1
|
Bandarupalli R, Roth R, Klipp RC, Bankston JR, Li J. Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3. J Phys Chem B 2024; 128:12685-12697. [PMID: 39666997 DOI: 10.1021/acs.jpcb.4c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.
Collapse
Affiliation(s)
- Ramya Bandarupalli
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
2
|
Yamada A, Gautam M, Yamada AI, Ling J, Gupta S, Furue H, Luo W, Gu JG. Acid-Sensing Ion Channels Drive the Generation of Tactile Impulses in Merkel Cell-Neurite Complexes of the Glabrous Skin of Rodent Hindpaws. J Neurosci 2024; 44:e0885242024. [PMID: 39379156 PMCID: PMC11580779 DOI: 10.1523/jneurosci.0885-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Recently, we have shown with rodent whisker hair follicles that SA1 impulses are generated through fast excitatory synaptic transmission at MNCs and driven by acid-sensing ion channels (ASICs). However, it is currently unknown whether, besides whisker hair follicles, ASICs also play an essential role in generating SA1 impulses from MNCs of other body parts in mammals. In the present study, we attempted to address this question by using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of both male and female rodents and applying the pressure-clamped single-fiber recordings. We showed that SA1 impulses elicited by tactile stimulation to the rat hindpaw glabrous skin were largely diminished in the presence of amiloride and diminazene, two ASIC channel blockers. Furthermore, using the hindpaw glabrous skin and tibial nerve preparations made from the mice genetically deleted of ASIC3 channels (ASIC3-/-), we showed that the frequency of SA1 impulses was significantly lower in ASIC3-/- mice than in littermate wild-type ASIC3+/+ mice, a result consistent with the pharmacological experiments with ASIC channel blockers. Our findings suggest that ASIC channels are essential for generating SA1 impulses to underlie the sense of touch in the glabrous skin of rodent hindpaws.
Collapse
Affiliation(s)
- Akihiro Yamada
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mayank Gautam
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Ayaka I Yamada
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer Ling
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Saurav Gupta
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Jianguo G Gu
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
3
|
Atmani K, Meleine M, Langlois L, Coëffier M, Brumovsky P, Leroi AM, Gourcerol G. Involvement of acid sensing ion channel (ASIC)-3 in an acute urinary bladder-colon cross sensitization model in rodent. FRONTIERS IN PAIN RESEARCH 2023; 4:1083514. [PMID: 36969917 PMCID: PMC10030710 DOI: 10.3389/fpain.2023.1083514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionIrritable bowel syndrome and bladder pain syndrome are both characterized by pain in response to organ distension. Epidemiologic studies showed that these two syndromes are often overlapped. Such overlap may be due to sharing of common extrinsic innervations between the colorectum and the urinary bladder, where cross-sensitization of the urinary bladder and the colon would occur in response to mechanical distension of either organ. The aim of this project was to develop and characterize a rodent model of urinary bladder-colon sensitization and to assess the role of the acid sensing ion channel (ASIC)-3.MethodsDouble retrograde labelling was performed to identify extrinsic primary afferent neurons innervating both the colon (Fluororuby) and urinary bladder (Fluorogold) in the L6-S1 dorsal root ganglia (DRG) in Sprague Dawley rats. The phenotype of the colon/urinary bladder co-innervating primary afferent neurons was assessed using immunohistochemistry directed against ASIC-3. Cross-organ sensitization was induced in Sprague Dawley rats by using an echography-guided intravesical administration of acetic acid (0.75%) under brief isoflurane anesthesia. Colonic sensitivity was assessed in conscious rats by measuring abdominal contraction during isobaric colorectal distension (CRD). Measurement of urinary bladder and colonic paracellular permeabilities and tissue myeloperoxidase assay were performed. The involvement of ASIC-3 was assessed by use of S1 intrathecal administration of the ASIC-3 blocker, APETx2 (2.2 µM).ResultsImmunohistochemistry showed that 73.1% of extrinsic primary afferent neurons co-innervating the colon and the urinary bladder express ASIC-3. By contrast, extrinsic primary afferent neurons innervating the colon only or the urinary bladder only were positive for ASIC-3 in 39.3% and 42.6%, respectively. Echography-guided intravesical administration of acetic acid resulted in colonic hypersensitivity to colorectal distension. This effect started 1 h post-injection and lasted up to 24 h, and was not longer seen after 3 days after injection. No colonic hyperpermeability and no difference in urinary bladder and colon MPO activity was observed between control and acetic acid-treated rats. Colonic sensitization by intravesical acetic acid administration was prevented by S1 intrathecal administration of APETx2.ConclusionWe developed an acute pelvic cross-organ sensitization model in conscious rat. In this model, cross-organ sensitization is likely to involve S1-L6 extrinsic primary afferents co-innervating the colon and urinary bladder through an ASIC-3 pathway.
Collapse
Affiliation(s)
- Karim Atmani
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
| | - Mathieu Meleine
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
| | - Ludovic Langlois
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
| | - Moïse Coëffier
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
| | - Pablo Brumovsky
- Institute of Research in in Translational Medicine, CONICET-Austral University, Pilar, Argentina
| | - Anne-Marie Leroi
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
- Department of Physiology, Rouen University Hospital, Rouen, France
| | - Guillaume Gourcerol
- Nutrition, Gut & Brain Unit (INSERM U1073), Institute for Biomedical Research and Innovation, Rouen University, Rouen, France
- Department of Physiology, Rouen University Hospital, Rouen, France
- Correspondence: Guillaume Gourcerol
| |
Collapse
|
4
|
Ridley J, Manyweathers S, Tang R, Goetze T, Becker N, Rinke-Weiß I, Kirby R, Obergrussberger A, Rogers M. Development of ASIC1a ligand-gated ion channel drug screening assays across multiple automated patch clamp platforms. Front Mol Neurosci 2022; 15:982689. [PMID: 36340694 PMCID: PMC9629855 DOI: 10.3389/fnmol.2022.982689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023] Open
Abstract
Human acid-sensing ion channels (ASIC) are ligand-gated ionotropic receptors expressed widely in peripheral tissues as well as sensory and central neurons and implicated in detection of inflammation, tissue injury, and hypoxia-induced acidosis. This makes ASIC channels promising targets for drug discovery in oncology, pain and ischemia, and several modulators have progressed into clinical trials. We describe the use of hASIC1a as a case study for the development and validation of low, medium and high throughput automated patch clamp (APC) assays suitable for the screening and mechanistic profiling of new ligands for this important class of ligand-gated ion channel. Initial efforts to expand on previous manual patch work describing an endogenous hASIC1a response in HEK cells were thwarted by low current expression and unusual pharmacology, so subsequent work utilized stable hASIC1a CHO cell lines. Ligand-gated application protocols and screening assays on the Patchliner, QPatch 48, and SyncroPatch 384 were optimized and validated based on pH activation and nM-μM potency of reference antagonists (e.g., Amiloride, Benzamil, Memantine, Mambalgin-3, A-317567, PcTx1). By optimizing single and stacked pipette tip applications available on each APC platform, stable pH-evoked currents during multiple ligand applications enabled cumulative EC50 and IC50 determinations with minimized receptor desensitization. Finally, we successfully demonstrated for the first time on an APC platform the ability to use current clamp to implement the historical technique of input resistance tracking to measure ligand-gated changes in membrane conductance on the Patchliner platform.
Collapse
Affiliation(s)
- John Ridley
- Metrion Biosciences Ltd., Cambridge, United Kingdom
| | | | - Raymond Tang
- Metrion Biosciences Ltd., Cambridge, United Kingdom
| | - Tom Goetze
- Nanion Technologies GmbH, Munich, Germany
| | | | | | - Robert Kirby
- Metrion Biosciences Ltd., Cambridge, United Kingdom
| | | | - Marc Rogers
- Metrion Biosciences Ltd., Cambridge, United Kingdom
- *Correspondence: Marc Rogers,
| |
Collapse
|
5
|
Al Qahtani NH, AbdulAzeez S, Almandil NB, Fahad Alhur N, Alsuwat HS, Al Taifi HA, Al-Ghamdi AA, Rabindran Jermy B, Abouelhoda M, Subhani S, Al Asoom L, Borgio JF. Whole-Genome Sequencing Reveals Exonic Variation of ASIC5 Gene Results in Recurrent Pregnancy Loss. Front Med (Lausanne) 2021; 8:699672. [PMID: 34395479 PMCID: PMC8363113 DOI: 10.3389/fmed.2021.699672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 12/08/2022] Open
Abstract
Family trio next-generation sequencing-based variant analysis was done to identify the genomic reason on unexplained recurrent pregnancy loss (RPL). A family (dead fetus and parents) from Saudi Arabia with an earlier history of three unexplained RPLs at the ninth week of pregnancy was included in the study. Whole-genome sequencing (WGS) of a dead fetus and the parents was done to identify the pathogenic variation and confirmed through Sanger sequencing. WGS of dead fetus identifies a novel homozygous exonic variation (NM_017419.3:c.680G>T) in ASIC5 (acid-sensing ion channel subunit family member 5) gene; the parents are heterozygous. Newly designed ARMS PCR followed by direct sequencing confirms the presence of heterozygous in one subject and absence of homozygous novel mutation among randomly selected healthy Saudis. The second family with heterozygous was confirmed with three unexplained RPLs. Pathogenicity analysis of R227I amino acid substitution in ASIC5 protein through molecular docking and interaction analysis revealed that the mutations are highly pathogenic, decrease the stability of the protein, and prevent binding of amiloride, which is an activator to open the acid-sensing ion channel of ASIC5. The identified rare and novel autosomal recessive mutation, c.680G>T:p.R227I (ASIC5Saudi), in two families confirm the ASIC5 gene association with RPL and can be fatal to the fetus.
Collapse
Affiliation(s)
- Nourah H. Al Qahtani
- Department of Obstetrics and Gynaecology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Norah Fahad Alhur
- Department of Genetic Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hind Saleh Alsuwat
- Department of Genetic Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hatoon Ahmed Al Taifi
- Department of Obstetrics and Gynaecology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahlam A. Al-Ghamdi
- Department of Obstetrics and Gynaecology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - B. Rabindran Jermy
- Department of Nanomedicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed Abouelhoda
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Shazia Subhani
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lubna Al Asoom
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Fechner S, D'Alessandro I, Wang L, Tower C, Tao L, Goodman MB. DEG/ENaC/ASIC channels vary in their sensitivity to anti-hypertensive and non-steroidal anti-inflammatory drugs. J Gen Physiol 2021; 153:211847. [PMID: 33656557 PMCID: PMC7933985 DOI: 10.1085/jgp.202012655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
The degenerin channels, epithelial sodium channels, and acid-sensing ion channels (DEG/ENaC/ASICs) play important roles in sensing mechanical stimuli, regulating salt homeostasis, and responding to acidification in the nervous system. They have two transmembrane domains separated by a large extracellular domain and are believed to assemble as homomeric or heteromeric trimers. Based on studies of selected family members, these channels are assumed to form nonvoltage-gated and sodium-selective channels sensitive to the anti-hypertensive drug amiloride. They are also emerging as a target of nonsteroidal anti-inflammatory drugs (NSAIDs). Caenorhabditis elegans has more than two dozen genes encoding DEG/ENaC/ASIC subunits, providing an excellent opportunity to examine variations in drug sensitivity. Here, we analyze a subset of the C. elegans DEG/ENaC/ASIC proteins to test the hypothesis that individual family members vary not only in their ability to form homomeric channels but also in their drug sensitivity. We selected a panel of C. elegans DEG/ENaC/ASICs that are coexpressed in mechanosensory neurons and expressed gain-of-function or d mutants in Xenopus laevis oocytes. We found that only DEGT‑1d, UNC‑8d, and MEC‑4d formed homomeric channels and that, unlike MEC‑4d and UNC‑8d, DEGT‑1d channels were insensitive to amiloride and its analogues. As reported for rat ASIC1a, NSAIDs inhibit DEGT‑1d and UNC‑8d channels. Unexpectedly, MEC‑4d was strongly potentiated by NSAIDs, an effect that was decreased by mutations in the putative NSAID-binding site in the extracellular domain. Collectively, these findings reveal that not all DEG/ENaC/ASIC channels are amiloride-sensitive and that NSAIDs can both inhibit and potentiate these channels.
Collapse
Affiliation(s)
- Sylvia Fechner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Isabel D'Alessandro
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Lingxin Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Calvin Tower
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Li Tao
- Department of Biology, Stanford University, Stanford, CA
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| |
Collapse
|
7
|
Nixon SA, Saez NJ, Herzig V, King GF, Kotze AC. The antitrypanosomal diarylamidines, diminazene and pentamidine, show anthelmintic activity against Haemonchus contortus in vitro. Vet Parasitol 2019; 270:40-46. [PMID: 31213240 DOI: 10.1016/j.vetpar.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
Parasitic nematodes pose a major threat to livestock production worldwide. The blood-feeding parasite Haemonchus contortus is a key small-ruminant pathogen that causes anaemia, and thereby seriously impacts animal health and production. Control of this parasite relies largely upon broad-spectrum anthelmintics, but new drugs are urgently needed to combat the threat of widespread multidrug resistance. Repurposing drugs can accelerate the development pipeline by reducing costs and risks, and can be an effective way of quickly bringing new antiparasitic drugs to market. Diarylamidine compounds such as pentamidine and diminazene have been employed in the treatment of trypanosomiasis and leishmaniasis in both human and veterinary settings, but their activity against parasitic worms has not yet been reported. We screened a small panel of diarylamidine compounds against H. contortus to assess their potential to be repurposed as anthelmintic drugs. Pentamidine and diminazene inhibited H. contortus larval development at low micromolar concentrations (IC50 4.9 μM and 16.1 μM, respectively, in a drug-susceptible isolate) with no existing cross-resistance in two multidrug resistant isolates and a monepantel-resistant isolate. Combinations of pentamidine with commercial anthelmintics showed additive activity, with no significant synergism detected. Pentamidine and diminazene showed different life-stage patterns of activity; both were active against early stage larvae in development assays, but only diminazene was active against the infective L3 stage in migration assays. This suggests some differences in uptake of the two drugs across the nematode cuticle, or differences in the nature and expression patterns of their molecular targets. As pentamidine and diminazene have been reported to be potent inhibitors of mammalian acid-sensing ion channels (ASIC), we tested the activity of known ASIC inhibitors against H. contortus to probe whether these channels may represent potential anthelmintic targets in nematodes. Remarkably, the spider-venom peptide Hi1a, a potent inhibitor of ASIC1a, inhibited H. contortus larval development with an IC50 of 22.9 ± 1.9 μM. This study highlights the potential use of diarylamidines as anthelmintics, although their activity needs to be confirmed in vivo. In addition, our demonstration that ASIC inhibitors have anthelmintic activity raises the possibility that this family of ion channels may represent a novel anthelmintic target.
Collapse
Affiliation(s)
- Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4067, Australia
| | - Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew C Kotze
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
8
|
Florentino IF, Silva DPB, Cardoso CS, Menegatti R, de Carvalho FS, Lião LM, Pinto PM, Peigneur S, Costa EA, Tytgat J. Antinociceptive effects of new pyrazoles compounds mediated by the ASIC-1α channel, TRPV-1 and μMOR receptors. Biomed Pharmacother 2019; 115:108915. [PMID: 31055237 DOI: 10.1016/j.biopha.2019.108915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Pyrazoles are potent medicinal scaffolds and exhibit a wide spectrum of biological activities, such as analgesic, anti-inflammatory and antipyretic. In this paper we report on research we have performed with the aim of continuing the biological evaluation of the regio-isomeric pyrazole compounds, LQFM-020 (fluorine, para position), LQFM-021 (fluorine, meta position), and LQFM-039 (fluorine, ortho position) in models of pain induced by acidified saline, capsaicin, and formalin. We also investigated the mechanisms of action of these compounds via electrophysiological analyses using the two-electrode voltage-clamp technique and heterologous expression in Xenopus laevis oocytes. This enabled us to study different potassium channel subtypes: the ASIC-1α channel, TRPV-1, and μMOR receptors. Our results indicate that LQFM-020, LQFM-021, and LQFM-039 (15, 30 or 60 mg.kg-1) compounds inhibited the nociceptive response induced by acidified saline in a dose-dependent manner. The dose of 30 mg.kg-1 inhibited the nociceptive response induced by capsaicin by 53.3%, 51.4%, and 52.1%, respectively. In addition, we found that naloxone reverses the antinociceptive effect produced by the compounds in both phases of the formalin test. In electrophysiological analyses, we observed that the LQFM-020, LQFM-021, and LQFM-039 compounds did not modulate voltage-gated K + channel subtypes. In contrast, all the compounds tested inhibited the ASIC-1α channel at pH 4.5, with IC50-values of 96.1, 91.6, and 235.2 μM, respectively. All compounds also inhibited the TRPV-1 channel with IC50-values of 139.1, 212.5, and 159.1 μM, respectively. In contrast to the ASIC-1α and TRPV-1 targets, all compounds showed agonist activity on the μMOR receptor with an EC50-value of 117.4, 98.9, and 86.3 μM, respectively. We thus conclude that the ASIC-1α, TRPV-1, and μMOR channels are targets that are directly involved in the antinociceptive effect of LQFM-020, LQFM-021, and LQFM-039. Furthermore, the modifications of the fluorine positions in the phenyl analogs do not change the analgesic effect. However, LQFM-039 showed lower interaction with ASIC-1α channel.
Collapse
Affiliation(s)
- Iziara F Florentino
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil; Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, Leuven, Belgium
| | - Daiany P B Silva
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Carina Sofia Cardoso
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Flávio S de Carvalho
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Luciano M Lião
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Paulo M Pinto
- Laboratory of Applied Proteomics, Federal University of Pampa, Campus São Gabriel, RS, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, Leuven, Belgium
| | - Elson A Costa
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
9
|
Bencheva LI, De Matteo M, Ferrante L, Ferrara M, Prandi A, Randazzo P, Ronzoni S, Sinisi R, Seneci P, Summa V, Gallo M, Veneziano M, Cellucci A, Mazzocchi N, Menegon A, Di Fabio R. Identification of Isoform 2 Acid-Sensing Ion Channel Inhibitors as Tool Compounds for Target Validation Studies in CNS. ACS Med Chem Lett 2019; 10:627-632. [PMID: 30996808 DOI: 10.1021/acsmedchemlett.8b00591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/07/2019] [Indexed: 01/21/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are a family of ion channels permeable to cations and largely responsible for the onset of acid-evoked ion currents both in neurons and in different types of cancer cells, thus representing a potential target for drug discovery. Owing to the limited attention ASIC2 has received so far, an exploratory program was initiated to identify ASIC2 inhibitors using diminazene, a known pan-ASIC inhibitor, as a chemical starting point for structural elaboration. The performed exploration enabled the identification of a novel series of ASIC2 inhibitors. In particular, compound 2u is a brain penetrant ASIC2 inhibitor endowed with an optimal pharmacokinetic profile. This compound may represent a useful tool to validate in animal models in vivo the role of ASIC2 in different neurodegenerative central nervous system pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pierfausto Seneci
- Promidis, Via Olgettina 60, 20132 Milan, Italy
- Chemistry Department, Università degli Studi di Milano, Via Golgi 19, I-20133 Milan, Italy
| | - Vincenzo Summa
- IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Rome, Italy
| | - Mariana Gallo
- IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Rome, Italy
| | - Maria Veneziano
- IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Rome, Italy
| | | | - Nausicaa Mazzocchi
- San Raffaele Scientific Institute, Experimental Imaging Center, ALEMBIC, Advanced Light and Electron Microscopy BioImaging Center, Via Olgettina 60, 20132 Milan, Italy
| | - Andrea Menegon
- San Raffaele Scientific Institute, Experimental Imaging Center, ALEMBIC, Advanced Light and Electron Microscopy BioImaging Center, Via Olgettina 60, 20132 Milan, Italy
| | - Romano Di Fabio
- Promidis, Via Olgettina 60, 20132 Milan, Italy
- IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Rome, Italy
| |
Collapse
|
10
|
Membrane potential changes occurring upon acidification influence the binding of small-molecule inhibitors to ASIC1a. Neuropharmacology 2019; 148:366-376. [DOI: 10.1016/j.neuropharm.2019.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
|
11
|
Gazerani P, Cairns BE. Activation of rat masticatory muscle afferent fibres by acidic pH. Somatosens Mot Res 2018; 35:86-94. [PMID: 29848210 DOI: 10.1080/08990220.2018.1473246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Previous research findings have suggested an important role for acid sensing ion channels (ASICs) in muscle pain mechanisms. This study was conducted to determine if masticatory muscle afferent fibres express ASICs, if there are sex differences in this expression, and to compare the effects of low pH and hypertonic saline on afferent fibres that innervate the masticatory muscle in vivo. Immunohistochemistry methods were applied to examine the expression of ASICs in trigeminal ganglion neurons, while in vivo electrophysiology techniques were employed to examine changes in masticatory muscle afferent fibre excitability. Both ASIC1 and ASIC3 were expressed by predominantly larger masticatory muscle ganglion neurons, but the frequency of ASIC3 expression (56%) was significantly greater than ASIC1 (35%). No sex-related differences in expression were identified. Injection of pH 5.8, but not pH 6.8, phosphate buffered saline evoked afferent discharges that were significantly greater than those evoked by pH 7.4 buffer (control). Since ASIC3 channels are not activated until the pH is around 6, these results indicate that activation of both channels contributes to excitation of masticatory muscle afferent fibres. The results further show that many masticatory muscle afferent fibres, which respond to low pH, are low threshold mechanoreceptors. These findings may explain why injection of low pH solutions into the masticatory muscles of healthy humans is not associated with significant muscle pain.
Collapse
Affiliation(s)
- Parisa Gazerani
- a Department of Health Science and Technology, Faculty of Medicine , Aalborg University , Aalborg East , Denmark
| | - Brian Edwin Cairns
- a Department of Health Science and Technology, Faculty of Medicine , Aalborg University , Aalborg East , Denmark.,b Faculty of Pharmaceutical Sciences , The University of British Columbia , Vancouver , Canada
| |
Collapse
|
12
|
Brix KV, Tellis MS, Crémazy A, Wood CM. Characterization of the effects of binary metal mixtures on short-term uptake of Ag, Cu, and Ni by rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:236-246. [PMID: 27750117 DOI: 10.1016/j.aquatox.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/25/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Single metal Biotic Ligand Models (BLMs) have been developed for a number of metals and model organisms. While these BLMs improve our ability to regulate metals in the aquatic environment, in reality, organisms are often simultaneously exposed to metal mixtures. Recently, several attempts have been made to develop mixture BLMs (mBLMs). Some of these models assume competitive interactions between all metals, while others assume only metals with a similar mode of action (e.g., Na+ or Ca2+ antagonists) will competitively interact. To begin testing these assumptions in the mBLM framework, standard 3-h gill metal binding assays with Ag, Cu, and Ni (primary metals), were performed in vivo on freshwater rainbow trout. Fish were exposed across a range of concentrations encompassing the 96-h LC50 for that metal to characterize uptake kinetics for each of these three primary metals (radiolabelled) in the presence and absence of a secondary metal (Ag, Cd, Cu, Ni, Pb, or Zn; not radiolabelled). We observed a complex series of interactions in binary mixtures that frequently contradicted theoretical expectations. Metals with similar modes of action did competitively interact in some instances, but not others, and when they did compete the competition was not necessarily reciprocal (e.g., Cu inhibited Ag uptake but Ag did not inhibit Cu uptake). We also observed examples of interactions between metals with dissimilar modes of action and several examples of metals stimulating the uptake of other metals. The underlying mechanisms for these unexpected interactions are unclear, but suggest that many of the current assumptions in mBLMs regarding the number and types of metal uptake sites and corresponding metal interactions are not correct. Careful characterization of metal mixture interactions is clearly needed before a reliable mBLM can be developed.
Collapse
Affiliation(s)
- Kevin V Brix
- EcoTox, Miami, FL, United States; University of Miami, RSMAS, Miami, FL, United States.
| | | | - Anne Crémazy
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, ON, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; University of Miami, RSMAS, Miami, FL, United States
| |
Collapse
|
13
|
Deplazes E, Davies J, Bonvin AMJJ, King GF, Mark AE. Combination of Ambiguous and Unambiguous Data in the Restraint-driven Docking of Flexible Peptides with HADDOCK: The Binding of the Spider Toxin PcTx1 to the Acid Sensing Ion Channel (ASIC) 1a. J Chem Inf Model 2015; 56:127-38. [PMID: 26642380 DOI: 10.1021/acs.jcim.5b00529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peptides that bind to ion channels have attracted much interest as potential lead molecules for the development of new drugs and insecticides. However, the structure determination of large peptide-channel complexes using experimental methods is challenging. Thus structural models are often derived from combining experimental information with restraint-driven docking approaches. Using the complex formed by the venom peptide PcTx1 and the acid sensing ion channel (ASIC) 1a as a case study, we have examined the effect of different combinations of restraints and input structures on the statistical likelihood of (a) correctly predicting the structure of the binding interface and (b) the ability to predict which residues are involved in specific pairwise peptide-channel interactions. For this, we have analyzed over 200,000 water-refined docked structures obtained with various amounts and types of restraints of the peptide-channel complex predicted using the docking program HADDOCK. We found that increasing the number of restraints or even the use of pairwise interaction data resulted in only a modest improvement in the likelihood of finding a structure within a given accuracy. This suggests that shape complementarity and the force field make a large contribution to the accuracy of the predicted structure. The results also showed that there are large variations in the accuracy of the predicted structure depending on the precise combination of residues used as restraints. Finally, we reflect on the limitations of relying on geometric criteria such as root-mean square deviations to assess the accuracy of docking procedures. We propose that in addition to currently used measures, the likelihood of finding a structure within a given level of accuracy should be also used to evaluate docking methods.
Collapse
Affiliation(s)
- Evelyne Deplazes
- Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Queensland 4072, Australia.,School of Chemistry & Molecular Biosciences, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Josephine Davies
- School of Chemistry & Molecular Biosciences, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University , 3584 CH Utrecht, The Netherlands
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Alan E Mark
- School of Chemistry & Molecular Biosciences, The University of Queensland , St. Lucia, Queensland 4072, Australia
| |
Collapse
|
14
|
α-Dendrotoxin inhibits the ASIC current in dorsal root ganglion neurons from rat. Neurosci Lett 2015; 606:42-7. [PMID: 26314509 DOI: 10.1016/j.neulet.2015.08.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/11/2015] [Accepted: 08/19/2015] [Indexed: 11/23/2022]
Abstract
Dendrotoxins are a group of peptide toxins purified from the venom of several mamba snakes. α-Dendrotoxin (α-DTx, from the Eastern green mamba Dendroaspis angusticeps) is a well-known blocker of voltage-gated K(+) channels and specifically of K(v)1.1, K(v)1.2 and K(v)1.6. In this work we show that α-DTx inhibited the ASIC currents in DRG neurons (IC50=0.8 μM) when continuously perfused during 25 s (including a 5 s pulse to pH 6.1), but not when co-applied with the pH drop. Additionally, we show that α-DTx abolished a transient component of the outward current that, in some experiments, appeared immediately after the end of the acid pulse. Our data indicate that α-DTx inhibits ASICs in the high nM range while some Kv are inhibited in the low nM range. The α-DTx selectivity and its potential interaction with ASICs should be taken in consideration when DTx is used in the high nM range.
Collapse
|
15
|
Chen WN, Chen CC. Acid mediates a prolonged antinociception via substance P signaling in acid-induced chronic widespread pain. Mol Pain 2014; 10:30. [PMID: 24886508 PMCID: PMC4039541 DOI: 10.1186/1744-8069-10-30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/10/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Substance P is an important neuropeptide released from nociceptors to mediate pain signals. We recently revealed antinociceptive signaling by substance P in acid-sensing ion channel 3 (ASIC3)-expressing muscle nociceptors in a mouse model of acid-induced chronic widespread pain. However, methods to specifically trigger the substance P antinociception were still lacking. RESULTS Here we show that acid could induce antinociceptive signaling via substance P release in muscle. We prevented the intramuscular acid-induced hyperalgesia by pharmacological inhibition of ASIC3 and transient receptor potential V1 (TRPV1). The antinociceptive effect of non-ASIC3, non-TRPV1 acid signaling lasted for 2 days. The non-ASIC3, non-TRPV1 acid antinociception was largely abolished in mice lacking substance P. Moreover, pretreatment with substance P in muscle mimicked the acid antinociceptive effect and prevented the hyperalgesia induced by next-day acid injection. CONCLUSIONS Acid could mediate a prolonged antinociceptive signaling via the release of substance P from muscle afferent neurons in a non-ASIC3, non-TRPV1 manner.
Collapse
Affiliation(s)
| | - Chih-Cheng Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
16
|
Abnormal cardiac autonomic regulation in mice lacking ASIC3. BIOMED RESEARCH INTERNATIONAL 2014; 2014:709159. [PMID: 24804235 PMCID: PMC3996306 DOI: 10.1155/2014/709159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
Abstract
Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.
Collapse
|