1
|
The Effective Treatment of Purpurin on Inflammation and Adjuvant-Induced Arthritis. Molecules 2023; 28:molecules28010366. [PMID: 36615560 PMCID: PMC9824476 DOI: 10.3390/molecules28010366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Rubia cordifolia L. (Rubiaceae), one of the traditional anti-rheumatic herbal medicines in China, has been used to treat rheumatoid arthritis (RA) since ancient times. Purpurin, an active compound of Rubia cordifolia L., has been identified in previous studies and exerts antibacterial, antigenotoxic, anticancer, and antioxidant effects. However, the efficacy and the underlying mechanism of purpurin to alleviate RA are unclear. In this study, the effect of purpurin on inflammation was investigated using macrophage RAW264.7 inflammatory cells, induced by lipopolysaccharide (LPS), and adjuvant-induced arthritis (AIA) rat was established to explore the effect of purpurin on joint damage and immune disorders; the network pharmacology and molecular docking were integrated to dig out the prospective target. Purpurin showed significantly anti-inflammatory effect by reducing the content of IL-6, TNF-α, and IL-1β and increasing IL-10. Besides, purpurin obviously improved joint injury and hypotoxicity in the liver and spleen and regulated the level of FOXP3 and CD4+/CD8+. Furthermore, purpurin reduced the MMP3 content of AIA rats. Network pharmacology and molecular docking also suggested that MMP3 may be the key target of purpurin against RA. The results of this study strongly indicated that purpurin has a potential effect on anti-RA.
Collapse
|
2
|
Chitre D, Nadkarni S, Jagtap N, Tulle R, Gitte A, Rahate P, Chaskar S, Dey D. Phase
III
randomized clinical trial of
BV
‐4051, an Ayurvedic polyherbal formulation in moderate
SARS‐CoV
‐2 infections and its impact on inflammatory biomarkers. Phytother Res 2022; 37:1232-1241. [PMID: 36419388 DOI: 10.1002/ptr.7683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022]
Abstract
SARS-CoV-2 virus and its variants continue to be a challenge inspite of widespread vaccination and preventive measures. We hypothesized an oral, safe polyherbal formulation with antiinflammatory properties may improve the clinical outcome of this disease. BV-4051, a formulation from four Ayurvedic plants namely Ashwagandha, Boswellia, Ginger and Turmeric was used for the treatment of hospitalized moderate COVID-19 patients along with standard of care (SOC). Patients were randomly assigned to receive BV-4051 or placebo tablets for 14 days, at four sites in India during late 2020 to early 2021. Among 208 randomized subjects, 175 completed the study. In BV-4051 group the mean reduction in duration of illness (p = 0.036), alleviation and severity scores of several symptoms like fever, cough, smell, and taste disorders were statistically significant (p ≤ 0.05). A sub-set analysis of subjects treated with or without Remdesivir as SOC showed mean reduction in duration of illness in BV-4051 (p = 0.030), and severity scores (p ≤ 0.05). Mean difference in Interleukin-6 was statistically significant (p = 0.042) on BV-4051 without Remdesivir. BV-4051 may reduce duration of illness, symptoms severity, Interleukin-6, and prevent the incidence of COVID-19 complications. It may have an adjunctive effect with other SOC. Larger extensive clinical testing may give a better understanding of its effect.
Collapse
Affiliation(s)
- Deepa Chitre
- Bioved Pharmaceuticals, Inc. San Jose California USA
| | | | | | | | - Amol Gitte
- Siddhivinayak Hospital Thane, Mumbai India
| | | | | | | |
Collapse
|
3
|
Prasad S, Kulshreshtha A, Lall R, Gupta SC. Inflammation and ROS in arthritis: management by Ayurvedic medicinal plants. Food Funct 2021; 12:8227-8247. [PMID: 34302162 DOI: 10.1039/d1fo01078f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic joint inflammatory disorders like osteoarthritis and rheumatoid arthritis, which are manifested by joint dysfunction, show an upsurge in inflammation and oxidative stress. Although conventional anti-arthritic drugs are being used to relieve pain from arthritic symptoms, they usually cause severe side effects. Traditionally used Ayurvedic medicinal plants are a promising alternative for the management of arthritic symptoms, as they are safe and effective. Ayurvedic medicinal plants improve arthritic symptoms by reducing joint tenderness, joint pain, swelling, bone and cartilage damage, and increasing knee flexion, walking distance and sports activities. These beneficial effects of Ayurvedic medicinal plants on arthritis are mediated through various cellular mechanisms including inhibition of the inflammatory markers NF-κB, cytokines, adipokines, PGE2, NO, iNOS, COX-2, and MMPs and induction of antioxidant status by decreasing free radicals, lipid peroxidation, and myeloperoxidase, and increasing antioxidant enzymes, Nrf2, and HO-1. Thus, a strategy requires using these Ayurvedic medicinal plants to treat arthritis. This article describes the status of inflammation and oxidative stress in arthritic conditions. We also provide evidence that Ayurvedic medicinal plants and their bioactive components are highly effective in improving arthritic symptoms.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Noble Pharma, LLC, Research and Development, Menomonie, WI, 54751 USA.
| | - Alok Kulshreshtha
- Noble Pharma, LLC, Research and Development, Menomonie, WI, 54751 USA.
| | - Rajiv Lall
- Noble Pharma, LLC, Research and Development, Menomonie, WI, 54751 USA.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Hong SH, Ku JM, Lim YS, Kim HI, Shin YC, Ko SG. Cervus nippon var. mantchuricus water extract treated with digestive enzymes (CE) modulates M1 macrophage polarization through TLR4/MAPK/NF-κB signaling pathways on murine macrophages. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to investigate the effects of Cervus nippon var. mantchuricus water extract treated with digestive enzymes (CE) on the promotion of M1 macrophage polarization in murine macrophages. Macrophages polarize either to one phenotype after stimulation with LPS or IFN-γ or to an alternatively activated phenotype that is induced by IL-4 or IL-13. Cell viability of RAW264.7 cells was determined by WST-1 assay. NO production was measured by Griess assay. IL-6, IL-12, TNF-α, and iNOS mRNA levels were measured by RT-PCR. IL-6, IL-12, and IL-10 cytokine levels were determined by ELISA. TLR4/MAPK/NF-κB signaling in RAW264.7 cells was evaluated by western blotting. The level of NF-κB was determined by immunoblotting. CE induced the differentiation of M1 macrophages. CE promoted M1 macrophages to elevate NO production and cytokine levels. CE-stimulated M1 macrophages had enhanced IL-6, IL-12, and TNF-α. CE promoted M1 macrophages to activate TLR4/MAPK/NF-κB phosphorylation. M2 markers were downregulated, while M1 markers were upregulated in murine macrophages by CE. Consequently, CE has immunomodulatory activity and can be used to promote M1 macrophage polarization through the TLR4/MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Se Hyang Hong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jin Mo Ku
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ye Seul Lim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo In Kim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Shu PP, Li LX, He QM, Pan J, Li XL, Zhu M, Yang Y, Qu Y. Identification and quantification of oleanane triterpenoid saponins and potential analgesic and anti-inflammatory activities from the roots and rhizomes of Panax stipuleanatus. J Ginseng Res 2021; 45:305-315. [PMID: 33841011 PMCID: PMC8020355 DOI: 10.1016/j.jgr.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Panax stipuleanatus represents a folk medicine for treatment of inflammation. However, lack of experimental data does not confirm its function. This article aims to investigate the analgesic and anti-inflammatory activities of triterpenoid saponins isolated from P. stipuleanatus. METHODS The chemical characterization of P. stipuleanatus allowed the identification and quantitation of two major compounds. Analgesic effects of triterpenoid saponins were evaluated in two models of thermal- and chemical-stimulated acute pain. Anti-inflammatory effects of triterpenoid saponins were also evaluated using four models of acetic acid-induced vascular permeability, xylene-induced ear edema, carrageenan-induced paw edema, and cotton pellet-induced granuloma in mice. RESULTS Two triterpenoid saponins of stipuleanosides R1 (SP-R1) and R2 (SP-R2) were isolated and identified from P. stipuleanatus. The results showed that SP-R1 and SP-R2 significantly increased the latency time to thermal pain in the hot plate test and reduced the writhing response in the acetic acid-induced writhing test. SP-R1 and SP-R2 caused a significant decrease in vascular permeability, ear edema, paw edema, and granuloma formation in inflammatory models. Further studies showed that the levels of inflammatory mediators, nitric oxide, malondialdehyde, tumor necrosis factor-α, and interleukin 6 in paw tissues were downregulated by SP-R1 and SP-R2. In addition, the rational harvest of three- to five-year-old P. stipuleanatus was preferable to obtain a higher level of triterpenoid saponins. SP-R2 showed the highest content in P. stipuleanatus, which had potential as a chemical marker for quality control of P. stipuleanatus. CONCLUSION This study provides important basic information about utilization of P. stipuleanatus resources for production of active triterpenoid saponins.
Collapse
Affiliation(s)
- Pan-Pan Shu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, China
| | - Lu-Xi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, China
| | - Qin-Min He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun Pan
- Yunnan Provincal Academy of Agricultural Sciences, Kunming, 650231, China
| | - Xiao-Lei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Min Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, China
| | - Yuan Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, China
| |
Collapse
|
6
|
Mandlik Ingawale DS, Namdeo AG. Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. J Diet Suppl 2020; 18:183-226. [PMID: 32242751 DOI: 10.1080/19390211.2020.1741484] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Withania somnifera, commonly known as "Ashwagandha" or "Indian ginseng" is an essential therapeutic plant of Indian subcontinent regions. It is regularly used, alone or in combination with other plants for the treatment of various illnesses in Indian Systems of Medicine over the period of 3,000 years. Ashwagandha (W. somnifera) belongs to the genus Withania and family Solanaceae. It comprises a broad spectrum of phytochemicals having wide range of biological effects. W. somnifera has demonstrated various biological actions such as anti-cancer, anti-inflammatory, anti-diabetic, anti-microbial, anti-arthritic, anti-stress/adaptogenic, neuro-protective, cardio-protective, hepato-protective, immunomodulatory properties. Furthermore, W. somnifera has revealed the capability to decrease reactive oxygen species and inflammation, modulation of mitochondrial function, apoptosis regulation and improve endothelial function. Withaferin-A is an important phytoconstituents of W. somnifera belonging to the category of withanolides been used in the traditional system of medicine for the treatment of various disorders. In this review, we have summarized the active phytoconstituents, pharmacologic activities (preclinical and clinical), mechanisms of action, potential beneficial applications, marketed formulations and safety and toxicity profile of W. somnifera.
Collapse
Affiliation(s)
- Deepa S Mandlik Ingawale
- Department of Pharmacology, Bharati Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune, India
| | - Ajay G Namdeo
- Department of Pharmacology, Bharati Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune, India
| |
Collapse
|
7
|
Tu YM, Gong CX, Ding L, Liu XZ, Li T, Hu FF, Wang S, Xiong CP, Liang SD, Xu H. A high concentration of fatty acids induces TNF-α as well as NO release mediated by the P2X4 receptor, and the protective effects of puerarin in RAW264.7 cells. Food Funct 2018; 8:4336-4346. [PMID: 28937704 DOI: 10.1039/c7fo00544j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circulating levels of free fatty acids (FFAs) are often found to be increased in patients with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS). High plasma FFA levels may give rise to maladaptive macrophage activation and promote inflammatory responses, which has been proposed as a potential mechanism for the development of DM and MS. P2X4 receptor (P2X4R), a ligand-gated cation channel activated by extracellular adenosine triphosphate (ATP), plays a primary role in the regulation of inflammatory responses. Puerarin has been reported to possess potential anti-inflammatory activity. However, the anti-inflammatory activity of puerarin and the underlying molecular mechanisms in a setting of a high concentration of FFAs remain unknown. In this study, we found that a high concentration of FFAs increased the expression of P2X4R, cytosolic Ca2+ concentration and the phosphorylation of extracellular signal-regulated kinase (ERK) and induced the expression of tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) mRNA and the release of TNF-α and nitric oxide (NO) in RAW264.7 macrophages. Such a high concentration FFA-induced inflammation may be reversed by the P2X4R selective antagonist 5-BDBD, which manifests the important role of P2X4R in the TNF-α and NO release caused by the high concentration of FFAs in RAW264.7 cells. Molecular docking data showed that puerarin could interfere with the activation of P2X4R by forming hydrogen bonding towards residue Arg267, an important residue essential for the canonical activation of P2X4R. Treatment with puerarin dose-dependently reduced high concentration FFA-elevated P2X4R expression and inhibited P2X4R-mediated inflammatory signalling, including high concentration FFA-evoked [Ca2+]i, ERK phosphorylation, expression of TNF-α and iNOS mRNA and release of TNF-α and NO. Our findings emphasize the critical role of P2X4R in high concentration FFA-induced TNF-α and NO release of RAW264.7 macrophages. Puerarin notably counteracts these high concentration FFA-induced adverse effects through its inhibition of P2X4R expression and P2X4R-mediated inflammatory signalling.
Collapse
Affiliation(s)
- Yun-Ming Tu
- Department of Endocrinology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang Q, Lin S, Shi S, Zhang T, Ma Q, Tian T, Zhou T, Cai X, Lin Y. Anti-inflammatory and Antioxidative Effects of Tetrahedral DNA Nanostructures via the Modulation of Macrophage Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3421-3430. [PMID: 29300456 DOI: 10.1021/acsami.7b17928] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) are a new type of nanomaterials that have recently attracted attention in the field of biomedicine. However, the practical application of nanomaterials is often limited owing to the host immune response. Here, the response of RAW264.7 macrophages to TDNs was comprehensively evaluated. The results showed that TDNs had no observable cytotoxicity and could induce polarization of RAW264.7 cells to the M1 type. TDNs attenuated the expression of NO IL-1β (interleukin-1β), IL-6 (interleukin-6), and TNF-α (tumor necrosis factor-α) in LPS-induced RAW264.7 cells by inhibiting MAPK phosphorylation. In addition, TDNs inhibited LPS-induced reactive oxygen species (ROS) production and cell apoptosis by up-regulating the mRNA expression of antioxidative enzyme heme oxygenase-1 (HO-1). The findings of this study demonstrated that TDNs have great potential as a novel theranostic agent because of their anti-inflammatory and antioxidant activities, high bioavailability, and ease of targeting.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Tengfei Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| |
Collapse
|
9
|
Cervantes-Torres J, Segura-Velázquez R, Padilla P, Sciutto E, Fragoso G. High stability of the immunomodulatory GK-1 synthetic peptide measured by a reversed phase high-performance liquid chromatography method. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:97-102. [DOI: 10.1016/j.jchromb.2017.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
|
10
|
Phytomedicine in Joint Disorders. Nutrients 2017; 9:nu9010070. [PMID: 28275210 PMCID: PMC5295114 DOI: 10.3390/nu9010070] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/24/2023] Open
Abstract
Chronic joint inflammatory disorders such as osteoarthritis and rheumatoid arthritis have in common an upsurge of inflammation, and oxidative stress, resulting in progressive histological alterations and disabling symptoms. Currently used conventional medication (ranging from pain-killers to biological agents) is potent, but frequently associated with serious, even life-threatening side effects. Used for millennia in traditional herbalism, medicinal plants are a promising alternative, with lower rate of adverse events and efficiency frequently comparable with that of conventional drugs. Nevertheless, their mechanism of action is in many cases elusive and/or uncertain. Even though many of them have been proven effective in studies done in vitro or on animal models, there is a scarcity of human clinical evidence. The purpose of this review is to summarize the available scientific information on the following joint-friendly medicinal plants, which have been tested in human studies: Arnica montana, Boswellia spp., Curcuma spp., Equisetum arvense, Harpagophytum procumbens, Salix spp., Sesamum indicum, Symphytum officinalis, Zingiber officinalis, Panax notoginseng, and Whitania somnifera.
Collapse
|
11
|
Dar NJ, Hamid A, Ahmad M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell Mol Life Sci 2015; 72:4445-60. [PMID: 26306935 PMCID: PMC11113996 DOI: 10.1007/s00018-015-2012-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
Withania somnifera, also called 'Indian ginseng', is an important medicinal plant of the Indian subcontinent. It is widely used, singly or in combination, with other herbs against many ailments in Indian Systems of Medicine since time immemorial. Withania somnifera contains a spectrum of diverse phytochemicals enabling it to have a broad range of biological implications. In preclinical studies, it has shown anti-microbial, anti-inflammatory, anti-tumor, anti-stress, neuroprotective, cardioprotective, and anti-diabetic properties. Additionally, it has demonstrated the ability to reduce reactive oxygen species, modulate mitochondrial function, regulate apoptosis, and reduce inflammation and enhance endothelial function. In view of these pharmacologic properties, W. somnifera is a potential drug candidate to treat various clinical conditions, particularly related to the nervous system. In this review, we summarize the pharmacologic characteristics and discuss the mechanisms of action and potential therapeutic applications of the plant and its active constituents.
Collapse
Affiliation(s)
- Nawab John Dar
- Neuropharmacology Laboratory, Indian Institute of Integrative Medicine-CSIR, Sanat Nagar, Srinagar, 190005, India
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, Jammu and Kashmir, India
| | - Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, Jammu and Kashmir, India
| | - Muzamil Ahmad
- Neuropharmacology Laboratory, Indian Institute of Integrative Medicine-CSIR, Sanat Nagar, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, Jammu and Kashmir, India.
| |
Collapse
|
12
|
Acute and chronic toxicity, cytochrome p450 enzyme inhibition, and HERG channel blockade studies with a polyherbal, ayurvedic formulation for inflammation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:971982. [PMID: 25893199 PMCID: PMC4381553 DOI: 10.1155/2015/971982] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
Ayurvedic plants are known for thousands of years to have anti-inflammatory and antiarthritic effect. We have recently shown that BV-9238, a proprietary formulation of Withania somnifera, Boswellia serrata, Zingiber officinale, and Curcuma longa, inhibits LPS-induced TNF-alpha and nitric oxide production from mouse macrophage and reduces inflammation in different animal models. To evaluate the safety parameters of BV-9238, we conducted a cytotoxicity study in RAW 264.7 cells (0.005–1 mg/mL) by MTT/formazan method, an acute single dose (2–10 g/kg bodyweight) toxicity study and a 180-day chronic study with 1 g and 2 g/kg bodyweight in Sprague Dawley rats. Some sedation, ptosis, and ataxia were observed for first 15–20 min in very high acute doses and hence not used for further chronic studies. At the end of 180 days, gross and histopathology, blood cell counts, liver and renal functions were all at normal levels. Further, a modest attempt was made to assess the effects of BV-9238 (0.5 µg/mL) on six major human cytochrome P450 enzymes and 3H radioligand binding assay with human hERG receptors. BV-9238 did not show any significant inhibition of these enzymes at the tested dose. All these suggest that BV-9238 has potential as a safe and well tolerated anti-inflammatory formulation for future use.
Collapse
|