1
|
Nieminen V, Martikainen MV, Kalliomäki S, Virén T, Seppälä J, Juutilainen J, Naarala J, Luukkonen J. 50 Hz magnetic field influences caspase-3 activity and cell cycle distribution in ionizing radiation exposed SH-SY5Y neuroblastoma cells. Int J Radiat Biol 2024; 100:1183-1192. [PMID: 38924721 DOI: 10.1080/09553002.2024.2369105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2024] [Revised: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Earlier evidence suggests that extremely low frequency magnetic fields (ELF MFs) can modify the effects of carcinogenic agents. However, the studies conducted so far with ionizing radiation as the co-exposure agent are sparse and have provided inconclusive results. We investigated whether 50 Hz MFs alone, or in combination with ionizing radiation alter cell biological variables relevant to cancer and the biological effects of ionizing radiation. MATERIALS AND METHODS Human SH-SY5Y neuroblastoma cells were sham exposed or exposed to 100 or 500 µT MF for 24 h either before or after ionizing radiation exposure (0, 0.4 or 2 Gy). After the exposures, cells were assayed for viability, clonogenicity, reactive oxygen species, caspase-3 activity, and cell cycle distribution. Cell cycle distribution was assayed with propidium iodide staining followed by flow cytometry analysis and ROS levels were assayed together with cell viability by double staining with DeepRed and Sytox Blue followed by flow cytometry analysis. RESULTS Increased caspase-3 activity was observed in cells exposed to 500 µT MF before or after ionizing radiation. Furthermore, exposure to the 500 µT MF after the ionizing radiation decreased the percentage of cells in S-phase. No changes in the ROS levels, clonogenicity, or viability of the cells were observed in the MF exposed groups compared to the corresponding sham exposed groups, and no MF effects were observed in cells exposed at 100 µT. CONCLUSIONS Only the 500 µT magnetic flux density affected SH-SY5Y cells significantly. The effects were small but may nevertheless help to understand how MFs modify the effects of ionizing radiation. The increase in caspase-3 activity may not reflect effects on apoptosis, as no changes were observed in the subG1 phase of the cell cycle. In contrast to some earlier findings, 50 Hz MF exposure after ionizing radiation was not less effective than MF treatment given prior to ionizing radiation.
Collapse
Affiliation(s)
- Valtteri Nieminen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Saija Kalliomäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Virén
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Jan Seppälä
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Gholipour Hamedani B, Goliaei B, Shariatpanahi SP, Nezamtaheri M. An overview of the biological effects of extremely low frequency electromagnetic fields combined with ionizing radiation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:50-59. [PMID: 35513112 DOI: 10.1016/j.pbiomolbio.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/17/2021] [Revised: 04/09/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
By growing the electrical power networks and electronic devices, electromagnetic fields (EMF) have become an inseparable part of the modern world. Considering the inevitable exposure to a various range of EMFs, especially at extremely low frequencies (ELF-EMF), investigating the biological effects of ELF-EMFs on biological systems became a global issue. The possible adverse consequences of these exposures were studied, along with their potential therapeutic capabilities. Also, their biological impacts in combination with other chemical and physical agents, specifically ionizing radiation (IR), as a co-carcinogen or as adjuvant therapy in combination with radiotherapy were explored. Here, we review the results of several in-vitro and in-vivo studies and discuss some proposed possible mechanisms of ELF-EMFs' actions in combination with IR. The results of these experiments could be fruitful to develop more precise safety standards for environmental ELF-EMFs exposures. Furthermore, it could evaluate the therapeutic capacities of ELF-EMFs alone or as an improver of radiotherapy.
Collapse
Affiliation(s)
- Bahareh Gholipour Hamedani
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Seyed Peyman Shariatpanahi
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryamsadat Nezamtaheri
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Markkanen A, Juutilainen J, Naarala J. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced DNA damage response in murine L929 cells. Int J Radiat Biol 2009; 84:742-51. [DOI: 10.1080/09553000802360836] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023]
|
4
|
Juutilainen J, Kumlin T, Naarala J. Do extremely low frequency magnetic fields enhance the effects of environmental carcinogens? A meta-analysis of experimental studies. Int J Radiat Biol 2009; 82:1-12. [PMID: 16546898 DOI: 10.1080/09553000600577839] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
Abstract
PURPOSE This paper is a meta-analysis of data from in vitro studies and short-term animal studies that have combined extremely low frequency magnetic fields with known carcinogens or other toxic physical or chemical agents. MATERIALS AND METHODS The data was analyzed by systematic comparison of study characteristics between positive and negative studies to reveal possible consistent patterns. RESULTS The majority of the studies reviewed were positive, suggesting that magnetic fields do interact with other chemical and physical exposures. Publication bias is unlikely to explain the findings. Interestingly, a nonlinear 'dose-response' was found, showing a minimum percentage of positive studies at fields between 1 and 3 mT. The radical pair mechanism (magnetic field effects on recombination of radical pairs) is a good candidate mechanism for explaining the biphasic dose-response seen in the present analysis. CONCLUSIONS Most of the studies reviewed used magnetic fields of 100 microT or higher, so the findings are not directly relevant for explaining the epidemiological findings suggesting increased risk of childhood leukemia above 0.4 microT. However, confirmed adverse effects even at 100 microT would have implications for risk assessment and management, including the need to reconsider the exposure limits for magnetic fields. There is an obvious need for further studies on combined effects with magnetic fields.
Collapse
Affiliation(s)
- Jukka Juutilainen
- University of Kuopio, Department of Environmental Sciences, Kuopio, Finland.
| | | | | |
Collapse
|
5
|
Miyakoshi J. Cellular Biology Aspects of Mobile Phone Radiation. ADVANCES IN ELECTROMAGNETIC FIELDS IN LIVING SYSTEMS 2009. [DOI: 10.1007/978-0-387-92736-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
6
|
Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 2006; 20:1202-12. [PMID: 16697548 DOI: 10.1016/j.tiv.2006.03.008] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2005] [Revised: 03/24/2006] [Accepted: 03/24/2006] [Indexed: 11/17/2022]
Abstract
We present a toxicological assessment of five carbon nanomaterials on human fibroblast cells in vitro. We correlate the physico-chemical characteristics of these nanomaterials to their toxic effect per se, i.e. excluding catalytic transition metals. Cell survival and attachment assays were evaluated with different concentrations of refined: (i) single-wall carbon nanotubes (SWCNTs), (ii) active carbon, (iii) carbon black, (iv) multi-wall carbon nanotubes, and (v) carbon graphite. The refined nanomaterial that introduced the strongest toxic effect was subsequently compared to its unrefined version. We therefore covered a wide range of variables, such as: physical dimensions, surface areas, dosages, aspect ratios and surface chemistry. Our results are twofold. Firstly, we found that surface area is the variable that best predicts the potential toxicity of these refined carbon nanomaterials, in which SWCNTs induced the strongest cellular apoptosis/necrosis. Secondly, we found that refined SWCNTs are more toxic than its unrefined counterpart. For comparable small surface areas, dispersed carbon nanomaterials due to a change in surface chemistry, are seen to pose morphological changes and cell detachment, and thereupon apoptosis/necrosis. Finally, we propose a mechanism of action that elucidates the higher toxicity of dispersed, hydrophobic nanomaterials of small surface area.
Collapse
Affiliation(s)
- Furong Tian
- Max Planck Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
7
|
Wang J, Sakurai T, Koyama S, Komatubara Y, Suzuki Y, Taki M, Miyakoshi J. Effects of 2450 MHz electromagnetic fields with a wide range of SARs on methylcholanthrene-induced transformation in C3H10T1/2 cells. JOURNAL OF RADIATION RESEARCH 2005; 46:351-61. [PMID: 16210792 DOI: 10.1269/jrr.46.351] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/04/2023]
Abstract
This study examined whether 2450 MHz continuous wave high frequency electromagnetic fields (HFEMF) could induce cancer-like changes in mouse C3H10T1/2 cells, and whether HFEMF could initiate malignant or synergistic transformation. Transformed foci, Type II and Type III, were independently counted as the experiment endpoint. The cells were exposed to HFEMF alone at a wide range of specific absorption rates (SARs) of 5 to 200 W/kg for 2 h and/or were treated with a known initiating chemical, methylcholanthrene (MC) (2.5 microg/ml). No significant differences were observed in the malignant transformation (Type II + Type III) frequency between the controls and HFEMF with or without 12-O-tetradecanoylphorbol-13-acetate (TPA) (0.5 ng/ml), a tumor promoter that could enhance transformation frequency initiated by MC in multistage carcinogenesis. However, the transformation frequency for HFEMF at SAR of more than 100 W/kg with MC or MC plus TPA was increased compared with MC alone or MC plus TPA. On the other hand, the corresponding heat groups (heat alone, heat + MC, and heat + MC + TPA) did not increase transformation compared with each control level in C3H10T1/2 cells. This result suggests that 2450 MHz HFEMF could not contribute to the initiation stage of tumor formation, but it may contribute to the promotion stage at the extremely high SAR (100 W/kg).
Collapse
Affiliation(s)
- Jin Wang
- Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Sakurai T, Koyama S, Komatsubara Y, Jin W, Miyakoshi J. Decrease in glucose-stimulated insulin secretion following exposure to magnetic fields. Biochem Biophys Res Commun 2005; 332:28-32. [PMID: 15896294 DOI: 10.1016/j.bbrc.2005.04.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2005] [Accepted: 04/18/2005] [Indexed: 11/26/2022]
Abstract
We evaluated the effects of extremely low frequency magnetic field (ELFMF) on glucose-stimulated insulin secretion from HIT-T15 cells and investigated the mechanisms of these effects. We demonstrated that exposure to ELFMF at 5mT decreased glucose-stimulated insulin secretion by preventing the increases in cellular adenosine 5'-triphosphate/adenosine 5'-diphosphate, membrane depolarization, and cytosolic free calcium ion concentration. The glucose-induced upregulation of insulin mRNA expression was also attenuated by exposure to ELFMF, although cell viability was not affected. These findings demonstrate the potential of exposure to ELFMF for clinical use as a novel inhibitory method of insulin secretion.
Collapse
Affiliation(s)
- Tomonori Sakurai
- Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Hirosaki University, Hirosaki, Japan
| | | | | | | | | |
Collapse
|
9
|
Tian F, Nakahara T, Yoshida M, Honda N, Hirose H, Miyakoshi J. Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient xrs5 cells. Biochem Biophys Res Commun 2002; 292:355-61. [PMID: 11906169 DOI: 10.1006/bbrc.2002.6661] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
In an attempt to determine whether exposure to extremely low frequency (ELF) electromagnetic fields can affect cells, Ku80-deficient cells (xrs5) and Ku80-proficient cells (CHO-K1) were exposed to ELF electromagnetic fields. Cell survival, and the levels of the apoptosis-related genes p21, p53, phospho-p53 (Ser(15)), caspase-3 and the anti-apoptosis gene bcl-2 were determined in xrs5 and CHO-K1 cells following exposure to ELF electromagnetic fields and X-rays. It was found that exposure of xrs5 and CHO-K1 cells to 60 Hz ELF electromagnetic fields had no effect on cell survival, cell cycle distribution and protein expression. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields for 5 h after irradiation significantly inhibited G(1) cell cycle arrest induced by X-rays (1 Gy) and resulted in elevated bcl-2 expression. A significant decrease in the induction of p53, phospho-p53, caspase-3 and p21 proteins was observed in xrs5 cells when irradiation by X-rays (8 Gy) was followed by exposure to 5 mT ELF magnetic fields. Exposure of xrs5 cells to the ELF electromagnetic fields for 10 h following irradiation significantly decreased X-ray-induced apoptosis from about 1.7% to 0.7%. However, this effect was not found in CHO-K1 cells within 24 h of irradiation by X-rays alone and by X-rays combined with ELF electromagnetic fields. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields following irradiation can affect cell cycle distribution and transiently suppress apoptosis by decreasing the levels of caspase-3, p21, p53 and phospho-p53 and by increasing bcl-2 expression.
Collapse
Affiliation(s)
- Furong Tian
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Gu Y, Hasegawa T, Yamamoto Y, Kai M, Kusama T. The combined effects of MRI and X-rays on ICR mouse embryos during organogenesis. JOURNAL OF RADIATION RESEARCH 2001; 42:265-272. [PMID: 11840643 DOI: 10.1269/jrr.42.265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/23/2023]
Abstract
The combined effects of X-rays and magnetic resonance imaging (MRI) on mouse embryos at an early stage of organogenesis were investigated. Pregnant ICR mice were irradiated on day 8 of gestation with X-rays at a dose of 1 Gy and/or MRI at 0.5 T for 1 hour. The mortality rates of the embryos or fetuses, the incidence of external malformations, the fetal body weight and the sex ratio were observed at day 18 of gestation. A significant increase in embryonic mortality was observed after exposure to either 1 Gy of X-radiation or 0.5 T MRI. However, the combined X-rays and MRI did not show a statistically significant increase in embryonic mortality compared with the control. External malformations, such as exencephaly, a cleft palate and anophthalmia, were observed in mice irradiated with X-rays and/or MRI. The incidence of each malformation in all treated groups increased with statistical significance compared with the control mice. The incidence in mice irradiated with both X-rays and MRI was lower than in mice irradiated with only X-rays. The combined effects of the combination of radiation and MRI on the external malformations might be antagonistic. There were no statistically significant differences in fetal death, fetal body weight and sex ratio among all experimental groups.
Collapse
Affiliation(s)
- Y Gu
- Department of Radiological Technology, Suzuka University of Medical Science, 1001-1 Kishiokacho, Suzuka City, Mie 510-0293, Japan.
| | | | | | | | | |
Collapse
|