1
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Thapliyal S, Vishnoi R, Murti Y, Kumar R, Chavan N, Rawat P, Joshi G, Dwivedi AR, Goel KK. Exploring anticancer properties of the phytoconstituents and comparative analysis of their chemical space parameters with USFDA-approved synthetic anticancer agents. Chem Biol Drug Des 2024; 103:e14561. [PMID: 38862268 DOI: 10.1111/cbdd.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
The present review article thoroughly analyses natural products and their derived phytoconstituents as a rich source of plausible anticancer drugs. The study thoroughly explores the chemical components derived from various natural sources, thus emphasizing their unique structural characteristics and therapeutic potential as an anticancer agent. The review contains the critical chemical constituents' in-depth molecular mechanisms, their source's chemical structures and the categories. The review also comprises an exhaustive and comprehensive analysis of different chemical spacing parameters of the anticancer agents derived from natural products. It compares them with USFDA-approved synthetic anticancer drugs up to 2020, thus providing a meaningful understanding of the relationship between natural and synthetic compounds portraying the anticancer assets. The review also delves more deeply into the chemical analysis of the heterocyclic moieties from the natural product arena, illustrating the anticancer mechanisms. The present article is, therefore, expected to serve as a valuable resource for natural product and medicinal chemists, encouraging and promoting an integrated approach to exploit the potential of natural products in drug discovery development and translational research, which have a prerequisite of bench to bedside approach. The work could guide researchers toward innovative approaches for the ever-evolving field of anticancer drug discovery.
Collapse
Affiliation(s)
- Somesh Thapliyal
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, India
| | - Ritu Vishnoi
- Department of Botany, Hariom Saraswati PG College, Dhanauri, Haridwar, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Ghudda, Bathinda, India
| | - Nirja Chavan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Pramod Rawat
- Graphic Era (Deemed to be University) Clement Town Dehradun, Dehradun, India
- Graphic Era Hill University Clement Town Dehradun, Dehradun, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be) University, Hyderabad, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, Uttarakhand, India
| |
Collapse
|
3
|
Thazhackavayal Baby B, Kulkarni AM, Gayam PKR, Harikumar KB, Aranjani JM. Beyond cyclopamine: Targeting Hedgehog signaling for cancer intervention. Arch Biochem Biophys 2024; 754:109952. [PMID: 38432565 DOI: 10.1016/j.abb.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Hedgehog (Hh) signaling plays a significant role in embryogenesis and several physiological processes, such as wound healing and organ homeostasis. In a pathological setting, it is associated with oncogenesis and is responsible for disease progression and poor clinical outcomes. Hedgehog signaling mediates downstream actions via Glioma Associated Oncogene Homolog (GLI) transcription factors. Inhibiting Hh signaling is an important oncological strategy in which inhibitors of the ligands SMO or GLI have been looked at. This review briefly narrates the Hh ligands, signal transduction, the target genes involved and comprehensively describes the numerous inhibitors that have been evaluated for use in various neoplastic settings.
Collapse
Affiliation(s)
- Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala State, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India.
| |
Collapse
|
4
|
Simsek M, Whitney K. Examination of Primary and Secondary Metabolites Associated with a Plant-Based Diet and Their Impact on Human Health. Foods 2024; 13:1020. [PMID: 38611326 PMCID: PMC11011468 DOI: 10.3390/foods13071020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
The consumption of plant-based diets has become a burgeoning trend, and they are increasingly consumed globally owing to their substantial energy intensity and dietetic advantages. Plants possess numerous bioactive components that have been recognized to exhibit manifold health-promoting assets. Comprehension of the synthesis of these primary and secondary metabolites by plants and their method of action against several chronic illnesses is a significant requirement for understanding their benefits to human health and disease prevention. Furthermore, the association of biologically active complexes with plants, humans, disease, medicine, and the underlying mechanisms is unexplored. Therefore, this review portrays various bioactive components derived from plant sources associated with health-promoting traits and their action mechanisms. This review paper predominantly assembles proposed plant-derived bioactive compounds, postulating valuable evidence aimed at perceiving forthcoming approaches, including the selection of potent bioactive components for formulating functional diets that are effective against several human disorders. This meticulous evidence could perhaps provide the basis for the advanced preemptive and therapeutic potential promoting human health. Hence, delivery opens possibilities for purchasers to approach the lucrative practice of plants as a remedy, produce novel products, and access new marketplaces.
Collapse
Affiliation(s)
- Miray Simsek
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kristin Whitney
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Orabi MAA, Orabi EA, Awadh AAA, Alshahrani MM, Abdel-Wahab BA, Sakagami H, Hatano T. New Megastigmane and Polyphenolic Components of Henna Leaves and Their Tumor-Specific Cytotoxicity on Human Oral Squamous Carcinoma Cell Lines. Antioxidants (Basel) 2023; 12:1951. [PMID: 38001804 PMCID: PMC10669829 DOI: 10.3390/antiox12111951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Polyphenols have a variety of phenolic hydroxyl and carbonyl functionalities that enable them to scavenge many oxidants, thereby preserving the human redox balance and preventing a number of oxidative stress-related chronic degenerative diseases. In our ongoing investigation of polyphenol-rich plants in search of novel molecules, we resumed the investigation of Lawsonia inermis L. (Lythraceae) or henna, a popular ancient plant with aesthetic and therapeutic benefits. The leaves' 70% aq acetone extract was fractionated on a Diaion HP-20 column with different ratios of H2O/an organic solvent. Multistep gel chromatographic fractionation and HPLC purification of the Diaion 75% aq MeOH and MeOH fractions led to a new compound (1) along with tannin-related metabolites, benzoic acid (2), benzyl 6'-O-galloyl-β-D-glucopyranoside (3), and ellagic acid (4), which are first isolated from henna. Repeating the procedures on the Diaion 50% aq MeOH eluate led to the first-time isolation of two O-glucosidic ellagitannins, heterophylliin A (5), and gemin D (6), in addition to four known C-glycosidic ellagitannins, lythracin D (7), pedunculagin (8), flosin B (9), and lagerstroemin (10). The compound structures were determined through intensive spectroscopic investigations, including HRESIMS, 1D (1H and 13C) and 2D (1H-1H COSY, HSQC, HMBC, and NOESY) NMR, UV, [α]D, and CD experiments. The new structure of 1 was determined to be a megastigmane glucoside gallate; its biosynthesis from gallic acid and a β-ionone, a degradative product of the common metabolite β-carotin, was highlighted. Cytotoxicity investigations of the abundant ellagitannins revealed that lythracin D2 (7) and pedunculagin (8) are obviously more cytotoxic (tumor specificity = 2.3 and 2.8, respectively) toward oral squamous cell carcinoma cell lines (HSC-2, HSC-4, and Ca9-22) than normal human oral cells (HGF, HPC, and HPLF). In summary, Lawsonia inermis is a rich source of anti-oral cancer ellagitannins. Also, the several discovered polyphenolics highlighted here emphasize the numerous biological benefits of henna and encourage further clinical studies to profit from their antioxidant properties against oxidative stress-related disorders.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 66454, Saudi Arabia
| | - Esam A. Orabi
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 66454, Saudi Arabia; (A.A.A.A.); (M.M.A.)
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 66454, Saudi Arabia; (A.A.A.A.); (M.M.A.)
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 64462, Saudi Arabia;
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Saitama 350-0283, Japan;
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan;
| |
Collapse
|
6
|
Xu W, Huang Y, Yuen H, Shi L, Qian H, Cui L, Tang M, Wang J, Zhu J, Wang Z, Xiao L, Zhao X, Wang L. Living prosthetic breast for promoting tissue regeneration and inhibiting tumor recurrence. Bioeng Transl Med 2023; 8:e10409. [PMID: 37693055 PMCID: PMC10487338 DOI: 10.1002/btm2.10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
Developing a living prosthetic breast to inhibit potential breast cancer recurrence and simultaneously promote breast reconstruction would be a promising strategy for clinical treatment of breast cancer after mastectomy. Here, a living prosthetic breast in the form of injectable gelatin methacryloyl microspheres is prepared, where they encapsulated zeolitic imidazolate framework (ZIF) nanoparticles loaded with small molecules urolithin C (Uro-C) and adipose-derived stem cells (ADSCs). Taking advantage of the acidic tumor microenvironment, the ZIF triggered a pH-sensitive drug release in situ so that Uro-C can induce tumor cell apoptosis via reactive oxygen species (ROS) generation. Meanwhile, the ADSCs proliferate in situ to promote tissue regeneration. Using such a design, our data showed that the ADSCs maintained viable and proliferate under the inhibitory effect of Uro-C in vitro. Through ROS generation, Uro-C also activated a suppressive tumor microenvironment in mice by both re-polarizing M2 macrophages to M1 macrophages for elevated inflammatory responses, and increasing the ratio between CD8 and CD4 T cells for tumor recurrence inhibition, significantly promoting new adipose tissue formation. Altogether, our results demonstrate that the prepared living prosthetic breast with bifunctional properties can be a promising candidate in clinic involving tumor treatment and tissue engineering in synergy.
Collapse
Affiliation(s)
- Wenting Xu
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Yu Huang
- Department of Obstetrics and GynecologyThe First People's Hospital of Zhangjiagang, Soochow UniversityZhangjiagangChina
| | - Ho‐Yin Yuen
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Linli Shi
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Haiqing Qian
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Lijuan Cui
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Mengyu Tang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Jiahui Wang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Jie Zhu
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Xin Zhao
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Lihong Wang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| |
Collapse
|
7
|
Lu QP, Wu ML, Li HL, Zhou Y, Xian MH, Huang WZ, Piao XH, Ge YW. Combined Metabolite Analysis and Network Pharmacology to Elucidate the Mechanisms of Therapeutic Effect of Melastoma dodecandrum Ellagitannins on Abnormal Uterine Bleeding. Chem Biodivers 2023; 20:e202300646. [PMID: 37358391 DOI: 10.1002/cbdv.202300646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
The abnormal uterine bleeding (AUB) is complex and usually leads to severe anemia. Melastomadodecandrum (MD) is clinically used for the treatment of metrorrhagia bleeding. The MD ellagitannins (MD-ETs) had been evidenced being effective at hemorrhage, and exerts biological activities upon their metabolites including ellagic acid and urolithins. In this study, the blood-permeated metabolites from theMD-ETs were analyzed using LC-MS approach, and 19 metabolites including ellagic acid and urolithin A derivatives were identified. Furthermore, a network pharmacology analysis including the target prediction analysis, AUB target analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to reveal the relationships between "metabolites-targets-pathways", which was further verified by molecular docking analysis. The results showed that methyl ellagic acid, urolithin A and isourolithin A produced from MD-ETs can be absorbed into the blood, and might act on the core targets of VEGFA, SRC, MTOR, EGFR and CCND1. And the hemostatic effects were exerted through PI3K-Akt, endocrine resistance and Rap 1 signaling pathways. These results implied the potential effective constituents and action mechanism of MD-ETs in the therapy of AUB, which will promote the application of MD-ETs as natural agent for the treatment of gynecological bleeding diseases.
Collapse
Affiliation(s)
- Qiu-Ping Lu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Miao-Li Wu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ming-Hua Xian
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wei-Zhong Huang
- Guangdong Luofushan Sinopharm Co., Ltd., Huizhou, 516133, China
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Wojciechowska O, Kujawska M. Urolithin A in Health and Diseases: Prospects for Parkinson's Disease Management. Antioxidants (Basel) 2023; 12:1479. [PMID: 37508017 PMCID: PMC10376282 DOI: 10.3390/antiox12071479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by a complex pathophysiology and a range of symptoms. The prevalence increases with age, putting the ageing population at risk. Disease management includes the improvement of symptoms, the comfort of the patient's life, and palliative care. As there is currently no cure, growing evidence points towards the beneficial role of polyphenols on neurodegeneration. Numerous studies indicate the health benefits of the family of urolithins, especially urolithin A (UA). UA is a bacterial metabolite produced by dietary ellagitannins and ellagic acid. An expanding body of literature explores the involvement of the compound in mitochondrial health, and its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The review organizes the existing knowledge on the role of UA in health and diseases, emphasizing neurodegenerative diseases, especially PD. We gathered data on the potential neuroprotective effect in in vivo and in vitro models. We discussed the possible mechanisms of action of the compound and related health benefits to give a broader perspective of potential applications of UA in neuroprotective strategies. Moreover, we projected the future directions of applying UA in PD management.
Collapse
Affiliation(s)
- Olga Wojciechowska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| |
Collapse
|
9
|
Kharouf N, Flanagan TW, Hassan SY, Shalaby H, Khabaz M, Hassan SL, Megahed M, Haikel Y, Santourlidis S, Hassan M. Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment. Cancers (Basel) 2023; 15:3147. [PMID: 37370757 DOI: 10.3390/cancers15123147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Naji Kharouf
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Sofie-Yasmin Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marla Khabaz
- Department of Production, Beta Factory for Veterinary Pharmaceutical Industries, Damascus 0100, Syria
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany
| | - Youssef Haikel
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Mohamed Hassan
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Banc R, Rusu ME, Filip L, Popa DS. The Impact of Ellagitannins and Their Metabolites through Gut Microbiome on the Gut Health and Brain Wellness within the Gut-Brain Axis. Foods 2023; 12:foods12020270. [PMID: 36673365 PMCID: PMC9858309 DOI: 10.3390/foods12020270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ellagitannins (ETs) are a large group of bioactive compounds found in plant-source foods, such as pomegranates, berries, and nuts. The consumption of ETs has often been associated with positive effects on many pathologies, including cardiovascular diseases, neurodegenerative syndromes, and cancer. Although multiple biological activities (antioxidant, anti-inflammatory, chemopreventive) have been discussed for ETs, their limited bioavailability prevents reaching significant concentrations in systemic circulation. Instead, urolithins, ET gut microbiota-derived metabolites, are better absorbed and could be the bioactive molecules responsible for the antioxidant and anti-inflammatory activities or anti-tumor cell progression. In this review, we examined the dietary sources, metabolism, and bioavailability of ETs, and analyzed the last recent findings on ETs, ellagic acid, and urolithins, their intestinal and brain activities, the potential mechanisms of action, and the connection between the ET microbiota metabolism and the consequences detected on the gut-brain axis. The current in vitro, in vivo, and clinical studies indicate that ET-rich foods, individual gut microbiomes, or urolithin types could modulate signaling pathways and promote beneficial health effects. A better understanding of the role of these metabolites in disease pathogenesis may assist in the prevention or treatment of pathologies targeting the gut-brain axis.
Collapse
Affiliation(s)
- Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-450-555
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
11
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
12
|
Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules 2022; 27:molecules27217593. [DOI: 10.3390/molecules27217593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Plants rich in hydrolyzable tannins were traditionally used all over the world for a variety of chronic inflammatory disorders, including arthritis, colitis, and dermatitis. However, the knowledge of their immunological targets is still limited though fundamental for their rational use in phytotherapy. The recent advances regarding the pathogenesis of inflammatory-based diseases represent an opportunity to elucidate the pharmacological mechanism of plant-derived metabolites with immunomodulatory activity. This review collects recent articles regarding the role of hydrolyzable tannins and their gut metabolites in Th1, Th2, and Th17 inflammatory responses. In line with the traditional use, rheumatoid arthritis (RA), inflammatory bowel diseases (IBDs), psoriasis, atopic dermatitis (AD), and asthma were the most investigated diseases. A substantial body of in vivo studies suggests that, beside innate response, hydrolyzable tannins may reduce the levels of Th-derived cytokines, including IFN-γ, IL-17, and IL-4, following oral administration. The mode of action is multitarget and may involve the impairment of inflammatory transcription factors (NF-κB, NFAT, STAT), enzymes (MAPKs, COX-2, iNOS), and ion channels. However, their potential impact on pathways with renewed interest for inflammation, such as JAK/STAT, or the modulation of the gut microbiota demands dedicate studies.
Collapse
|
13
|
Polyphenols and Their Nanoformulations: Protective Effects against Human Diseases. Life (Basel) 2022; 12:life12101639. [PMID: 36295074 PMCID: PMC9604961 DOI: 10.3390/life12101639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols are the secondary metabolites synthesized by the plants as a part of defense machinery. Owing to their antioxidant, anti-inflammatory, anticancerous, antineoplastic, and immunomodulatory effects, natural polyphenols have been used for a long time to prevent and treat a variety of diseases. As a result, these phytochemicals may be able to act as therapeutic agents in treating cancer and cardiovascular and neurological disorders. The limited bioavailability of polyphenolic molecules is one issue with their utilization. For the purpose of increasing the bioavailability of these chemicals, many formulation forms have been developed, with nanonization standing out among them. The present review outlines the biological potential of nanoformulated plant polyphenolic compounds. It also summarizes the employability of various polyphenols as nanoformulations for cancer and neurological and cardiovascular disease treatment. Nanoencapsulated polyphenols, singular or in combinations, effective both in vitro and in vivo, need more investigation.
Collapse
|
14
|
Kim SI, Woo SR, Noh JK, Lee MK, Lee YC, Lee JW, Kong M, Ko SG, Eun YG. Association between cancer stem cell gene expression signatures and prognosis in head and neck squamous cell carcinoma. BMC Cancer 2022; 22:1077. [PMID: 36261806 PMCID: PMC9583594 DOI: 10.1186/s12885-022-10184-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Various cancer stem cell (CSC) biomarkers and the genes encoding them in head and neck squamous cell carcinoma (HNSCC) have been identified and evaluated. However, the validity of these factors in the prognosis of HNSCC has been questioned and remains unclear. In this study, we examined the clinical significance of CSC biomarker genes in HNSCC, using five publicly available HNSCC cohorts. Methods To predict the prognosis of patients with HNSCC, we developed and validated the expression signatures of CSC biomarker genes whose mRNA expression levels correlated with at least one of the four CSC genes (CD44, MET, ALDH1A1, and BMI1). Results Patients in The Cancer Genome Atlas (TCGA) HNSCC cohort were classified into CSC gene expression-associated high-risk (CSC-HR; n = 285) and CSC gene expression-associated low-risk (CSC-LR; n = 281) subgroups. The 5-year overall survival and recurrence-free survival rates were significantly lower in the CSC-HR subgroup than in the CSC-LR subgroup (p = 0.04 and 0.02, respectively). The clinical significance of the CSC gene expression signature was validated using four independent cohorts. Analysis using Cox proportional hazards models showed that the CSC gene expression signature was an independent prognostic factor of non-oropharyngeal HNSCC which mostly indicates HPV (–) status. Furthermore, the CSC gene expression signature was associated with the prognosis of HNSCC patients who received radiotherapy. Conclusion The CSC gene expression signature is associated with the prognosis of HNSCC and may help in personalized treatments for patients with HNSCC, especially in cases with HPV (–) status who were classified in more detail. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10184-4.
Collapse
Affiliation(s)
- Su Il Kim
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, #1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Korea
| | - Seon Rang Woo
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, #1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Korea
| | - Joo Kyung Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Min Kyeong Lee
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Young Chan Lee
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, #1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jung Woo Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Moonkyoo Kong
- Department of Radiation Oncology, Division of Lung & Head and Neck Oncology, Kyung Hee University Medical Center, Seoul, Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Young-Gyu Eun
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, #1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Korea. .,Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea.
| |
Collapse
|