lag phases and decreased growth rates were observed in the MRP-rich medium for two out of the three Escherichia coli strains tested. In contrast, one strain isolated from the faeces of a piglet fed on a MRP-rich diet was not influenced by the presence of MRPs in the medium. Overall, CML as well as the products obtained by the thermal degradation of glucose and lysine, regardless of the Maillard reaction, did not affect the growth of the three strains tested. In addition, no degradation of fructoselysine or CML was found in the presence of Escherichia coli CIP 54.8.
Collapse
|
39
|
Xu H, Wang Z, Wang Y, Hu S, Liu N. Biodistribution and elimination study of fluorine-18 labeled Nε-carboxymethyl-lysine following intragastric and intravenous administration. PLoS One 2013; 8:e57897. [PMID: 23505446 PMCID: PMC3591457 DOI: 10.1371/journal.pone.0057897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background Nε-carboxymethyl-lysine (CML) is a major advanced glycation end-product (AGEs) widely found in foods. The aim of our study was to evaluate how exogenous CML-peptide is dynamically absorbed from the gastrointestinal tract and eliminated by renal tubular secretion using microPET imaging. Methods The present study consisted of three investigations. In study I, we synthesized the imaging tracer 18F-CML by reacting N-succinimidyl 4-18F-fluorobenzoate (18F-SFB) with CML. In study II, the biological activity of 18F-CML was evaluated in RAW264.7 cells and HepG2 cells. In study III, the biodistribution and elimination of AGEs in ICR mice were studied in vivo following tail vein injection and intragastric administration of 18F-CML. Result The formation of 18F-CML was confirmed by comparing its retention time with the corresponding reference compound 19F-CML. The radiochemical purity (RCP) of 18F-CML was >95%, and it showed a stable character in vitro and in vivo. Uptake of 18F-CML by RAW264.7 cells and HepG2 cells could be inhibited by unmodified CML. 18F-CML was quickly distributed via the blood, and it was rapidly excreted through the kidneys 20 min after tail vein injection. However, 18F-CML was only slightly absorbed following intragastric administration. After administration of 18F-CML via a stomach tube, the radioactivity was completely localized in the stomach for the first 15 min. At 150 min post intragastric administration, intense accumulation of radioactivity in the intestines was still observed. Conclusions PET technology is a powerful tool for the in vivo analysis of the gastrointestinal absorption of orally administered drugs. 18F-CML is hardly absorbed by the gastrointestinal tract. It is rapidly distributed and eliminated from blood following intravenous administration. Thus, it may not be harmful to healthy bodies. Our study showed the feasibility of noninvasively imaging 18F-labeled AGEs and was the first to describe CML-peptide gastrointestinal absorption by means of PET.
Collapse
Affiliation(s)
- Hongzeng Xu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhongqun Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yan Wang
- Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Shengda Hu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Naifeng Liu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
- * E-mail:
| |
Collapse
|
40
|
Mitigation of acrylamide formation in cookies by using Maillard reaction products as recipe modifier in a combined partial conventional baking and radio frequency post-baking process. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1804-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Degen J, Hellwig M, Henle T. 1,2-dicarbonyl compounds in commonly consumed foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7071-7079. [PMID: 22724891 DOI: 10.1021/jf301306g] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
1,2-Dicarbonyl compounds, formed from carbohydrates during thermal processing in the course of caramelization and Maillard reactions, are intensively discussed as precursors for advanced glycation endproducts in foods and in vivo. To obtain information about the uptake of individual compounds with commonly consumed foods, a comprehensive analysis of the content of 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), and methylglyoxal (MGO) together with 5-hydroxymethylfurfural (HMF) in 173 food items like bakery products, pasta, nonalcoholic and alcoholic beverages, sweet spreads, and condiments was performed. Following suitable cleanup procedures, 1,2-dicarbonyl compounds were quantitated after derivatization with o-phenylenediamine via RP-HPLC with UV detection. 3-DG proved to be the predominant 1,2-dicarbonyl compound with concentrations up to 410 mg/L in fruit juices, 2622 mg/L in balsamic vinegars, and 385 mg/kg in cookies, thus exceeding the corresponding concentrations of HMF. 3-DGal was found to be of relevance in many foods even in the absence of galactose. MGO was only of minor quantitative importance in all foods studied, except for manuka honey. Dietary intake was estimated to range between 20 and 160 mg/day for 3-DG and 5 and 20 mg/day for MGO, respectively.
Collapse
Affiliation(s)
- Julia Degen
- Institute of Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | | | | |
Collapse
|
42
|
Abstract
This is an introduction to a collection of review articles by leading investigators in the field of protein glycation research, see following articles in this issue. With this we launch a section of this journal now established for presentation of research results, reviews and commentaries on protein glycation and related topics. Glycation is the spontaneous, non-enzymatic reaction of protein with saccharides and saccharide derivatives. Although studied in the modern scientific era for over 100 years, its importance in the biology, medicine, food and nutrition, pharmacology and toxicology, and technological processing remains intriguingly undisclosed. In this section of amino acids, research on glycation is a qualifier for publication. Glycation research now has a place to call home.
Collapse
Affiliation(s)
- Naila Rabbani
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, University Hospital, Clifford Bridge Road, Coventry, CV2 2DX, UK.
| | | |
Collapse
|
43
|
Hellwig M, Henle T. Quantification of the Maillard reaction product 6-(2-formyl-1-pyrrolyl)-l-norleucine (formyline) in food. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1738-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Le TT, Deeth HC, Bhandari B, Alewood PF, Holland JW. A proteomic approach to detect lactosylation and other chemical changes in stored milk protein concentrate. Food Chem 2012; 132:655-62. [DOI: 10.1016/j.foodchem.2011.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/13/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023]
|
45
|
Leuner B, Ruhs S, Brömme HJ, Bierhaus A, Sel S, Silber RE, Somoza V, Simm A, Nass N. RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts. Food Funct 2012; 3:1091-8. [DOI: 10.1039/c2fo30030c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
|
47
|
De Marco LM, Fischer S, Henle T. High molecular weight coffee melanoidins are inhibitors for matrix metalloproteases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11417-11423. [PMID: 21961901 DOI: 10.1021/jf202778w] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
High molecular (above 10 kDa) melanoidins isolated from coffee beans of varying roasting degree were found to be efficient inhibitors for the zinc-containing matrix metalloproteases MMP-1, MMP-2, and MMP-9 with IC(50) values ranging between 0.2 and 1.1 mg/mL in vitro. The inhibitory potential increased with roasting degree. No or only slight inhibition of other zinc-containing peptidases closely related to MMPs, namely, Clostridium histolyticum collagenase and angiotensin converting enzyme, was found, indicating specific structural features of melanoidins to be responsible for the interaction with MMPs. A continuous increase on the apparent molecular weight of melanoidins as well as incorporation of phenolic substances into the melanoidin structure with progress of roasting was observed, concomitant with a significant increase in the carbon/nitrogen of the melanoidins. This suggests that the melanoidins are mainly formed by incorporation of carbohydrates and phenolic compounds onto a proteinaceous backbone. As MMP-1, MMP-2, and MMP-9 play a pivotal role in pathogenesis of colorectal cancer, studies on possible physiological effects of melanoidins are mandatory.
Collapse
|
48
|
Control of the Maillard reaction by ferulic acid. Food Chem 2011; 128:208-13. [DOI: 10.1016/j.foodchem.2011.03.047] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/09/2011] [Accepted: 03/09/2011] [Indexed: 11/24/2022]
|
49
|
Piroddi M, Palazzetti I, Quintaliani G, Pilolli F, Montaldi M, Valentina V, Libetta C, Galli F. Circulating Levels and Dietary Intake of the Advanced Glycation End-product Marker Carboxymethyl Lysine in Chronic Kidney Disease Patients on Conservative Predialysis Therapy: A Pilot Study. J Ren Nutr 2011; 21:329-39. [DOI: 10.1053/j.jrn.2010.06.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/14/2010] [Accepted: 06/29/2010] [Indexed: 11/11/2022] Open
|
50
|
Isolation and identification of Di-D-fructose dianhydrides resulting from heat-induced degradation of inulin. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1507-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|