1
|
Wei Q, Tian H, Zhang F, Sai W, Ge Y, Gao X, Yao W. Establishment of an HPLC-based method to identify key proteases of proteins in vitro. Anal Biochem 2019; 573:1-7. [PMID: 30849379 DOI: 10.1016/j.ab.2019.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 02/03/2023]
Abstract
Given that the biological functions of proteins may decrease or even be lost due to degradation by proteases, it is of great significance to identify potential proteases that degrade protein drugs during systemic circulation. In this work, we describe a method based on high-performance liquid chromatography (HPLC) to identify key proteases that degrade therapeutic proteins in blood, including endopeptidases and exopeptidases. Here, the degradation of proteins was detected by competition with standard substrates of proteases and is shown as the relative residue rate. Four protein drugs were subjected to this method, and the results suggested that growth hormone was degraded by aminopeptidase N and kallikrein-related peptidase 5, pertuzumab was hardly degraded by the proteases, factor VII was degraded by carboxypeptidase B, neprilysin, dipeptidyl peptidase-4 and peptidyl dipeptidase A, and fibrinogen was degraded by carboxypeptidase B and kallikrein-related peptidase 5, findings consistent with the literature. The results were confirmed by microscale thermophoresis; additionally, activity detection in vitro substantiated that the degradation of factor VII decreased its activity. We demonstrate that this method can be used to identify key proteases of proteins with high accuracy, precision and durability.
Collapse
Affiliation(s)
- Qingqing Wei
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fan Zhang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wenbo Sai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yang Ge
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Stijnen P, Ramos-Molina B, O'Rahilly S, Creemers JWM. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. Endocr Rev 2016; 37:347-71. [PMID: 27187081 DOI: 10.1210/er.2015-1117] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prohormone convertase 1/3, encoded by the PCSK1 gene, is a serine endoprotease that is involved in the processing of a variety of proneuropeptides and prohormones. Humans who are homozygous or compound heterozygous for loss-of-function mutations in PCSK1 exhibit a variable and pleiotropic syndrome consisting of some or all of the following: obesity, malabsorptive diarrhea, hypogonadotropic hypogonadism, altered thyroid and adrenal function, and impaired regulation of plasma glucose levels in association with elevated circulating proinsulin-to-insulin ratio. Recently, more common variants in the PCSK1 gene have been found to be associated with alterations in body mass index, increased circulating proinsulin levels, and defects in glucose homeostasis. This review provides an overview of the endocrinopathies and other disorders observed in prohormone convertase 1/3-deficient patients, discusses the possible biochemical basis for these manifestations of the disease, and proposes a model whereby certain missense mutations in PCSK1 may result in proteins with a dominant negative action.
Collapse
Affiliation(s)
- Pieter Stijnen
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Stephen O'Rahilly
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
3
|
Ramos-Molina B, Martin MG, Lindberg I. PCSK1 Variants and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:47-74. [PMID: 27288825 DOI: 10.1016/bs.pmbts.2015.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PCSK1, encoding prohormone convertase 1/3 (PC1/3), was one of the first genes linked to monogenic early-onset obesity. PC1/3 is a protease involved in the biosynthetic processing of a variety of neuropeptides and prohormones in endocrine tissues. PC1/3 activity is essential for the activating cleavage of many peptide hormone precursors implicated in the regulation of food ingestion, glucose homeostasis, and energy homeostasis, for example, proopiomelanocortin, proinsulin, proglucagon, and proghrelin. A large number of genome-wide association studies in a variety of different populations have now firmly established a link between three PCSK1 polymorphisms frequent in the population and increased risk of obesity. Human subjects with PC1/3 deficiency, a rare autosomal-recessive disorder caused by the presence of loss-of-function mutations in both alleles, are obese and display a complex set of endocrinopathies. Increasing numbers of genetic diagnoses of infants with persistent diarrhea has recently led to the finding of many novel PCSK1 mutations. PCSK1-deficient infants experience severe intestinal malabsorption during the first years of life, requiring controlled nutrition; these children then become hyperphagic, with associated obesity. The biochemical characterization of novel loss-of-function PCSK1 mutations has resulted in the discovery of new pathological mechanisms affecting the cell biology of the endocrine cell beyond simple loss of enzyme activity, for example, dominant-negative effects of certain mutants on wild-type PC1/3 protein, and activation of the cellular unfolded protein response by endoplasmic reticulum-retained mutants. A better understanding of these molecular and cellular pathologies may illuminate possible treatments for the complex endocrinopathy of PCSK1 deficiency, including obesity.
Collapse
Affiliation(s)
- B Ramos-Molina
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - M G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - I Lindberg
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, United States of America.
| |
Collapse
|
4
|
Beinfeld MC, Vishnuvardhan D, Blum A, Reynolds N, Fannous S, Kitagawa K, Marchand JE. Inhibition of prohormone convertase 1 (PC1) expression in cholecystokinin (CCK) expressing At-T20 cells decreased cellular content and secretion of CCK and caused a shift in molecular forms of CCK secreted. Peptides 2006; 27:905-10. [PMID: 16274843 DOI: 10.1016/j.peptides.2005.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 09/28/2005] [Accepted: 09/28/2005] [Indexed: 11/19/2022]
Abstract
Two different RNAi methods were used to inhibit the expression of prohormone convertase 1 (PC1) in At-T20 cells. Transient transfection of double stranded RNA and stable expression of a vector expressing hairpin-loop RNA targeting PC1 reduced cholecystokinin (CCK) secretion from At-T20 cells. PC1 mRNA and protein were also decreased in the vector transfected cells. This treatment caused a shift in the forms of cholecystokinin (CCK) secreted, decreasing CCK 22 and increasing CCK 8. Stable expression of RNAi effectively decreased PC1 expression. The observed decrease in CCK seen with these RNAi treatments further supports a role for PC1 in CCK processing in these cells.
Collapse
Affiliation(s)
- Margery C Beinfeld
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Tagen MB, Beinfeld MC. Recombinant prohormone convertase 1 and 2 cleave purified pro cholecystokinin (CCK) and a synthetic peptide containing CCK 8 Gly Arg Arg and the carboxyl-terminal flanking peptide. Peptides 2005; 26:2530-5. [PMID: 15979761 DOI: 10.1016/j.peptides.2005.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 05/07/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Purified recombinant prohormone convertase 1 and 2 (PC1 and PC2) cleave a peptide containing cholecystokinin (CCK) 8 Gly Arg Arg and the carboxyl-terminal peptide liberating CCK 8 Gly Arg Arg. PC1 and PC2 also cleave purified pro CCK, liberating the amino terminal pro-peptide while no carboxyl-terminal cleavage was detected. Under the conditions of the in vitro cleavage assay, it appears that the carboxyl-terminal cleavage site of pro CCK is not accessible to the enzymes while this site is readily cleaved in a synthetic peptide. Additional cellular proteins that unfold the prohormone may be required to expose the carboxyl-terminal site for cleavage.
Collapse
Affiliation(s)
- Michael B Tagen
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | | |
Collapse
|
6
|
Hardiman A, Friedman TC, Grunwald WC, Furuta M, Zhu Z, Steiner DF, Cool DR. Endocrinomic profile of neurointermediate lobe pituitary prohormone processing in PC1/3- and PC2-Null mice using SELDI-TOF mass spectrometry. J Mol Endocrinol 2005; 34:739-51. [PMID: 15956344 PMCID: PMC4422198 DOI: 10.1677/jme.1.01812] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pro-vasopressin and pro-oxytocin are prohormones processed in the neurointermediate lobe pituitary to form the biologically active peptide hormones, arginine vasopressin (AVP) and oxytocin. Neurointermediate lobe pituitaries from normal (+/+), heterozygous (+/-), PC2-Null (-/-), PC1/3-Null and oxytocin-Null mice were analyzed by SELDI-TOF mass spectroscopy for the peptide hormone products, AVP, oxytocin and neurophysin I and II. Molecular ion species with masses characteristic of oxytocin, AVP, neurophysin I and II, i.e. 1009.41, 1084.5, 9677 and 9679 daltons respectively, were identified in all but the oxytocin-Null mice by comparison with synthetic standards or by C-terminal sequence analysis. Other ion species were found specifically in PC2-Null, heterozygote or normal mice. The results indicate that, in mice, both PC1/3 or PC2 enzyme activity are capable, but not required to correctly process pro-vasopressin or pro-oxytocin to their constituent active peptide hormones.
Collapse
Affiliation(s)
- Atira Hardiman
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Cain BM, Connolly K, Blum AC, Vishnuvardhan D, Marchand JE, Zhu X, Steiner DF, Beinfeld MC. Genetic inactivation of prohormone convertase (PC1) causes a reduction in cholecystokinin (CCK) levels in the hippocampus, amygdala, pons and medulla in mouse brain that correlates with the degree of colocalization of PC1 and CCK mRNA in these structures. J Neurochem 2004; 89:307-13. [PMID: 15056274 DOI: 10.1046/j.1471-4159.2003.02295.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prohormone convertase (PC1) is found in endocrine cell lines that express cholecystokinin (CCK) mRNA and process pro CCK to biologically active products. Other studies have demonstrated that PC1 may be a one of the enzymes responsible for the endoproteolytic cleavages that occur in pro CCK during its biosynthesis and processing. Prohormone convertase 1 (PC1) has a distribution that is similar to cholecystokinin (CCK) in rat brain. A moderate to high percentage of CCK mRNA-positive neurons express PC1 mRNA. CCK levels were measured in PC1 knockout and control mice to assess the degree to which loss of PC1 changed CCK content. CCK levels were decreased 62% in hippocampus, 53% in amygdala and 57% in pons-medulla in PC1 knockout mice as compared to controls. These results are highly correlated with the colocalization of CCK and PC1. The majority of CCK mRNA-positive neurons in the pyramidal cell layer of the hippocampus express PC1 mRNA and greater than 50% of CCK mRNA-positive neurons in several nuclei of the amygdala also express PC1. These results demonstrate that PC1 is important for CCK processing. PC2 and PC5 are also widely colocalized with CCK. It may be that PC2, PC5 or another non-PC enzyme are able to substitute for PC1 and sustain production of some amidated CCK. Together these enzymes may represent a redundant system to insure the production of CCK.
Collapse
Affiliation(s)
- B M Cain
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Cain BM, Connolly K, Blum A, Vishnuvardhan D, Marchand JE, Beinfeld MC, Vishnuvardham D. Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2, and PC5 in rat brain. J Comp Neurol 2004; 467:307-25. [PMID: 14608596 DOI: 10.1002/cne.10924] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During posttranslational processing to generate CCK 8, pro-cholecystokinin (CCK) undergoes endoproteolytic cleavage at three sites. Several studies using endocrine and neuronal tumor cells in culture and recombinant enzymes and synthetic substrates in vitro have pointed to the subtilisin/kexin-like enzymes prohormone convertase (PC) 1, PC2, and PC5 as potential candidates for these endoproteolytic cleavages. In these experimental models, they all appear to be able to cleave pro-CCK to make the correct products. One rodent model has provided information about the role of PC2. PC2 knockout mouse brains had less CCK 8 than wild-type, although a substantial amount of CCK was still present. The degree to which CCK levels were reduced in these mice was regionally specific. These data indicated that PC2 is important for normal production of CCK but that it is not the only endoprotease that is involved in CCK processing. To evaluate whether PC1 and PC5 are possible candidates for the other enzymes involved in CCK processing, the distribution of PC1, PC2, and PC5 mRNA was studied in rat brain. Their colocalization with CCK mRNA was examined using double-label in situ hybridization. PC2 was the most abundant of these enzymes in terms of the intensity and number of cells labeled. It was widely colocalized with CCK. PC1 and PC5 mRNA-positive cells were less abundant, but they were also widely distributed and strongly colocalized with CCK in the cerebral cortex, hippocampus, amygdala, ventral tegmental area, and substantia nigra zona compacta. The degree of colocalization of the enzymes with CCK was regionally specific. It is clear that PC1 and PC5 are extensively colocalized with CCK and could be participating in CCK processing in the rat brain and may be able to substitute for PC2 in its absence. These three enzymes may represent a redundant system to ensure production of biologically active CCK.
Collapse
Affiliation(s)
- Brian M Cain
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Pro Cholecystokinin (CCK) like other prohormones that pass through the regulated secretory pathway, undergoes a number of post-translational modifications during its biosynthesis including tyrosine sulfation, endoproteolytic cleavages, trimming by carboxypeptidase and c-terminal amidation. This minireview summarizes what is known about this process, what specific enzymes are involved in endocrine and neuronal tumor cells and in mutant and knockout mouse strains. It also points out the major challenges that remain for future research.
Collapse
Affiliation(s)
- Margery C Beinfeld
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Tufts University, 136 Harrison Ave., Boston, MA 02111, USA.
| |
Collapse
|
10
|
Su SF, Amidon GL, Lee HJ. Possible degradative process of cholecystokinin analogs in rabbit jejunum brush-border membrane vesicles. Life Sci 2002; 72:35-47. [PMID: 12409143 DOI: 10.1016/s0024-3205(02)02198-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Our recent work on the intestinal metabolism and absorption of cholecystokinin analogs, sulfated C-terminal octapeptide (CCK8; Asp-Tyr(SO(3)H)-Met-Gly-Trp-Met-Asp-Phe(NH(2)) = DY(SO(3)H)MGWMDF(NH(2))) and tetrapeptide (CCK4; Trp-Met-Asp-Phe(NH(2)) = WMDF(NH(2))), was extended to investigate the degradative process of these analogs using rabbit jejunum brush-border membrane vesicles and to find a better enzyme-inhibitor system for intestinal absorption of peptide drugs. Various enzyme inhibitors and a lower pH buffer were applied to discover the major enzyme(s) involved in each process. Metabolic pathways showing degradative processes were proposed for both analogs. The major cleavage site occurs at the W(1)-M(2) for CCK4. At least three metabolic pathways occur independently for CCK8 and appear at peptides bonds between G(4)-W(5), M(6)-D(7), and D(7)-F(NH(2))(8). Many different enzymes of aminopeptidase, endopeptidase, angiotensin-converting enzyme, metalloenzyme, and others were involved in each process. Identification of more specific yet safe enzyme inhibitors and co-administration of various these inhibitors may lead to further enhancement in intestinal peptide absorption when administered orally.
Collapse
Affiliation(s)
- Sheng-Fang Su
- College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
11
|
Su SF, Amidon GL, Lee HJ. Intestinal metabolism and absorption of cholecystokinin analogs in rats. Biochem Biophys Res Commun 2002; 292:632-8. [PMID: 11922613 DOI: 10.1006/bbrc.2002.6718] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal metabolism and poor permeability were known to be major barriers for oral absorption of large peptide drugs. Dimensionless wall permeability values of C-terminal octa- and tetra-peptides cholecystokinin analogs (CCK8 and CCK4) were estimated and found out to be greater than 1, suggesting no permeability-limited absorption for CCK analogs. Thus, a strategy employing enzyme inhibitors and a specific delivery site to improve the absorption was developed and tested with CCK8, followed by identification of metabolites of the analogs and their participating enzymes in rabbit brush-border membrane vesicles. Thiorphan and amastatin, a specific enzyme inhibitor for enkephalinase and aminopeptidase, respectively, in pH 4 buffer solution were coadministered with CCK8 to the ileum in fistulated rats. The absolute bioavailability (F) of CCK8 was 5.4% and increased to 19% in the presence of the enzyme inhibitors, while the F values following oral administration were close to zero. These results indicate that peptide oral delivery is possible.
Collapse
Affiliation(s)
- Sheng-Fang Su
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
12
|
Cain BM, Vishnuvardhan D, Beinfeld MC. Neuronal cell lines expressing PC5, but not PC1 or PC2, process Pro-CCK into glycine-extended CCK 12 and 22. Peptides 2001; 22:1271-7. [PMID: 11457520 DOI: 10.1016/s0196-9781(01)00451-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Endocrine tumor cells in culture and in vitro cleavage assays have shown that PC1 and PC2 are capable of processing pro-CCK into smaller, intermediate and final, bioactive forms. Similar studies have shown that PC5 has the ability to process a number of propeptides. Here, we use GT1-7 (mouse hypothalamic) and SK-N-MC and SK-N-SH (human neuroblastoma) tumor cell lines to study the ability of PC5 to process pro-CCK. RT-PCR and Western blot analysis showed that the cells express PC5 mRNA and protein, but not PC1 or PC2. They were engineered to stably overexpress CCK and cell media was analyzed for pro-CCK expression and cleavage of the prohormone. Radioimmunoassays showed that pro-CCK was expressed, but no amidated CCK was detected. Lack of production of amidated CCK may be due to the lack of the appropriate carboxypeptidase and amidating enzymes. Production of glycine-extended CCK processing products was evaluated by treatment of media with carboxypeptidase B followed by analysis with a CCK Gly RIA. Glycine-extended forms of the peptide were found in the media. The predominant forms co-eluted with CCK 12 Gly and CCK 22 Gly on gel filtration chromatography. The results demonstrate that these cell lines which express PC5 and not PC1 or PC2 have the ability to process pro-CCK into intermediate, glycine-extended forms more closely resembling pro-CCK products in intestine than in brain.
Collapse
Affiliation(s)
- B M Cain
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | |
Collapse
|
13
|
Villeneuve P, Lafortune L, Seidah NG, Kitabgi P, Beaudet A. Immunohistochemical evidence for the involvement of protein convertases 5A and 2 in the processing of pro-neurotensin in rat brain. J Comp Neurol 2000; 424:461-75. [PMID: 10906713 DOI: 10.1002/1096-9861(20000828)424:3<461::aid-cne5>3.0.co;2-j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The neuropeptides/neurotransmitters neurotensin (NT) and neuromedin (NN) are synthesized by endoproteolytic cleavage of a common inactive precursor, pro-NT/NN. In vitro studies have suggested that the prohormone convertases PC5A and PC2 might both be involved in this process. In the present study, we used dual immunohistochemical techniques to determine whether either one or both of these two convertases were co-localized with pro-NT/NN maturation products and could therefore be involved in the physiological processing of this propeptide in rat brain. PC2-immunoreactive neurons were present in all regions immunopositive for NT. All but three regions expressing NT were also immunopositive for PC5A. Dual localization of NT with either convertase revealed that NT was extensively co-localized with both PC5A and PC2, albeit with regional differences. These results strongly suggest that PC5A and PC2 may play a key role in the maturation of pro-NT/NN in mammalian brain. The regional variability in NT/PC co-localization patterns may account for the region-specific maturation profiles previously reported for pro-NT/NN. The high degree of overlap between PC5A and PC2 in most NT-rich areas further suggests that these two convertases may act jointly to process pro-NT/NN. At the subcellular level, PC5A was largely co-localized with the mid-cisternae Golgi marker MG-160. By contrast, PC2 was almost completely excluded from MG-160-immunoreactive compartments. These results suggest that PC5A, which is particularly efficient at cleaving the two C-terminal-most dibasics of pro-NT/NN, may be acting as early as in the Golgi apparatus to release NT, whereas PC2, which is considerably more active than PC5A in cleaving the third C-terminal doublet, may be predominantly involved further distally along the secretory pathway to release NN.
Collapse
Affiliation(s)
- P Villeneuve
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
14
|
Lee HM, He Q, Englander EW, Greeley GH. Endocrine disruptive effects of polychlorinated aromatic hydrocarbons on intestinal cholecystokinin in rats. Endocrinology 2000; 141:2938-44. [PMID: 10919282 DOI: 10.1210/endo.141.8.7626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ubiquitous and persistent nature of polychlorinated aromatic hydrocarbons (PCAHs) in our environment and the risk of exposure to PCAHs have provoked concern over their potential toxicity. In humans, exposure to PCAHs is aimed chiefly at epithelial cells residing in the intestinal mucosa, because oral intake of contaminated food is a major source of PCAHs. The purpose of this study, therefore, was to examine the effects of chronic exposure to various PCAHs [i.e. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), 3,3',4,4',5-pentachlorobiphenyl (PCB-126), and 2,2'4,4'5,5'-hexachlorobiphenyl (PCB-153)], given alone or as mixtures, on intestinal cholecystokinin (CCK) peptide and messenger RNA levels. We show that chronic PCAH treatment significantly lowers intestinal levels of stored CCK peptide. Intestinal CCK messenger RNA levels are not affected. In addition, 3,3',4,4',5-pentachlorobiphenyl treatment increased intestinal insulin-like growth factor-binding protein-3 levels in a dose-related manner. Acute 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment of intestinal CCK cells lowered levels of CCK-processing enzymes (i.e. prohormone convertase-1 and -2). Together, these data indicate that PCAHs may decrease intestinal levels of stored CCK peptide by affecting the intestinal insulin-like growth factor system and CCK processing.
Collapse
Affiliation(s)
- H M Lee
- Department of Surgery, University of Texas Medical Branch, Galveston 77555-0725, USA
| | | | | | | |
Collapse
|
15
|
Viale A, Ortola C, Hervieu G, Furuta M, Barbero P, Steiner DF, Seidah NG, Nahon JL. Cellular localization and role of prohormone convertases in the processing of pro-melanin concentrating hormone in mammals. J Biol Chem 1999; 274:6536-45. [PMID: 10037747 DOI: 10.1074/jbc.274.10.6536] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanin concentrating hormone (MCH) and neuropeptide EI (NEI) are two peptides produced from the same precursor in mammals, by cleavage at the Arg145-Arg146 site and the Lys129-Arg130 site, respectively. We performed co-localization studies to reveal simultaneously the expression of MCH mRNA and proconvertases (PCs) such as PC1/3 or PC2. In the rat hypothalamus, PC2 was present in all MCH neurons, and PC1/3 was present in about 15-20% of these cells. PC1/3 or PC2 was not found in MCH-positive cells in the spleen. In GH4C1 cells co-infected with vaccinia virus (VV):pro-MCH along with VV:furin, PACE4, PC1/3, PC2, PC5/6A, PC5/6B, or PC7, we observed only efficient cleavage at the Arg145-Arg146 site to generate mature MCH. Co-expression of pro-MCH together with PC2 and 7B2 resulted in very weak processing to NEI. Comparison of pro-MCH processing patterns in PC1/3- or PC2-transfected PC12 cells showed that PC2 but not PC1/3 generated NEI. Finally, we analyzed the pattern of pro-MCH processing in PC2 null mice. In the brain of homozygotic mutants, the production of mature NEI was dramatically reduced. In contrast, MCH content was increased in the hypothalamus of PC2 null mice. In the spleen, a single large MCH-containing peptide was identified in both wild type and PC2 null mice. Together, our data suggest that pro-MCH is processed differently in the brain and in peripheral organs of mammals. PC2 is the key enzyme that produces NEI, whereas several PCs may cleave at the Arg145-Arg146 site to generate MCH in neuronal cell types.
Collapse
Affiliation(s)
- A Viale
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UPR411, 660 route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|