1
|
Tang X, Feng S, Liu Y, Zhu W, Bu Y, Li J, Liu C, Li X. Identification, characterization and molecular docking study of umami peptides from Spanish mackerel head enzymatic hydrolysate and Maillard reaction products. Int J Biol Macromol 2025; 304:140876. [PMID: 39952532 DOI: 10.1016/j.ijbiomac.2025.140876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Umami peptides were screened and identified from the enzymatic hydrolysate of Spanish mackerel head and its Maillard reaction products using ultrafiltration, gel chromatography, and LC-MS/MS (Liquid Chromatography-Tandem Mass Spectrometry). The umami properties of these peptides were subsequently evaluated and characterized using electronic tongue analysis and molecular docking. This study is the first to employ enzymatic hydrolysis combined with Maillard reaction for the preparation of umami peptides from Spanish mackerel head. Following this approach, a total of nine novel umami peptides were identified, including five from enzymatic hydrolysate (YDDKIY, ITPDEKGTTF, DAITTDDAGK, LEDGYPKEIQE, DAITPDEKGTTF) and four from Maillard reaction products (KDEGSDV, TPDEKGT, TEKAKGEP, FDAITPDEKGTTF). Sensory evaluation and electronic tongue analysis confirmed their distinct umami properties, with taste recognition thresholds ranging from 0.125 to 0.25 mg/mL. Molecular docking analysis revealed that these peptides interact with the T1R1/T1R3 umami receptor through hydrogen bonding and hydrophobic interactions, with key binding residues identified as Ser150, Ser256, and Glu128. This study provides a novel methodology for screening umami peptides from seafood by-products and lays the groundwork for their application as natural umami enhancers in the food industry.
Collapse
Affiliation(s)
- Xuhua Tang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Shouyu Feng
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Yanwei Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Cikun Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China.
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
2
|
Wang X, Peng F, Yuan S, Huang Z, Tang L, Chen S, Liu J, Fu W, Peng L, Liu W, Xiao Y. GCN2-eIF2α signaling pathway negatively regulates the growth of triploid crucian carp. Genomics 2024; 116:110832. [PMID: 38518898 DOI: 10.1016/j.ygeno.2024.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
GCN2-eIF2α signaling pathway plays crucial roles in cell growth,development, and protein synthesis. However, in polyploid fish, the function of this pathway is rarely understood. In this study, genes associated with the GCN2-eIF2α pathway (pkr, pek, gcn2, eif2α) are founded lower expression levels in the triploid crucian carp (3nCC) muscle compared to that of the red crucian carp (RCC). In muscle effect stage embryos of the 3nCC, the mRNA levels of this pathway genes are generally lower than those of RCC, excluding hri and fgf21. Inhibiting gcn2 in 3nCC embryos downregulates downstream gene expression (eif2α, atf4, fgf21), accelerating embryonic development. In contrast, overexpressing of eif2α can alter the expression levels of downstream genes (atf4 and fgf21), and decelerates the embryonic development. These results demonstrate the GCN2-eIF2α pathway's regulatory impact on 3nCC growth, advancing understanding of fish rapid growth genetics and offering useful molecular markers for breeding of excellent strains.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Fangyuan Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shuli Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhen Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lingwei Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Song Chen
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
3
|
Zhao S, Ma S, Zhang Y, Gao M, Luo Z, Cai S. Combining molecular docking and molecular dynamics simulation to discover four novel umami peptides from tuna skeletal myosin with sensory evaluation validation. Food Chem 2024; 433:137331. [PMID: 37678119 DOI: 10.1016/j.foodchem.2023.137331] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/28/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Umami peptides are an important component of food flavoring agents and have high nutritional value. This work aimed to identify umami peptides from tuna skeletal myosin using a new model method of computer simulation, explore their umami mechanism, and further validate the umami tastes with sensory evaluation. Umami peptides LADW, MEIDD, VAEQE, and EEAEGT were discovered, and all of them bound to taste type 1 receptor 1 and receptor 3 via hydrogen bonds and van der Waals forces to form stable complexes. LADW exhibited the best affinity energy and binding capability. Sensory evaluation and electronic tongue confirmed that all peptides possessed an umami taste, and LADW exhibited the strongest umami intensity. This study not only explored four novel umami peptides to improve the value of tuna skeletal myosin but also provided a new method for the rapid discovery of umami peptides.
Collapse
Affiliation(s)
- Shuai Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, People's Republic of China, 650500
| | - Shuang Ma
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, People's Republic of China, 650500
| | - Yuanyue Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, People's Republic of China, 650500
| | - Ming Gao
- China National Research Institute of Food & Fermentation Industries CO., LTD, Beijing, People's Republic of China, 100048
| | - Zhenyu Luo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, People's Republic of China, 650500
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, People's Republic of China, 650500.
| |
Collapse
|
4
|
Li Q, Chen J, Liu J, Lin T, Liu X, Zhang S, Yue X, Zhang X, Zeng X, Ren M, Guan W, Zhang S. Leucine and arginine enhance milk fat and milk protein synthesis via the CaSR/G i/mTORC1 and CaSR/G q/mTORC1 pathways. Eur J Nutr 2023; 62:2873-2890. [PMID: 37392244 DOI: 10.1007/s00394-023-03197-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND AND AIMS Amino acids (AAs) not only constitute milk protein but also stimulate milk synthesis through the activation of mTORC1 signaling, but which amino acids that have the greatest impact on milk fat and protein synthesis is still very limited. In this study, we aimed to identify the most critical AAs involved in the regulation of milk synthesis and clarify how these AAs regulate milk synthesis through the G-protein-coupled receptors (GPCRs) signaling pathway. METHODS In this study, a mouse mammary epithelial cell line (HC11) and porcine mammary epithelial cells (PMECs) were selected as study subjects. After treatment with different AAs, the amount of milk protein and milk fat synthesis were detected. Activation of mTORC1 and GPCRs signaling induced by AAs was also investigated. RESULTS In this study, we demonstrate that essential amino acids (EAAs) are crucial to promote lactation by increasing the expression of genes and proteins related to milk synthesis, such as ACACA, FABP4, DGAT1, SREBP1, α-casein, β-casein, and WAP in HC11 cells and PMECs. In addition to activating mTORC1, EAAs uniquely regulate the expression of calcium-sensing receptor (CaSR) among all amino-acid-responsive GPCRs, which indicates a potential link between CaSR and the mTORC1 pathway in mammary gland epithelial cells. Compared with other EAAs, leucine and arginine had the greatest capacity to trigger GPCRs (p-ERK) and mTORC1 (p-S6K1) signaling in HC11 cells. In addition, CaSR and its downstream G proteins Gi, Gq, and Gβγ are involved in the regulation of leucine- and arginine-induced milk synthesis and mTORC1 activation. Taken together, our data suggest that leucine and arginine can efficiently trigger milk synthesis through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 pathways. CONCLUSION We found that the G-protein-coupled receptor CaSR is an important amino acid sensor in mammary epithelial cells. Leucine and arginine promote milk synthesis partially through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 signaling systems in mammary gland epithelial cells. Although this mechanism needs further verification, it is foreseeable that this mechanism may provide new insights into the regulation of milk synthesis.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaxin Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Tongbin Lin
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xinghong Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuchang Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xianhuai Yue
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China
| | - Man Ren
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Li B, Khan MZ, Khan IM, Ullah Q, Cisang ZM, Zhang N, Wu D, Huang B, Ma Y, Khan A, Jiang N, Zahoor M. Genetics, environmental stress, and amino acid supplementation affect lactational performance via mTOR signaling pathway in bovine mammary epithelial cells. Front Genet 2023; 14:1195774. [PMID: 37636261 PMCID: PMC10448190 DOI: 10.3389/fgene.2023.1195774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Mammary glands are known for their ability to convert nutrients present in the blood into milk contents. In cows, milk synthesis and the proliferation of cow mammary epithelial cells (CMECs) are regulated by various factors, including nutrients such as amino acids and glucose, hormones, and environmental stress. Amino acids, in particular, play a crucial role in regulating cell proliferation and casein synthesis in mammalian epithelial cells, apart from being building blocks for protein synthesis. Studies have shown that environmental factors, particularly heat stress, can negatively impact milk production performance in dairy cattle. The mammalian target of rapamycin complex 1 (mTORC1) pathway is considered the primary signaling pathway involved in regulating cell proliferation and milk protein and fat synthesis in cow mammary epithelial cells in response to amino acids and heat stress. Given the significant role played by the mTORC signaling pathway in milk synthesis and cell proliferation, this article briefly discusses the main regulatory genes, the impact of amino acids and heat stress on milk production performance, and the regulation of mTORC signaling pathway in cow mammary epithelial cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Zhuo-Ma Cisang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Nan Zhang
- Tibet Autonomous Region Animal Husbandry Station, Lhasa, China
| | - Dan Wu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Kobayashi K, Han L, Koyama T, Lu SN, Nishimura T. Sweet taste receptor subunit T1R3 regulates casein secretion and phosphorylation of STAT5 in mammary epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119448. [PMID: 36878266 DOI: 10.1016/j.bbamcr.2023.119448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 03/06/2023]
Abstract
During lactation, mammary epithelial cells (MECs) on the apical membrane are in contact with lactose in milk, while MECs on the basolateral membrane are in contact with glucose in blood. Both glucose and lactose are sweeteners that are sensed by a sweet taste receptor. Previously, we have shown that lactose exposure on the basolateral membrane, but not the apical membrane, inhibits casein production and phosphorylation of STAT5 in MECs. However, it remains unclear whether MECs have a sweet taste receptor. In this study, we confirmed that the sweet taste receptor subunit T1R3 existed in both the apical and basolateral membranes of MECs. Subsequently, we investigated the influence of apical and basolateral sucralose as a ligand for the sweet taste receptor using a cell culture model. In this model, upper and lower media were separated by the MEC layer with less-permeable tight junctions. The results showed in the absence of glucose, both apical and basolateral sucralose induced phosphorylation of STAT5, which is a positive transcriptional factor for milk production. In contrast, the T1R3 inhibitor basolateral lactisole reducing phosphorylated STAT5 and secreted caseins in the presence of glucose. Furthermore, exposure of the apical membrane to sucralose in the presence of glucose inhibited the phosphorylation of STAT5. Simultaneously, GLUT1 was partially translocated from the basolateral membrane to the cytoplasm in MECs. These results suggest that T1R3 functions as a sweet receptor and is closely involved in casein production in MECs.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan.
| | - Liang Han
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Taku Koyama
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Shan-Ni Lu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| |
Collapse
|
7
|
Dong X, Wan C, Huang A, Xu H, Lei H. Novel Umami Peptides from Hypsizygus marmoreus and Interaction with Umami Receptor T1R1/T1R3. Foods 2023; 12:foods12040703. [PMID: 36832778 PMCID: PMC9955199 DOI: 10.3390/foods12040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Umami peptides are important taste components of foods. In this study, umami peptides from Hypsizygus marmoreus hydrolysate were purified through ultrafiltration, gel filtration chromatography, and RP-HPLC, and then identified using LC-MS/MS. The binding mechanism of umami peptides with the receptor, T1R1/T1R3, was investigated using computational simulations. Five novel umami peptides were obtained: VYPFPGPL, YIHGGS, SGSLGGGSG, SGLAEGSG, and VEAGP. Molecular docking results demonstrated that all five umami peptides could enter the active pocket in T1R1; Arg277, Tyr220, and Glu301 were key binding sites; and hydrogen bonding and hydrophobic interaction were critical interaction forces. VL-8 had the highest affinity for T1R3. Molecular dynamics simulations demonstrated that VYPFPGPL (VL-8) could be steadily packed inside the binding pocket of T1R1 and the electrostatic interaction was the dominant driving force of the complex (VL-8-T1R1/T1R3) formation. Arg residues (151, 277, 307, and 365) were important contributors to binding affinities. These findings provide valuable insights for the development of umami peptides in edible mushrooms.
Collapse
Affiliation(s)
| | | | | | | | - Hongjie Lei
- Correspondence: ; Tel./Fax: +86-029-87092486
| |
Collapse
|
8
|
Dong X, Liu C, Miao J, Lin X, Wang Y, Wang Z, Hou Q. Effect of serotonin on the cell viability of the bovine mammary alveolar cell-T (MAC-T) cell line. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:922-936. [PMID: 36287778 PMCID: PMC9574616 DOI: 10.5187/jast.2022.e50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022]
Abstract
5-Hydroxytryptamine (5-HT), a monoamine, as a local regulator in the mammary gland is a chemical signal produced by the mammary epithelium cell. In cows, studies have shown that 5-HT is associated with epithelial cell apoptosis during the degenerative phase of the mammary gland. However, studies in other tissues have shown that 5-HT can effectively promote cell viability. Whether 5-HT could have an effect on mammary cell viability in dairy cows is still unknown. The purpose of this study was to determine: (1) effect of 5-HT on the viability of bovine mammary epithelial cells and its related signaling pathways, (2) interaction between prolactin (PRL) and 5-HT on the cell viability. The bovine mammary alveolar cell-T (MAC-T) were cultured with different concentrations of 5-HT for 12, 24, 48 or 72 hours, and then were assayed using cell counting kit-8, polymerase chain reaction (PCR) and immunobloting. The results suggested that 20 μM 5-HT treatment for 12 or 24 h promote cell viability, which was mainly induced by the activation of 5-HT receptor (5-HTR) 1B and 4, because the increase caused by 5-HT vanished when 5-HTR 1B and 4 was blocked by SB224289 and SB204070. And protein expression of mammalian target of rapamycin (mTOR), eukaryotic translation elongation factor 2 (eEF2), janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were decreased after blocking 5-HT 1B and 4 receptors. When MAC-T cells were treated with 5-HT and PRL simultaneously for 24 h, both the cell viability and the level of mTOR protein were significantly higher than that cultured with 5-HT or PRL alone. In conclusion, our study suggested that 5-HT promotes the viability of MAC-T cells by 5-HTR 1B and/or 4. Furthermore, there is a reciprocal relationship between PRL and 5-HT.
Collapse
Affiliation(s)
- Xusheng Dong
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Chen Liu
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Jialin Miao
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Xueyan Lin
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Yun Wang
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Zhonghua Wang
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China,Corresponding author: Zhonghua Wang,
Ruminant Nutrition and Physiology Laboratory, College of Animal Science and
Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
Tel: +86-15005485951, E-mail:
| | - Qiuling Hou
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China,Corresponding author: Qiuling Hou,
Ruminant Nutrition and Physiology Laboratory, College of Animal Science and
Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
Tel: +86-15064175925, E-mail:
| |
Collapse
|
9
|
Ma L, Tian X, Xi F, He Y, Li D, Sun J, Yuan T, Li K, Fan L, Zhang C, Yang G, Yu T. Ablation of Tas1r1 Reduces Lipid Accumulation Through Reducing the de Novo Lipid Synthesis and Improving Lipid Catabolism in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10248-10258. [PMID: 35968935 DOI: 10.1021/acs.jafc.2c02077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amino acid sensing plays an important role in regulating lipid metabolism by sensing amino acid nutrient disturbance. T1R1 (umami taste receptor, type 1, member 1) is a membrane G protein-coupled receptor that senses amino acids. Tas1r1-knockout (KO) mice were used to explore the function of umami receptors in lipid metabolism. Compared with wild-type (WT) mice, Tas1r1-KO mice showed decreased fat mass (P < 0.05) and adipocyte size, lower liver triglyceride (7.835 ± 0.809 vs 12.463 ± 0.916 mg/g WT, P = 0.013) and total cholesterol levels (0.542 ± 0.109 vs 1.472 ± 0.044 mmol/g WT, P < 0.001), and reduced lipogenesis gene expressions in adipose and liver tissues. Targeted liver amino acid metabolomics showed that the amino acid content of Tas1r1-KO mice was significantly decreased, which was consistent with the branched-chain ketoacid dehydrogenase protein levels. Proteomics analysis showed that the upregulated proteins were enriched in lipid and steroid metabolism pathways, and parallel reaction monitoring results illustrated that Tas1r1 ablation promoted lipid catabolism through oxysterol 7 α-hydroxylase and insulin-like growth factor binding protein 2. In summary, Tas1r1 disruption in mice could reduce lipid accumulation by reducing de novo lipid synthesis and improving lipid catabolism.
Collapse
Affiliation(s)
- Lu Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuekai Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengxue Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingchun Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tiantian Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Collage of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
10
|
Chen W, Li W, Wu D, Zhang Z, Chen H, Zhang J, Wang C, Wu T, Yang Y. Characterization of novel umami-active peptides from Stropharia rugoso-annulata mushroom and in silico study on action mechanism. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Exploration of the lactation function of protein phosphorylation sites in goat mammary tissues by phosphoproteome analysis. BMC Genomics 2021; 22:703. [PMID: 34583635 PMCID: PMC8479986 DOI: 10.1186/s12864-021-07993-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein phosphorylation plays an important role in lactation. Differentially modified phosphorylation sites and phosphorylated proteins between peak lactation (PL, 90 days postpartum) and late lactation (LL, 280 days postpartum) were investigated using an integrated approach, namely, liquid chromatography with tandem mass spectrometry (LC-MS/MS) and tandem mass tag (TMT) labeling, to determine the molecular changes in the mammary tissues during the different stages of goat lactation. RESULTS A total of 1,938 (1,111 upregulated, 827 downregulated) differentially modified phosphorylation sites of 1,172 proteins were identified (P values < 0.05 and fold change of phosphorylation ratios > 1.5). Multiple phosphorylation sites of FASN, ACACA, mTOR, PRKAA, IRS1, RPS6KB, EIF4EBP1, JUN, and TSC2 were different in PL compared with LL. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the calcium signaling pathway, oxytocin signaling pathway and MAPK signaling pathway were enriched. The western blot results showed that the phosphorylation levels of ACACA (Ser80), EIF4EBP1 (Thr46) and IRS1 (Ser312) increased and JUN (Ser63) decreased in PL compared with LL. These results were consistent with the phosphoproteome results. CONCLUSIONS In this study, we identified for the first time the differentially modified phosphorylation sites in goat mammary tissues between PL and LL. These results indicate that the multiple differentially modified phosphorylation sites of FASN, ACACA, mTOR, PRKAA, IRS1, RPS6KB, EIF4EBP1, TSC2, and JUN and proteins involved in the calcium signaling pathway, oxytocin signaling pathway, and MAPK signaling pathway are worthy of further exploration.
Collapse
|
12
|
Han M, Zhang M. The regulatory mechanism of amino acids on milk protein and fat synthesis in mammary epithelial cells: a mini review. Anim Biotechnol 2021; 34:402-412. [PMID: 34339350 DOI: 10.1080/10495398.2021.1950743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mammary epithelial cell (MEC) is the basic unit of the mammary gland that synthesizes milk components including milk protein and milk fat. MECs can sense to extracellular stimuli including nutrients such as amino acids though different sensors and signaling pathways. Here, we review recent advances in the regulatory mechanism of amino acids on milk protein and fat synthesis in MECs. We also highlight how these mechanisms reflect the amino acid requirements of MECs and discuss the current and future prospects for amino acid regulation in milk production.
Collapse
Affiliation(s)
- Meihong Han
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
13
|
Shiyan R, Liping S, Xiaodong S, Jinlun H, Yongliang Z. Novel umami peptides from tilapia lower jaw and molecular docking to the taste receptor T1R1/T1R3. Food Chem 2021; 362:130249. [PMID: 34111693 DOI: 10.1016/j.foodchem.2021.130249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/30/2023]
Abstract
This study aimed to isolate and identify peptides with intense umami taste from tilapia lower jaw. The aqueous extract was separated using ultrafiltration and Sephadex G-15 gel filtration chromatography. The peptide fraction with an intense umami taste was selected by sensory evaluation. The five novel peptides with strong umami taste were VADLMR, STELFK, FVGLQER, DALKKK, and VVLNPVARVE. Electronic tongue analysis and sensory evaluation showed that five peptides had obvious umami taste characteristics, and the recognition thresholds of umami peptides were in the range 0.125-0.250 mg/mL. Molecular docking was used to study the interaction of the peptides and umami taste receptor T1R1/T1R3. The five peptides could perfectly be inserted into the binding pocket of the Venus flytrap domain in the T1R3 subunit. Hydrogen bonding and hydrophobic interaction were the important interaction forces. The five peptides may bind with Asp219, Glu217, and Glu148 in T1R1/T1R3 receptor and produce the umami taste.
Collapse
Affiliation(s)
- Ruan Shiyan
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Sun Liping
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Sun Xiaodong
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - He Jinlun
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Zhuang Yongliang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
14
|
Target the human Alanine/Serine/Cysteine Transporter 2(ASCT2): Achievement and Future for Novel Cancer Therapy. Pharmacol Res 2020; 158:104844. [DOI: 10.1016/j.phrs.2020.104844] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
|
15
|
Yue S, Wang Z, Wang L, Peng Q, Xue B. Transcriptome Functional Analysis of Mammary Gland of Cows in Heat Stress and Thermoneutral Condition. Animals (Basel) 2020; 10:ani10061015. [PMID: 32532099 PMCID: PMC7341491 DOI: 10.3390/ani10061015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The current study employed RNA-seq technology to analyze the impact of heat stress on the whole transcript sequencing profile in the mammary glands of lactating Holstein dairy cows. In the findings of the current study, heat stress downregulated the expression of casein genes, which resulted in a decrease in milk production. Moreover, heat stress upregulated the gene expression of HSPA1A and HSP90B1, while it downregulated the expression of immune response-related genes that resulted in a reduction in milk yield. Furthermore, there was an increased synthesis of heat shock proteins and unfolded proteins that could reduce the availability of circulating amino acids for milk protein synthesis. The findings of the current experiment may help to explore the impact of heat stress on immune function, milk production, and milk protein synthesis in cows. Abstract Heat stress (HS) exerts significant effects on the production of dairy animals through impairing health and biological functions. However, the molecular mechanisms related to the effect of HS on dairy cow milk production are still largely unknown. The present study employed an RNA-sequencing approach to explore the molecular mechanisms associated with a decline in milk production by the functional analysis of differentially expressed genes (DEGs) in mammary glands of cows exposed to HS and non-heat-stressed cows. The results of the current study reveal that HS increases the rectal temperature and respiratory rate. Cows under HS result in decreased bodyweight, dry matter intake (DMI), and milk yield. In the current study, a total of 213 genes in experimental cow mammary glands was identified as being differentially expressed by DEGs analysis. Among identified genes, 89 were upregulated, and 124 were downregulated. Gene Ontology functional analysis found that biological processes, such as immune response, chaperone-dependent refolding of protein, and heat shock protein binding activity, were notably affected by HS. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis found that almost all of the top-affected pathways were related to immune response. Under HS, the expression of heat shock protein 90 kDa beta I (HSP90B1) and heat shock 70 kDa protein 1A was upregulated, while the expression of bovine lymphocyte antigen (BoLA) and histocompatibility complex, class II, DRB3 (BoLA-DRB3) was downregulated. We further explored the effects of HS on lactation-related genes and pathways and found that HS significantly downregulated the casein genes. Furthermore, HS increased the expression of phosphorylation of mammalian target of rapamycin, cytosolic arginine sensor for mTORC1 subunit 2 (CASTOR2), and cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1), but decreased the phosphorylation of Janus kinase-2, a signal transducer and activator of transcription factor-5. Based on the findings of DMI, milk yield, casein gene expression, and the genes and pathways identified by functional annotation analysis, it is concluded that HS adversely affects the immune function of dairy cows. These results will be beneficial to understand the underlying mechanism of reduced milk yield in HS cows.
Collapse
|
16
|
Amino acid transportation, sensing and signal transduction in the mammary gland: key molecular signalling pathways in the regulation of milk synthesis. Nutr Res Rev 2020; 33:287-297. [DOI: 10.1017/s0954422420000074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe mammary gland, a unique exocrine organ, is responsible for milk synthesis in mammals. Neonatal growth and health are predominantly determined by quality and quantity of milk production. Amino acids are crucial maternal nutrients that are the building blocks for milk protein and are potential energy sources for neonates. Recent advances made regarding the mammary gland further demonstrate that some functional amino acids also regulate milk protein and fat synthesis through distinct intracellular and extracellular pathways. In the present study, we discuss recent advances in the role of amino acids (especially branched-chain amino acids, methionine, arginine and lysine) in the regulation of milk synthesis. The present review also addresses the crucial questions of how amino acids are transported, sensed and transduced in the mammary gland.
Collapse
|
17
|
Zhu H, Jia X, Ren M, Yang L, Chen J, Han L, Ding Y, Ding M. Mifepristone Treatment in Pregnant Murine Model Induced Mammary Gland Dysplasia and Postpartum Hypogalactia. Front Cell Dev Biol 2020; 8:102. [PMID: 32154252 PMCID: PMC7047202 DOI: 10.3389/fcell.2020.00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Mammary gland dysplasia and postpartum hypogalactia often occur in humans and in the livestock breeding industry. However, their underlying mechanisms are not clear yet. Mifepristone, which has a high affinity for progesterone (P4) and glucocorticoid receptors, was exploited here to induce the disorders of mammary gland development and lactation. Four strategies were devised for treating pregnant mice with mifepristone. In the first strategy, mice were administered 1.20 mg mifepristone/kg body weight (BW) on pregnancy day 4 (Pd4). In the second strategy, mifepristone was administered to mice twice, with 1.20 mg/kg BW on Pd4 and 0.40 mg/kg BW on Pd8. In the third strategy, mice were treated with a single dose of 0.40 mg mifepristone/kg BW on Pd8. In the fourth strategy, mice were administered 0.40 mg mifepristone/kg BW on Pd8 and 0.20 mg mifepristone/kg BW on Pd12. The results suggested that mifepristone administration at the dose of 1.20 mg/kg BW on Pd4 caused significant reduction in milk production on lactation day 1 (Ld1), Ld2, and Ld3, as assessed using a weigh-suckle-weigh assay. Mammary β-casein expression, milk yields, litter growth rates, gland structure, and serum concentrations of 17-β estrogen (E2), P4, prolactin (PRL), growth hormone (GH), corticosterone (CORT) and oxytocin (OT) as well as the receptors of these hormones were determined during pregnancy or lactation after performing the first (Pd4) strategy. The results demonstrated that mifepristone administration during early pregnancy decreased β-casein expression, milk yields and litter growth rates, induced fewer alveoli, enlarged alveolar lumina, and altered the levels of E2, P4, PRL, GH, CORT, and OT as well as the mRNA expression of these hormonal receptors during pregnancy or early lactation. The present study on pregnant mice treated with mifepristone offers an innovative murine model to study the mechanism underlying mammary gland dysplasia and postpartum hypogalactia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Cai J, Wang D, Zhao FQ, Liang S, Liu J. AMPK-mTOR pathway is involved in glucose-modulated amino acid sensing and utilization in the mammary glands of lactating goats. J Anim Sci Biotechnol 2020; 11:32. [PMID: 32166025 PMCID: PMC7060552 DOI: 10.1186/s40104-020-0434-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/05/2020] [Indexed: 01/12/2023] Open
Abstract
Background The local supply of energy-yielding nutrients such as glucose seems to affect the synthesis of milk components in the mammary gland (MG). Thus, our study was conducted to investigate the effects of locally available MG glucose supply (LMGS) on amino acid (AA) sensing and utilization in the MG of lactating dairy goats. Six dosages of glucose (0, 20, 40, 60, 80, and 100 g/d) were infused into the MG through the external pudendal artery to investigate the dose-dependent changes in mammary AA uptake and utilization (Exp.1) and the changes in mRNA and protein expression of the AMPK-mTOR pathway (Expt.2). Results In Exp.1, total milk AA concentration was highest when goats were infused with 60 g/d glucose, but lower when goats were infused with 0 and 100 g/d glucose. Increasing LMGS quadratically changed the percentages of αS2-casein and α-lactalbumin in milk protein, which increased with infusions from 0 to 60 g/d glucose and then decreased with infusions between 60 and 100 g/d glucose. The LMGS changed the AA availability and intramammary gland AA utilization, as reflected by the mammary AA flux indexes. In Exp.2, the mRNA expression of LALBA in the MG increased quadratically with increasing LMGS, with the highest expression at dose of 60 g/d glucose. A high glucose dosage (100 g/d) activated the general control nonderepressible 2 kinase, an intracellular sensor of AA status, resulting in a reduced total milk AA concentration. Conclusions Our new findings suggest that the lactating MG in dairy goats may be affected by LMGS through regulation of the AA sensory pathway, AA utilization and protein synthesis, all being driven by the AMPK-mTOR pathway.
Collapse
Affiliation(s)
- Jie Cai
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Diming Wang
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Feng-Qi Zhao
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China.,2Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405 USA
| | - Shulin Liang
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Jianxin Liu
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| |
Collapse
|
19
|
Seryl-tRNA synthetase is involved in methionine stimulation of β-casein synthesis in bovine mammary epithelial cells. Br J Nutr 2019; 123:489-498. [PMID: 31711551 PMCID: PMC7015878 DOI: 10.1017/s0007114519002885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the well-characterised mechanisms of amino acids (AA) regulation of milk protein synthesis in mammary glands (MG), the underlying specific AA regulatory machinery in bovine MG remains further elucidated. As methionine (Met) is one of the most important essential and limiting AA for dairy cows, it is crucial to expand how Met exerts its regulatory effects on dairy milk protein synthesis. Our previous work detected the potential regulatory role of seryl-tRNA synthetase (SARS) in essential AA (EAA)-stimulated bovine casein synthesis. Here, we investigated whether and how SARS participates in Met stimulation of casein production in bovine mammary epithelial cells (BMEC). With or without RNA interference against SARS, BMEC were treated with the medium in the absence (containing all other EAA and devoid of Met alone)/presence (containing 0·6 mm of Met in the medium devoid of Met alone) of Met. The protein abundance of β-casein and members of the mammalian target of rapamycin (mTOR) and general control nonderepressible 2 (GCN2) pathways was determined by immunoblot assay after 6 h treatment, the cell viability and cell cycle progression were determined by cell counting and propidium iodide-staining assay after 24 h treatment, and protein turnover was determined by l-[ring-3H5]phenylalanine isotope tracing assay after 48 h treatment. In the absence of Met, there was a general reduction in cell viability, total protein synthesis and β-casein production; in contrast, total protein degradation was enhanced. SARS knockdown strengthened these changes. Finally, SARS may work to promote Met-stimulated β-casein synthesis via affecting mTOR and GCN2 routes in BMEC.
Collapse
|
20
|
Xia W, Osorio JS, Yang Y, Liu D, Jiang MF. Short communication: Characterization of gene expression profiles related to yak milk protein synthesis during the lactation cycle. J Dairy Sci 2018; 101:11150-11158. [PMID: 30268611 DOI: 10.3168/jds.2018-14715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
Abstract
This research assessed the gene expression patterns related to the synthesis of milk in yak, which is characterized by high fat and protein content but low yield. The yak (Bos grunniens) is one of the most crucial domestic animals in Tibetan life; however, the genetic and molecular factors underlying yak milk protein synthesis remain understudied. Yak mammary biopsies harvested during late-pregnancy (d -15) through the end of subsequent lactation (d 1, 15, 30, 60, 180, and 240) were used to evaluate gene expression via real-time quantitative PCR. The expression pattern of 41 genes encompassing multiple pathways integral to milk protein synthesis including insulin, mammalian target of rapamycin (mTOR), 5' AMP-activated protein kinase, Jak2-Stat5 signaling, and the expression of glucose and AA transporters was evaluated. Our results confirmed that most upregulated genes increased from d -15 and peaked at d 30 or 60 and then remained relatively highly expressed. Specifically, there was an increased expression of mTOR-related amino acid transporters (SLC1A5, SLC7A5, and SLC36A1), glucose transporters (SLC2A1, SLC2A3, and SLC2A8), Jak2-Stat5 pathway (ELF5), and insulin signaling pathway components (IRS1, PDPK1, and AKT1). For activation of proteins synthesis, MTOR was significantly increased only at d 1. Among inhibitors of mTOR signaling, TSC1 and PRKAA2 were significantly upregulated during lactation. The RPL23 was downregulated among ribosomal components. In conclusion, a critical role for AA and glucose transporters and insulin signaling through mTOR for regulation of yak milk protein synthesis was revealed in this study of the yak mammary gland.
Collapse
Affiliation(s)
- Wei Xia
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Conservation and Exploitation, Key Laboratory of Animal Genetics & Breeding of State Ethnic Affairs Commission and Ministry of Education, Southwest University for Nationalities, Chengdu 610041, China
| | - Johan S Osorio
- Dairy and Food Science Department, South Dakota State University, Brookings 57007
| | - Yuanxiao Yang
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Conservation and Exploitation, Key Laboratory of Animal Genetics & Breeding of State Ethnic Affairs Commission and Ministry of Education, Southwest University for Nationalities, Chengdu 610041, China
| | | | - Ming Feng Jiang
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Conservation and Exploitation, Key Laboratory of Animal Genetics & Breeding of State Ethnic Affairs Commission and Ministry of Education, Southwest University for Nationalities, Chengdu 610041, China.
| |
Collapse
|
21
|
Scalise M, Pochini L, Console L, Losso MA, Indiveri C. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol 2018; 6:96. [PMID: 30234109 PMCID: PMC6131531 DOI: 10.3389/fcell.2018.00096] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/08/2018] [Indexed: 12/30/2022] Open
Abstract
SLC1A5, known as ASCT2, is a neutral amino acid transporter belonging to the SLC1 family and localized in the plasma membrane of several body districts. ASCT2 is an acronym standing for Alanine, Serine, Cysteine Transporter 2 even if the preferred substrate is the conditionally essential amino acid glutamine, with cysteine being a modulator and not a substrate. The studies around amino acid transport in cells and tissues began in the '60s by using radiolabeled compounds and competition assays. After identification of murine and human genes, the function of the coded protein has been studied in cell system and in proteoliposomes revealing that this transporter is a Na+ dependent antiporter of neutral amino acids, some of which are only inwardly transported and others are bi-directionally exchanged. The functional asymmetry merged with the kinetic asymmetry in line with the physiological role of amino acid pool harmonization. An intriguing function has been described for ASCT2 that is exploited as a receptor by a group of retroviruses to infect human cells. Interactions with scaffold proteins and post-translational modifications regulate ASCT2 stability, trafficking and transport activity. Two asparagine residues, namely N163 and N212, are the sites of glycosylation that is responsible for the definitive localization into the plasma membrane. ASCT2 expression increases in highly proliferative cells such as inflammatory and stem cells to fulfill the augmented glutamine demand. Interestingly, for the same reason, the expression of ASCT2 is greatly enhanced in many human cancers. This finding has generated interest in its candidacy as a pharmacological target for new anticancer drugs. The recently solved 3D structure of ASCT2 will aid in the rational design of such therapeutic compounds.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Maria A Losso
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|