1
|
Yang KY, Liao J, Ma Z, Tse HF, Lu L, Graca L, Lui KO. Single-cell transcriptomics of Treg reveals hallmarks and trajectories of immunological aging. J Leukoc Biol 2024; 115:19-35. [PMID: 37675661 DOI: 10.1093/jleuko/qiad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Age-related immunosenescence is characterized by progressive dysfunction of adaptive immune response and increased autoimmunity. Nevertheless, the impact of aging on CD4+ regulatory T cells that are master regulators of the immune system remains largely unclear. Here, we report cellular and molecular hallmarks of regulatory T cells derived from murine lymphoid and adipose tissues at 3, 18, and 24 mo of age, respectively, by analyzing their heterogeneity that displays dynamic changes in transcriptomic effector signatures at a single-cell resolution. Although the proportion of regulatory T cells among total Cd4+ T cells, as well as their expression levels of Foxp3, did not show any global change with time, we have identified 6 transcriptomically distinct clusters of regulatory T cells with cross-tissue conserved hallmarks of aging, including increased numbers of proinflammatory regulatory T cells, reduced precursor cells, increased immature and mature T follicular regulatory cells potentially supported by a metabolic switch from oxidative phosphorylation to glycolysis, a gradual loss of CD150hi regulatory T cells that support hematopoiesis, and increased adipose tissue-specific regulatory T cells that are associated with metabolic disease. To dissect the impact of immunosenescence on humoral immunity, we propose some potential mechanisms underlying T follicular regulatory cell-mediated dysfunction by interactome analysis on T follicular regulatory cells, T follicular helper cells, and B cells during aging. Lastly, spatiotemporal analysis further revealed trajectories of regulatory T-cell aging that demonstrate the most significant changes in marrow and adipose tissues that might contribute to the development of age-related immunosenescence and type 2 diabetes. Taken together, our findings could provide a better understanding of age-associated regulatory T-cell heterogeneity in lymphoid and adipose tissues, as well as regulatory T-cell hallmarks during progressive adaptation to aging that could be therapeutically targeted for rejuvenating the aging immune system in the future.
Collapse
Affiliation(s)
- Kevin Y Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Jinyue Liao
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Zhangjing Ma
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Hung Fat Tse
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Liwei Lu
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10 2nd Yuexin Road, Nanshan District, Shenzhen, China
| |
Collapse
|
2
|
Rossbach B, Hariharan K, Mah N, Oh SJ, Volk HD, Reinke P, Kurtz A. Human iPSC-Derived Renal Cells Change Their Immunogenic Properties during Maturation: Implications for Regenerative Therapies. Cells 2022; 11:cells11081328. [PMID: 35456007 PMCID: PMC9032821 DOI: 10.3390/cells11081328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
The success of human induced pluripotent stem cell (hiPSC)-based therapy critically depends on understanding and controlling the immunological effects of the hiPSC-derived transplant. While hiPSC-derived cells used for cell therapy are often immature with post-grafting maturation, immunological properties may change, with adverse effects on graft tolerance and control. In the present study, the allogeneic and autologous cellular immunity of hiPSC-derived progenitor and terminally differentiated cells were investigated in vitro. In contrast to allogeneic primary cells, hiPSC-derived early renal progenitors and mature renal epithelial cells are both tolerated not only by autologous but also by allogeneic T cells. These immune-privileged properties result from active immunomodulation and low immune visibility, which decrease during the process of cell maturation. However, autologous and allogeneic natural killer (NK) cell responses are not suppressed by hiPSC-derived renal cells and effectively change NK cell activation status. These findings clearly show a dynamic stage-specific dependency of autologous and allogeneic T and NK cell responses, with consequences for effective cell therapies. The study suggests that hiPSC-derived early progenitors may provide advantageous immune-suppressive properties when applied in cell therapy. The data furthermore indicate a need to suppress NK cell activation in allogeneic as well as autologous settings.
Collapse
Affiliation(s)
- Bella Rossbach
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
- Fraunhofer Institute for Biomedical Engineering (IBMT), Fraunhofer-Forum Berlin, 10178 Berlin, Germany;
- Correspondence: (B.R.); (A.K.)
| | - Krithika Hariharan
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
- Fraunhofer Institute for Biomedical Engineering (IBMT), Fraunhofer Project Center for Stem Cell Processing, 97082 Würzburg, Germany
| | - Nancy Mah
- Fraunhofer Institute for Biomedical Engineering (IBMT), Fraunhofer-Forum Berlin, 10178 Berlin, Germany;
| | - Su-Jun Oh
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
| | - Hans-Dieter Volk
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
- Institute for Medical Immunology (IMI), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
- Berlin Center for Advanced Therapies (BeCat), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Andreas Kurtz
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.H.); (S.-J.O.); (H.-D.V.); (P.R.)
- Fraunhofer Institute for Biomedical Engineering (IBMT), Fraunhofer-Forum Berlin, 10178 Berlin, Germany;
- Correspondence: (B.R.); (A.K.)
| |
Collapse
|
3
|
Sullivan S, Fairchild PJ, Marsh SGE, Müller CR, Turner ML, Song J, Turner D. Haplobanking induced pluripotent stem cells for clinical use. Stem Cell Res 2020; 49:102035. [PMID: 33221677 DOI: 10.1016/j.scr.2020.102035] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023] Open
Abstract
The development of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka and colleagues in 2006 has led to a potential new paradigm in cellular therapeutics, including the possibility of producing patient-specific, disease-specific and immune matched allogeneic cell therapies. One can envisage two routes to immunologically compatible iPSC therapies: using genetic modification to generate a 'universal donor' with reduced expression of Human Leukocyte Antigens (HLA) and other immunological targets or developing a haplobank containing iPSC lines specifically selected to provide HLA matched products to large portions of the population. HLA matched lines can be stored in a designated physical or virtual global bank termed a 'haplobank'. The process of 'iPSC haplobanking' refers to the banking of iPSC cell lines, selected to be homozygous for different HLA haplotypes, from which therapeutic products can be derived and matched immunologically to patient populations. By matching iPSC and derived products to a patient's HLA class I and II molecules, one would hope to significantly reduce the risk of immune rejection and the use of immunosuppressive medication. Immunosuppressive drugs are used in several conditions (including autoimmune disease and in transplantation procedures) to reduce rejection of infused cells, or transplanted tissue and organs, due to major and minor histocompatibility differences between donor and recipient. Such regimens can lead to immune compromise and pathological consequences such as opportunistic infections or malignancies due to decreased cancer immune surveillance. In this article, we will discuss what is practically involved if one is developing and executing an iPSC haplobanking strategy.
Collapse
Affiliation(s)
- Stephen Sullivan
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK.
| | - Paul J Fairchild
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Steven G E Marsh
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK; UCL Cancer Institute, University College London, London, UK
| | - Carlheinz R Müller
- Zentrales Knochenmarkspender-Register Deutschland (ZKRD), Helmholtzstraße, 1089081 Ulm, Germany
| | - Marc L Turner
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Jihwan Song
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - David Turner
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Histocompatibility and Immunogenetics Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Fung TH, Yang KY, Lui KO. An emerging role of regulatory T-cells in cardiovascular repair and regeneration. Theranostics 2020; 10:8924-8938. [PMID: 32802172 PMCID: PMC7415793 DOI: 10.7150/thno.47118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has demonstrated that immune cells play an important role in the regulation of tissue repair and regeneration. After injury, danger signals released by the damaged tissue trigger the initial pro-inflammatory phase essential for removing pathogens or cellular debris that is later replaced by the anti-inflammatory phase responsible for tissue healing. On the other hand, impaired immune regulation can lead to excessive scarring and fibrosis that could be detrimental for the restoration of organ function. Regulatory T-cells (Treg) have been revealed as the master regulator of the immune system that have both the immune and regenerative functions. In this review, we will summarize their immune role in the induction and maintenance of self-tolerance; as well as their regenerative role in directing tissue specific response for repair and regeneration. The latter is clearly demonstrated when Treg enhance the differentiation of stem or progenitor cells such as satellite cells to replace the damaged skeletal muscle, as well as the proliferation of parenchymal cells including neonatal cardiomyocytes for functional regeneration. Moreover, we will also discuss the reparative and regenerative role of Treg with a particular focus on blood vessels and cardiac tissues. Last but not least, we will describe the ongoing clinical trials with Treg in the treatment of autoimmune diseases that could give clinically relevant insights into the development of Treg therapy targeting tissue repair and regeneration.
Collapse
|
5
|
Li J, Li X, Liang C, Ling L, Chen Z, Wong CK, Waldmann H, Lui KO. Coreceptor blockade targeting CD4 and CD8 allows acceptance of allogeneic human pluripotent stem cell grafts in humanized mice. Biomaterials 2020; 248:120013. [PMID: 32278152 DOI: 10.1016/j.biomaterials.2020.120013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 01/19/2023]
Abstract
We have previously demonstrated that short-term coreceptor blockade with non-lytic monoclonal antibodies enables the long-term survival of fully allogeneic embryonic stem cell (ESC) transplants in mice. Here, we describe the use of Hu-PBL humanized mice to determine whether short-term coreceptor blockade with humanized anti-human CD4 and CD8 antibodies can achieve the same outcome towards human ESC derivatives. While control Hu-PBL mice rejected allogeneic hESC-derived transplants within weeks, mice treated with coreceptor blocking antibodies held their grafts for 7 weeks, the duration of the study. Rejection in the control mice was associated with demonstrable infiltrates of human CD45 white blood cells, predominantly of CD8 T-cells, whereas anti-CD4, but not anti-CD8 antibody treated mice showed remarkably reduced lymphocyte infiltration and prolonged allograft survival, indicating that the CD4+ T-cells were crucial to the rejection process. Our results give support to the principle that short-term blockade of T-cell co-receptors can achieve long-term acceptance of regenerative cell transplants in humans.
Collapse
Affiliation(s)
- Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xisheng Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Cai Liang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lijun Ling
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Liang C, Yang KY, Chan VW, Li X, Fung TH, Wu Y, Tian XY, Huang Y, Qin L, Lau JY, Lui KO. CD8 + T-cell plasticity regulates vascular regeneration in type-2 diabetes. Theranostics 2020; 10:4217-4232. [PMID: 32226549 PMCID: PMC7086373 DOI: 10.7150/thno.40663] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we observe that the ischemic tissues of type-2 diabetic (T2D) patients and mice have significantly more CD8+ T-cells than that of their normoglycemic counterparts, respectively. However, the role of CD8+ T-cells in the pathogenesis of diabetic vascular complication has been less studied. Methods: We employed loss-of-function studies in mouse models using the non-lytic anti-CD8 antibody that blocks tissue infiltration of CD8+ T-cells into the injured tissue. We also performed genome-wide, single-cell RNA-sequencing of CD8+ T-cells to uncover their role in the pathogenesis of diabetic vascular diseases. Results: The vascular density is negatively correlated with the number of CD8+ T-cells in the ischemic tissues of patients and mice after injury. CD8+ T-cells or their supernatant can directly impair human and murine angiogenesis. Compared to normoglycemic mice that can regenerate their blood vessels after injury, T2D mice fail in this regeneration. Treatment with the CD8 checkpoint blocking antibody increases the proliferation and function of endothelial cells in both Leprdb/db mice and diet-induced diabetic Cdh5-Cre;Rosa-YFP lineage-tracing mice after ischemic injury. Furthermore, single-cell transcriptomic profiling reveals that CD8+ T-cells of T2D mice showed a de novo cell fate change from the angiogenic, tissue-resident memory cells towards the effector and effector memory cells after injury. Functional revascularization by CD8 checkpoint blockade is mediated through unleashing such a poised lineage commitment of CD8+ T-cells from T2D mice. Conclusion: Our results reveal that CD8+ T-cell plasticity regulates vascular regeneration; and give clinically relevant insights into the potential development of immunotherapy targeting vascular diseases associated with obesity and diabetes.
Collapse
|
7
|
Leung OM, Li J, Li X, Chan VW, Yang KY, Ku M, Ji L, Sun H, Waldmann H, Tian XY, Huang Y, Lau J, Zhou B, Lui KO. Regulatory T Cells Promote Apelin-Mediated Sprouting Angiogenesis in Type 2 Diabetes. Cell Rep 2020; 24:1610-1626. [PMID: 30089270 DOI: 10.1016/j.celrep.2018.07.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
The role of CD4+ T cells in the ischemic tissues of T2D patients remains unclear. Here, we report that T2D patients' vascular density was negatively correlated with the number of infiltrating CD4+ T cells after ischemic injury. Th1 was the predominant subset, and Th1-derived IFN-γ and TNF-α directly impaired human angiogenesis. We then blocked CD4+ T cell infiltration into the ischemic tissues of both Leprdb/db and diet-induced obese T2D mice. Genome-wide RNA sequencing shows an increased proliferative and angiogenic capability of diabetic ECs in ischemic tissues. Moreover, wire myography shows enhanced EC function and laser Doppler imaging reveals improved post-ischemic blood reperfusion. Mechanistically, functional revascularization after CD4 coreceptor blockade was mediated by Tregs. Genetic lineage tracing via Cdh5-CreER and Apln-CreER and coculture assays further illustrate that Tregs increased vascular density and induced de novo sprouting angiogenesis in a paracrine manner. Taken together, our results reveal that Th1 impaired while Tregs promoted functional post-ischemic revascularization in obesity and diabetes.
Collapse
Affiliation(s)
- Oscar M Leung
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xisheng Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vicken W Chan
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kevin Y Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Manching Ku
- Next Generation Sequencing Core, Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Paediatrics and Adolescent Medicine, Division of Paediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lu Ji
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Sun
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Vascular Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Vascular Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - James Lau
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Li J, Yang KY, Tam RCY, Chan VW, Lan HY, Hori S, Zhou B, Lui KO. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics 2019; 9:4324-4341. [PMID: 31285764 PMCID: PMC6599663 DOI: 10.7150/thno.32734] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The neonatal mouse heart is capable of transiently regenerating after injury from postnatal day (P) 0-7 and macrophages are found important in this process. However, whether macrophages alone are sufficient to orchestrate this regeneration; what regulates cardiomyocyte proliferation; why cardiomyocytes do not proliferate after P7; and whether adaptive immune cells such as regulatory T-cells (Treg) influence neonatal heart regeneration have less studied. Methods: We employed both loss- and gain-of-function transgenic mouse models to study the role of Treg in neonatal heart regeneration. In loss-of-function studies, we treated mice with the lytic anti-CD25 antibody that specifically depletes Treg; or we treated FOXP3DTR with diphtheria toxin that specifically ablates Treg. In gain-of-function studies, we adoptively transferred hCD2+ Treg from NOD.Foxp3hCD2 to NOD/SCID that contain Treg as the only T-cell population. Furthermore, we performed single-cell RNA-sequencing of Treg to uncover paracrine factors essential for cardiomyocyte proliferation. Results: Unlike their wild type counterparts, NOD/SCID mice that are deficient in T-cells but harbor macrophages fail to regenerate their injured myocardium at as early as P3. During the first week of injury, Treg are recruited to the injured cardiac muscle but their depletion contributes to more severe cardiac fibrosis. On the other hand, adoptive transfer of Treg results in mitigated fibrosis and enhanced proliferation and function of the injured cardiac muscle. Mechanistically, single-cell transcriptomic profiling reveals that Treg could be a source of regenerative factors. Treg directly promote proliferation of both mouse and human cardiomyocytes in a paracrine manner; and their secreted factors such as CCL24, GAS6 or AREG potentiate neonatal cardiomyocyte proliferation. By comparing the regenerating P3 and non-regenerating P8 heart, there is a significant increase in the absolute number of intracardiac Treg but the whole transcriptomes of these Treg do not differ regardless of whether the neonatal heart regenerates. Furthermore, even adult Treg, given sufficient quantity, possess the same regenerative capability. Conclusion: Our results demonstrate a regenerative role of Treg in neonatal heart regeneration. Treg can directly facilitate cardiomyocyte proliferation in a paracrine manner.
Collapse
Affiliation(s)
- Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y. Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rachel Chun Yee Tam
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W. Chan
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Yao Lan
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kathy O. Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Leung CS, Yang KY, Li X, Chan VW, Ku M, Waldmann H, Hori S, Tsang JCH, Lo YMD, Lui KO. Single-cell transcriptomics reveal that PD-1 mediates immune tolerance by regulating proliferation of regulatory T cells. Genome Med 2018; 10:71. [PMID: 30236153 PMCID: PMC6148788 DOI: 10.1186/s13073-018-0581-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
Background We have previously reported an antigen-specific protocol to induce transplant tolerance and linked suppression to human embryonic stem cell (hESC)-derived tissues in immunocompetent mice through coreceptor and costimulation blockade. However, the exact mechanisms of acquired immune tolerance in this model have remained unclear. Methods We utilize the NOD.Foxp3hCD2 reporter mouse line and an ablative anti-hCD2 antibody to ask if CD4+FOXP3+ regulatory T cells (Treg) are required for coreceptor and costimulation blockade-induced immune tolerance. We also perform genome-wide single-cell RNA-sequencing to interrogate Treg during immune rejection and tolerance and to indicate possible mechanisms involved in sustaining Treg function. Results We show that Treg are indispensable for tolerance induced by coreceptor and costimulation blockade as depletion of which with an anti-hCD2 antibody resulted in rejection of hESC-derived pancreatic islets in NOD.Foxp3hCD2 mice. Single-cell transcriptomic profiling of 12,964 intragraft CD4+ T cells derived from rejecting and tolerated grafts reveals that Treg are heterogeneous and functionally distinct in the two outcomes of transplant rejection and tolerance. Treg appear to mainly promote chemotactic and ubiquitin-dependent protein catabolism during transplant rejection while seeming to harness proliferative and immunosuppressive function during tolerance. We also demonstrate that this form of acquired transplant tolerance is associated with increased proliferation and PD-1 expression by Treg. Blocking PD-1 signaling with a neutralizing anti-PD-1 antibody leads to reduced Treg proliferation and graft rejection. Conclusions Our results suggest that short-term coreceptor and costimulation blockade mediates immune tolerance to hESC-derived pancreatic islets by promoting Treg proliferation through engagement of PD-1. Our findings could give new insights into clinical development of hESC-derived pancreatic tissues, combined with immunotherapies that expand intragraft Treg, as a potentially sustainable alternative treatment for T1D. Electronic supplementary material The online version of this article (10.1186/s13073-018-0581-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cherry S Leung
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xisheng Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W Chan
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Manching Ku
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Hematology and Oncology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jason C H Tsang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuk Ming Dennis Lo
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China. .,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Leung CS, Li J, Xu F, Wong ASL, Lui KO. Ectopic expression of recipient CD47 inhibits mouse macrophage-mediated immune rejection against human stem cell transplants. FASEB J 2018; 33:484-493. [PMID: 30004796 DOI: 10.1096/fj.201800449r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Like conventional transplants, immunosuppression is required to facilitate survival and function of human embryonic stem cell (hESC) derivatives after implantation into xenogeneic recipients. We have previously reported that T cells alone are sufficient to reject allogeneic murine ESC derivatives; and strategies that inhibit T-cell activation, including coreceptor and costimulation blockade, prevent hESC derivatives from being rejected. This study aimed to investigate, in addition to T cells, whether macrophages contribute to transplant rejection of hESC xenografts with nonobese diabetic (NOD)/SCID mice that lack functional T and B cells but have macrophages. We show that acute rejection against hESC-derived endothelial cells (hESC-ECs) was mediated, to some degree, by infiltrating macrophages that phagocytosed them. Transgenic expression of murine CD47 on cell surface of hESC-ECs mitigates macrophage-mediated phagocytosis and improves their survival after transplantation. Our results highlight that innate immune cells, such as macrophages, can reject hESC derivatives, raising concern against the use of NOD/SCID as transplant recipients for testing in vivo function of hESC-derived tissues. Augmenting CD47 signaling promotes survival and function of hESC derivatives after xenogeneic transplantation.-Leung, C. S., Li, J., Xu, F., Wong, A. S. L., Lui, K. O. Ectopic expression of recipient CD47 inhibits mouse macrophage-mediated immune rejection against human stem cell transplants.
Collapse
Affiliation(s)
- Cherry S Leung
- Department of Chemical Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Feng Xu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Alan S L Wong
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China.,Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Fairchild PJ, Horton C, Lahiri P, Shanmugarajah K, Davies TJ. Beneath the sword of Damocles: regenerative medicine and the shadow of immunogenicity. Regen Med 2016; 11:817-829. [DOI: 10.2217/rme-2016-0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Few topics in regenerative medicine have inspired such impassioned debate as the immunogenicity of cell types and tissues differentiated from pluripotent stem cells. While early predictions suggested that tissues derived from allogeneic sources may evade immune surveillance altogether, the pendulum has since swung to the opposite extreme, with reports that the ectopic expression of a few developmental antigens may prompt rejection, even of tissues differentiated from autologous cell lines. Here we review the evidence on which these contradictory claims are based in order to reach an objective assessment of the likely magnitude of the immunological challenges ahead. Furthermore, we discuss how the inherent properties of pluripotent stem cells may inform strategies for reducing the impact of immunogenicity on the future ambitions of regenerative medicine.
Collapse
Affiliation(s)
- Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Christopher Horton
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Priyoshi Lahiri
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Kumaran Shanmugarajah
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
12
|
F4/80 + Host Macrophages Are a Barrier to Murine Embryonic Stem Cell-Derived Hematopoietic Progenitor Engraftment In Vivo. J Immunol Res 2016; 2016:2414906. [PMID: 27872864 PMCID: PMC5107259 DOI: 10.1155/2016/2414906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/03/2016] [Accepted: 10/04/2016] [Indexed: 01/13/2023] Open
Abstract
Understanding how embryonic stem cells and their derivatives interact with the adult host immune system is critical to developing their therapeutic potential. Murine embryonic stem cell-derived hematopoietic progenitors (ESHPs) were generated via coculture with the bone marrow stromal cell line, OP9, and then transplanted into NOD.SCID.Common Gamma Chain (NSG) knockout mice, which lack B, T, and natural killer cells. Compared to control mice transplanted with adult lineage-negative bone marrow (Lin− BM) progenitors, ESHP-transplanted mice attained a low but significant level of donor hematopoietic chimerism. Based on our previous studies, we hypothesized that macrophages might contribute to the low engraftment of ESHPs in vivo. Enlarged spleens were observed in ESHP-transplanted mice and found to contain higher numbers of host F4/80+ macrophages compared to BM-transplanted controls. In vivo depletion of host macrophages using clodronate-loaded liposomes improved the ESHP-derived hematopoietic chimerism in the spleen but not in the BM. F4/80+ macrophages demonstrated a striking propensity to phagocytose ESHP targets in vitro. Taken together, these results suggest that macrophages are a barrier to both syngeneic and allogeneic ESHP engraftment in vivo.
Collapse
|
13
|
Calderon D, Prot M, You S, Marquet C, Bellamy V, Bruneval P, Valette F, de Almeida P, Wu JC, Pucéat M, Menasché P, Chatenoud L. Control of Immune Response to Allogeneic Embryonic Stem Cells by CD3 Antibody-Mediated Operational Tolerance Induction. Am J Transplant 2016; 16:454-67. [PMID: 26492394 DOI: 10.1111/ajt.13477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 07/02/2015] [Accepted: 07/07/2015] [Indexed: 01/25/2023]
Abstract
Implantation of embryonic stem cells (ESCs) and their differentiated derivatives into allogeneic hosts triggers an immune response that represents a hurdle to clinical application. We established in autoimmunity and in transplantation that CD3 antibody therapy induces a state of immune tolerance. Promising results have been obtained with CD3 antibodies in the clinic. In this study, we tested whether this strategy can prolong the survival of undifferentiated ESCs and their differentiated derivatives in histoincompatible hosts. Recipients of either mouse ESC-derived embryoid bodies (EBs) or cardiac progenitors received a single short tolerogenic regimen of CD3 antibody. In immunocompetent mice, allogeneic EBs and cardiac progenitors were rejected within 20-25 days. Recipients treated with CD3 antibody showed long-term survival of implanted cardiac progenitors or EBs. In due course, EBs became teratomas, the growth of which was self-limited. Regulatory CD4(+)FoxP3(+) T cells and signaling through the PD1/PDL1 pathway played key roles in the CD3 antibody therapeutic effect. Gene profiling emphasized the importance of TGF-β and the inhibitory T cell coreceptor Tim3 to the observed effect. These results demonstrate that CD3 antibody administered alone promotes prolonged survival of allogeneic ESC derivatives and thus could prove useful for enhancing cell engraftment in the absence of chronic immunosuppression.
Collapse
Affiliation(s)
- D Calderon
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - M Prot
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - S You
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - C Marquet
- INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France
| | - V Bellamy
- INSERM U970, Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France
| | - P Bruneval
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U970, Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Pathology, Paris, France
| | - F Valette
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - P de Almeida
- Stanford Cardiovascular Institute and Departments of Medicine and Radiology, Stanford, CA
| | - J C Wu
- Stanford Cardiovascular Institute and Departments of Medicine and Radiology, Stanford, CA
| | - M Pucéat
- INSERM UMR-S910 Team Physiopathology of Cardiac Development, Aix-Marseille University, Medical School La Timone, Marseille, France
| | - P Menasché
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U970, Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, Paris, France
| | - L Chatenoud
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
14
|
Pan Y, Leveson-Gower DB, de Almeida PE, Pierini A, Baker J, Florek M, Nishikii H, Kim BS, Ke R, Wu JC, Negrin RS. Engraftment of embryonic stem cells and differentiated progeny by host conditioning with total lymphoid irradiation and regulatory T cells. Cell Rep 2015; 10:1793-802. [PMID: 25801020 DOI: 10.1016/j.celrep.2015.02.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022] Open
Abstract
Embryonic stem cells (ESCs) hold promise for the treatment of many medical conditions; however, their utility is limited by immune rejection. The objective of our study is to establish tolerance or promote engraftment of transplanted ESCs as well as mature cell populations derived from ESCs. Luciferase (luc(+))-expressing ESCs were utilized to monitor the survival of the ESCs and differentiated progeny in living recipients. Allogeneic recipients conditioned with fractioned total lymphoid irradiation (TLI) and anti-thymocyte serum (ATS) or TLI plus regulatory T cells (T(reg)) promoted engraftment of ESC allografts after transplantation. Following these treatments, the engraftment of transplanted terminally differentiated endothelial cells derived from ESCs was also significantly enhanced. Our findings provide clinically translatable strategies of inducing tolerance to adoptively transferred ESCs for cell replacement therapy of medical disorders.
Collapse
|
15
|
Willems C, Vankelecom H. Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism? Regen Med 2015; 9:513-34. [PMID: 25159067 DOI: 10.2217/rme.14.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pituitary gland, key regulator of our endocrine system, produces multiple hormones that steer essential physiological processes. Hence, deficient pituitary function (hypopituitarism) leads to severe disorders. Hypopituitarism can be caused by defective embryonic development, or by damage through tumor growth/resection and traumatic brain injury. Lifelong hormone replacement is needed but associated with significant side effects. It would be more desirable to restore pituitary tissue and function. Recently, we showed that the adult (mouse) pituitary holds regenerative capacity in which local stem cells are involved. Repair of deficient pituitary may therefore be achieved by activating these resident stem cells. Alternatively, pituitary dysfunction may be mended by cell (replacement) therapy. The hormonal cells to be transplanted could be obtained by (trans-)differentiating various kinds of stem cells or other cells. Here, we summarize the studies on pituitary cell regeneration and on (trans-)differentiation toward hormonal cells, and speculate on restorative therapies for pituitary deficiency.
Collapse
Affiliation(s)
- Christophe Willems
- Department of Development & Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Ongoing research is constantly looking for means to modulate the immune system for long-lasting engraftment of pluripotent stem cells (PSC) during stem cell-based therapies. This study reviews data on in-vitro and in-vivo immunogenicity of embryonic and induced-PSC and describes how their immunological properties can be harnessed for tolerance induction in organ transplantation. RECENT FINDINGS Although PSC display immunomodulatory properties in vitro, they are capable of eliciting an immune response that leads to cell rejection when transplanted into immune-competent recipients. Nevertheless, long-term acceptance of PSC-derived cells/tissues in an allogeneic environment can be achieved using minimal host conditioning. Protocols for differentiating PSC towards haematopoietic stem cells, thymic epithelial precursors, dendritic cells, regulatory T cells and myeloid-derived suppressor cells are being developed, suggesting the possibility to use PSC-derived immunomodulatory cells to induce tolerance to a solid organ transplant. SUMMARY PSC and/or their derivatives possess unique immunological properties that allow for acceptance of PSC-derived tissue with minimal host conditioning. Investigators involved either in regenerative or in transplant medicine must join their efforts with the ultimate aim of using PSC as a source of donor-specific cells that would create a protolerogenic environment to achieve tolerance in solid organ transplantation.
Collapse
|
17
|
Tolerance Induction and Reversal of Diabetes in Mice Transplanted with Human Embryonic Stem Cell-Derived Pancreatic Endoderm. Cell Stem Cell 2015; 16:148-57. [DOI: 10.1016/j.stem.2014.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/30/2014] [Accepted: 12/02/2014] [Indexed: 02/06/2023]
|
18
|
Lui KO, Howie D, Ng SW, Liu S, Chien KR, Waldmann H. Tolerance induction to human stem cell transplants with extension to their differentiated progeny. Nat Commun 2014; 5:5629. [PMID: 25434740 DOI: 10.1038/ncomms6629] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
There is increasing interest in transplantation of human stem cells for therapeutic purposes. It would benefit future application if one could achieve their long-term acceptance and functional differentiation in allogeneic hosts using minimal immunosuppression. Allogeneic stem cell transplants differ from conventional tissue transplants insofar as not all alloantigens are revealed during tolerance induction. This risks that the immune system tolerized to antigens expressed by progenitors may still remain responsive to antigens expressed later during differentiation. Here we show that brief induction with monoclonal antibody-mediated coreceptor and costimulation blockade enables long-term engraftment and tolerance towards murine ESCs, hESCs, human induced pluripotent stem cells (iPSCs) and hESC-derived progenitors in outbred murine recipients. Tolerance induced to PSC-derived progenitors extends to their differentiated progenies, and sometimes even to different tissues derived from the same donor. Global gene expression profiling identifies clear features in T cells from tolerized grafts that are distinct from those involved in rejection.
Collapse
Affiliation(s)
- Kathy O Lui
- 1] Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [3] Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Shu-Wing Ng
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Shubai Liu
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Kenneth R Chien
- 1] Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China [2] Department of Cell and Molecular Biology and Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
19
|
Tan Y, Ooi S, Wang L. Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: genetic and epigenetic perspectives. Curr Stem Cell Res Ther 2014; 9:63-72. [PMID: 24160683 PMCID: PMC3873036 DOI: 10.2174/1574888x113086660068] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 12/18/2022]
Abstract
One aim of stem cell-based therapy is to utilize pluripotent stem cells (PSCs) as a supplementary source of cells
to repair or replace tissues or organs that have ceased to function due to severe tissue damage. However, PSC-based therapy
requires extensive research to ascertain if PSC derivatives are functional without the risk of tumorigenicity, and also
do not engender severe immune rejection that threatens graft survival and function. Recently, the suitability of induced
pluripotent stem cells applied for patient-tailored cell therapy has been questioned since the discovery of several genetic
and epigenetic aberrations during the reprogramming process. Hence, it is crucial to understand the effect of these abnormalities
on the immunogenicity and survival of PSC grafts. As induced PSC-based therapy represents a hallmark for the
potential solution to prevent and arrest immune rejection, this review also summarizes several up-to-date key findings in
the field.
Collapse
Affiliation(s)
| | | | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H8M5, Canada.
| |
Collapse
|
20
|
English K, Wood KJ. Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Curr Opin Organ Transplant 2013; 16:90-5. [PMID: 21150615 DOI: 10.1097/mot.0b013e3283424faa] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the immunogenicity of embryonic stem cell (ESC)-derived progenitors and the impact of the immune response on applications of cell replacement therapy (CRT). Possible strategies to induce immunological tolerance to ESC-derived progenitor cells will also be discussed. RECENT FINDINGS Evidence for the differential epigenetic control of major histocompatibility (MHC) and antigen processing molecules in ESCs and differentiated ESCs has recently been described. The presence of T cells recognizing the pluripotency-associated transcription factor octamer-binding transcription factor 4 (OCT4) in healthy patient-derived peripheral blood mononuclear cells adds further complexity to the immune response against ESCs and ESC-derived progenitors. SUMMARY Although ESCs and ESC-derived progenitors appear to exert some level of immune privilege in specific circumstances, these allogeneic cells are indeed recognized by the immune system and can be subject to mechanisms of rejection. Herein, we discuss the importance of the recent reports describing an immunosuppressive capacity of ESCs, and the epigenetic control of MHC in ESCs and how these characteristics may be harnessed in the development of strategies to induce immunological tolerance.
Collapse
Affiliation(s)
- Karen English
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | |
Collapse
|
21
|
Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplant 2013; 22:571-617. [DOI: 10.3727/096368912x655208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation therapies aimed at repairing neurodegenerative and neuropathological conditions of the central nervous system (CNS) have utilized and tested a variety of cell candidates, each with its own unique set of advantages and disadvantages. The use and popularity of each cell type is guided by a number of factors including the nature of the experimental model, neuroprotection capacity, the ability to promote plasticity and guided axonal growth, and the cells' myelination capability. The promise of stem cells, with their reported ability to give rise to neuronal lineages to replace lost endogenous cells and myelin, integrate into host tissue, restore functional connectivity, and provide trophic support to enhance and direct intrinsic regenerative ability, has been seen as a most encouraging step forward. The advent of the induced pluripotent stem cell (iPSC), which represents the ability to “reprogram” somatic cells into a pluripotent state, hails the arrival of a new cell transplantation candidate for potential clinical application in therapies designed to promote repair and/or regeneration of the CNS. Since the initial development of iPSC technology, these cells have been extensively characterized in vitro and in a number of pathological conditions and were originally reported to be equivalent to embryonic stem cells (ESCs). This review highlights emerging evidence that suggests iPSCs are not necessarily indistinguishable from ESCs and may occupy a different “state” of pluripotency with differences in gene expression, methylation patterns, and genomic aberrations, which may reflect incomplete reprogramming and may therefore impact on the regenerative potential of these donor cells in therapies. It also highlights the limitations of current technologies used to generate these cells. Moreover, we provide a systematic review of the state of play with regard to the use of iPSCs in the treatment of neurodegenerative and neuropathological conditions. The importance of balancing the promise of this transplantation candidate in the light of these emerging properties is crucial as the potential application in the clinical setting approaches. The first of three sections in this review discusses (A) the pathophysiology of spinal cord injury (SCI) and how stem cell therapies can positively alter the pathology in experimental SCI. Part B summarizes (i) the available technologies to deliver transgenes to generate iPSCs and (ii) recent data comparing iPSCs to ESCs in terms of characteristics and molecular composition. Lastly, in (C) we evaluate iPSC-based therapies as a candidate to treat SCI on the basis of their neurite induction capability compared to embryonic stem cells and provide a summary of available in vivo data of iPSCs used in SCI and other disease models.
Collapse
Affiliation(s)
- Anne S. Kramer
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Alan R. Harvey
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Giles W. Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart I. Hodgetts
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| |
Collapse
|
22
|
de Almeida PE, Ransohoff JD, Nahid A, Wu JC. Immunogenicity of pluripotent stem cells and their derivatives. Circ Res 2013; 112:549-61. [PMID: 23371903 DOI: 10.1161/circresaha.111.249243] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability of pluripotent stem cells to self-renew and differentiate into all somatic cell types brings great prospects to regenerative medicine and human health. However, before clinical applications, much translational research is necessary to ensure that their therapeutic progenies are functional and nontumorigenic, that they are stable and do not dedifferentiate, and that they do not elicit immune responses that could threaten their survival in vivo. For this, an in-depth understanding of their biology, genetic, and epigenetic make-up and of their antigenic repertoire is critical for predicting their immunogenicity and for developing strategies needed to assure successful long-term engraftment. Recently, the expectation that reprogrammed somatic cells would provide an autologous cell therapy for personalized medicine has been questioned. Induced pluripotent stem cells display several genetic and epigenetic abnormalities that could promote tumorigenicity and immunogenicity in vivo. Understanding the persistence and effects of these abnormalities in induced pluripotent stem cell derivatives is critical to allow clinicians to predict graft fate after transplantation, and to take requisite measures to prevent immune rejection. With clinical trials of pluripotent stem cell therapy on the horizon, the importance of understanding immunologic barriers and devising safe, effective strategies to bypass them is further underscored. This approach to overcome immunologic barriers to stem cell therapy can take advantage of the validated knowledge acquired from decades of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Patricia E de Almeida
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | | | | | | |
Collapse
|
23
|
Tang C, Weissman IL, Drukker M. Immunogenicity of in vitro maintained and matured populations: potential barriers to engraftment of human pluripotent stem cell derivatives. Methods Mol Biol 2013; 1029:17-31. [PMID: 23756939 DOI: 10.1007/978-1-62703-478-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential to develop into any cell type makes human pluripotent stem cells (hPSCs) one of the most promising sources for regenerative treatments. Hurdles to their clinical applications include (1) formation of heterogeneously differentiated cultures, (2) the risk of teratoma formation from residual undifferentiated cells, and (3) immune rejection of engrafted cells. The recent production of human isogenic (genetically identical) induced PSCs (hiPSCs) has been proposed as a "solution" to the histocompatibility barrier. In theory, differentiated cells derived from patient-specific hiPSC lines should be histocompatible to their donor/recipient. However, propagation, maintenance, and non-physiologic differentiation of hPSCs in vitro may produce other, likely less powerful, immune responses. In light of recent progress towards the clinical application of hPSCs, this review focuses on two antigen presentation phenomena that may lead to rejection of isogenic hPSC derivates: namely, the expression of aberrant antigens as a result of long-term in vitro maintenance conditions or incomplete somatic cell reprogramming, and the unbalanced presentation of receptors and ligands involved in immune recognition due to accelerated differentiation. Finally, we discuss immunosuppressive approaches that could potentially address these immunological concerns.
Collapse
Affiliation(s)
- Chad Tang
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
24
|
Lui KO, Bu L, Li RA, Chan CW. Pluripotent stem cell-based heart regeneration: From the developmental and immunological perspectives. ACTA ACUST UNITED AC 2012; 96:98-108. [DOI: 10.1002/bdrc.21004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR. Bioengineering heart muscle: a paradigm for regenerative medicine. Annu Rev Biomed Eng 2012; 13:245-67. [PMID: 21568715 DOI: 10.1146/annurev-bioeng-071910-124701] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The idea of extending the lifetime of our organs is as old as humankind, fueled by major advances in organ transplantation, novel drugs, and medical devices. However, true regeneration of human tissue has become increasingly plausible only in recent years. The human heart has always been a focus of such efforts, given its notorious inability to repair itself following injury or disease. We discuss here the emerging bioengineering approaches to regeneration of heart muscle as a paradigm for regenerative medicine. Our focus is on biologically inspired strategies for heart regeneration, knowledge gained thus far about how to make a "perfect" heart graft, and the challenges that remain to be addressed for tissue-engineered heart regeneration to become a clinical reality. We emphasize the need for interdisciplinary research and training, as recent progress in the field is largely being made at the interfaces between cardiology, stem cell science, and bioengineering.
Collapse
|
26
|
Zhang S, Dai H, Wan N, Moore Y, Dai Z. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes. PLoS One 2011; 6:e29706. [PMID: 22216347 PMCID: PMC3247284 DOI: 10.1371/journal.pone.0029706] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/01/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. METHODOLOGY/PRINCIPAL FINDINGS Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. CONCLUSIONS/SIGNIFICANCE Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation.
Collapse
Affiliation(s)
- Shuzi Zhang
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, United States of America
| | - Hehua Dai
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, United States of America
| | - Ni Wan
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, United States of America
| | - Yolonda Moore
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, United States of America
| | - Zhenhua Dai
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, United States of America
| |
Collapse
|
27
|
Tang C, Drukker M. Potential barriers to therapeutics utilizing pluripotent cell derivatives: intrinsic immunogenicity of in vitro maintained and matured populations. Semin Immunopathol 2011; 33:563-72. [PMID: 21479877 DOI: 10.1007/s00281-011-0269-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/28/2011] [Indexed: 01/20/2023]
Abstract
The potential to develop into any tissue makes pluripotent stem cells (PSCs) one of the most promising sources for cellular therapeutics. However, numerous hurdles exist to their clinical applications, three of the most concerning include the inability to separate therapeutic population from heterogeneously differentiated cultures, the risk of teratoma formation from residual pluripotent cells, and immunologic rejection of engrafted cells. The recent development of induced PSCs has been proposed as a solution to the histocompatibility barrier. Theoretically, creation of patient-specific induced PSC lines would exhibit a complete histocompatibility antigen match. However, regardless of the PSC source, in vitro propagation and nonphysiologic differentiation may result in other, likely less powerful, mechanisms of immune rejection. In light of recent progress towards clinical application, this review focuses on two such potential immunologic mechanisms applicable to isogenic PSC derivates: namely, the immunogenicity of aberrant antigens resulting from long-term in vitro maintenance and alterations in immunologic properties due to rapid in vitro differentiation. These issues will be considered with attention to their relation to effector cells in the adult immune system. In addition, we highlight immunosuppressive approaches that could potentially address the immunogenicity of these proposed mechanisms.
Collapse
Affiliation(s)
- Chad Tang
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
28
|
Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells. Semin Immunopathol 2011; 33:573-91. [PMID: 21461989 PMCID: PMC3204002 DOI: 10.1007/s00281-011-0266-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells hold great promises for regenerative medicine. They might become useful as a universal source for a battery of new cell replacement therapies. Among the major concerns for the clinical application of stem cell-derived grafts are the risks of immune rejection and tumor formation. Pluripotency and tumorigenicity are closely linked features of pluripotent stem cells. However, the capacity to form teratomas or other tumors is not sufficiently described by inherited features of a stem cell line or a stem cell-derived graft. The tumorigenicity always depends on the inability of the recipient to reject the tumorigenic cells. This review summarizes recent data on the tumorigenicity of pluripotent stem cells in immunodeficient, syngeneic, allogeneic, and xenogeneic hosts. The effects of immunosuppressive treatment and cell differentiation are discussed. Different immune effector mechanisms appear to be involved in the rejection of undifferentiated and differentiated cell populations. Elements of the innate immune system, such as natural killer cells and the complement system, which are active also in syngeneic recipients, appear to preferentially reject undifferentiated cells. This effect could reduce the risk of tumor formation in immunocompetent recipients. Cell differentiation apparently increases susceptibility to rejection by the adaptive immune system in allogeneic hosts. The current data suggest that the immune system of the recipient has a major impact on the outcome of pluripotent stem cell transplantation, whether it is rejection, engraftment, or tumor development. This has to be considered when the results of experimental transplantation models are interpreted and even more when translation into clinics is planned.
Collapse
|
29
|
Chen U. Some properties and applications of cell lines and clones established from tet-responsive-SV40 tag mice and mES cell lines. Scand J Immunol 2011; 73:531-5. [PMID: 21375558 DOI: 10.1111/j.1365-3083.2011.02551.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this article, 11 cell lines established from transgenic mice and mouse embryonic stem cells (mESC) expressing SV40Tag under control of tetracycline/doxycycline (tet-off, tet-on) are described. Several cell lines were further transfected with a plasmid vector containing genes coding for a cytokine/protein under tet-regulation to obtain tet-co-regulated expression of cytokine/protein. A total of 29 clones and 234 subclones have been established so far. Partial characterization of these tet-responsive cell lines, clones and subclones was performed. Questions related to the rare frequency of establishing permanent cycling cell lines from this source, the unusual expression pattern of SV40Tag protein in the subcellular compartment and the phenotype of 'stemness' of several such cell lines are raised. Some future applications of these cells, related to immunology and transplantation, are discussed.
Collapse
Affiliation(s)
- U Chen
- International Senior Professional Institute, Grünbergerstrasse, Giessen, Germany.
| |
Collapse
|
30
|
Fairchild PJ. The challenge of immunogenicity in the quest for induced pluripotency. Nat Rev Immunol 2010; 10:868-75. [PMID: 21107347 DOI: 10.1038/nri2878] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|