1
|
Zeng M, Yan ZY, Lv YN, Zeng JM, Ban N, Yuan DW, Li S, Luan YX, Bai Y. Molecular basis of E93-dependent tissue morphogenesis and histolysis during insect metamorphosis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104249. [PMID: 39674518 DOI: 10.1016/j.ibmb.2024.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The evolution of insect metamorphosis has profoundly influenced their successful adaptation and diversification. Two key physiological processes during insect metamorphosis are notable: wing maturation and prothoracic gland (PG) histolysis. The ecdysone-induced protein 93 (E93) is a transcription factor indispensable for metamorphosis. While it has been established that both wing maturation and PG histolysis are dependent on E93, the molecular mechanisms through which E93 regulates these seemingly 'opposing' events remain poorly understood. In this study, time-course transcriptome profiles were generated for wing pads and PGs during metamorphosis in Blattella germanica, a hemimetabolous model insect. Comparative transcriptomic analyses demonstrated that E93 exerts predominant control over extensive gene transcription during wing morphogenesis and PG histolysis. During wing morphogenesis, E93 selectively enhances the expression of genes associated with cell proliferation, energy supply, signal transduction, actin cytoskeleton organization, and cell adhesion, etc. Additionally, E93 activates the transcription of the majority of genes within the wing gene network that are crucial for wing development in B. germanica. During PG histolysis, E93 preferentially promotes the expression of genes related to endocytosis, focal adhesion, the AMPK signaling pathway, adipocytokine signaling pathway, Toll and Imd signaling pathways, and autophagy, etc. The key genes involved in the aforementioned pathways were subsequently confirmed to contribute to the E93-dependent degeneration of the PG in B. germanica. In summary, our results reveal that E93 functions as a master transcriptional regulator orchestrating both tissue morphogenesis and histolysis during insect metamorphosis. These findings contribute to a deeper understanding of the genetic underpinnings of insect metamorphosis.
Collapse
Affiliation(s)
- Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Zi-Yu Yan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Ya-Nan Lv
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Jia-Ming Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Ning Ban
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| |
Collapse
|
2
|
Liu C, Wu MZ, Zheng ZJ, Fan ST, Tan JF, Jiao Y, Palli SR, Zhu GH. Knockout BR-C induces premature expression of E93 thus triggering adult differentiation under larval morphology. PEST MANAGEMENT SCIENCE 2024. [PMID: 39641237 DOI: 10.1002/ps.8592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Holometabolan pupal-specifier broad-complex (BR-C) and adult specifier ecdysone-induced protein 93F (E93) are essential for metamorphosis; however, their interaction and effects on programmed cell death and cell differentiation during pupation remain unclear. RESULTS Here, multiple single-guide RNA (sgRNA)-mediated mosaic knockout of BR-C induced a deformed larva/pupa intermediate phenotype in Spodoptera frugiperda. Quantitative real-time polymerase chain reaction (qPCR) analysis showed that the adult specifier E93 was prematurely expressed in the BR-C mutants during the penultimate and last instar larval stages. Additionally, histological observation and TUNEL assay showed that apoptosis in the fat body and midgut was activated in the larval tissues; astonishingly, the adult midgut appeared in the pupae of BR-C mutants. CONCLUSION Overall, the results demonstrated that the premature expression of E93 induced by lack of BR-C triggers adult differentiation during the larval stages, which revealed the inhibitory effect of BR-C on E93 during metamorphosis in S. frugiperda. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chang Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Mian-Zhi Wu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Zi-Jing Zheng
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Shu-Ting Fan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Yaoyu Jiao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Guan-Heng Zhu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Parasram K, Zuccato A, Shin M, Willms R, DeVeale B, Foley E, Karpowicz P. The emergence of circadian timekeeping in the intestine. Nat Commun 2024; 15:1788. [PMID: 38413599 PMCID: PMC10899604 DOI: 10.1038/s41467-024-45942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The circadian clock is a molecular timekeeper, present from cyanobacteria to mammals, that coordinates internal physiology with the external environment. The clock has a 24-h period however development proceeds with its own timing, raising the question of how these interact. Using the intestine of Drosophila melanogaster as a model for organ development, we track how and when the circadian clock emerges in specific cell types. We find that the circadian clock begins abruptly in the adult intestine and gradually synchronizes to the environment after intestinal development is complete. This delayed start occurs because individual cells at earlier stages lack the complete circadian clock gene network. As the intestine develops, the circadian clock is first consolidated in intestinal stem cells with changes in Ecdysone and Hnf4 signalling influencing the transcriptional activity of Clk/cyc to drive the expression of tim, Pdp1, and vri. In the mature intestine, stem cell lineage commitment transiently disrupts clock activity in differentiating progeny, mirroring early developmental clock-less transitions. Our data show that clock function and differentiation are incompatible and provide a paradigm for studying circadian clocks in development and stem cell lineages.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Amy Zuccato
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Reegan Willms
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Brian DeVeale
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
4
|
Ge F, Yu Q, Zhang J, Han Y, Zhu D, Xie X. E93 gene in the swimming crab, Portunus trituberculatus: Responsiveness to 20-hydroxyecdysone and methyl farnesoate and role on regulating ecdysteroid synthesis. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110910. [PMID: 38193341 DOI: 10.1016/j.cbpb.2023.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 01/10/2024]
Abstract
Ecdysone-induced protein 93 (E93) is a metamorphic determinant involved in crosstalk between 20-hydroxyecdysone (20E) and juvenile hormone (JH) during the insect molting process. The present study identified the E93 gene from the swimming crab, P. trituberculatus, and found it was widely distributed in adult tissues. PtE93 mRNA levels in Y-organ and epidermis fluctuated during the molt cycle, suggesting its involvement in juvenile molting. In vitro and in vivo treatments with 20E led to an induction of PtE93 expression in Y-organ and epidermis, while we found the opposite effect for methyl farnesoate (MF) treatments, a crustacean equivalent of insect JH. We also observed that two genes for ecdysteroid biosynthesis, Spook (Spo) and Shadow (Sad), were suppressed by 20E and induced by MF, showing a negative correlation between PtE93 and ecdysteroid biosynthesis. PtE93 RNA interference (RNAi) induced Spo and Sad expression levels, elevated ecdysteroid content in culture medium, and relieved the 20E inhibitory effect on ecdysteroid synthesis, indicating an inhibitory role of PtE93 on ecdysteroid synthesis. Overall, our results suggest that E93 may be involved in the crosstalk between 20E and MF during crustacean molting, and its presence in Y-organ is closely related to ecdysteroid synthesis.
Collapse
Affiliation(s)
- Fuqiang Ge
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiaoling Yu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jun Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yaoyao Han
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Dongfa Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China.
| | - Xi Xie
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Chen WF, Chi XP, Song HY, Wang HF, Wang Y, Liu ZG, Xu BH. Ame-miR-980-3p participates in autophagy-mediated midgut remodelling in Apis mellifera via targeting Atg2B. INSECT MOLECULAR BIOLOGY 2023; 32:748-760. [PMID: 37658706 DOI: 10.1111/imb.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
Autophagy is a process that serves to degrade damaged proteins and organelles, thereby promoting cell homeostasis, differentiation, development and survival. Many miRNAs have been found to have regulatory roles in autophagy. In insects, it has been shown that autophagy is involved in hormone-regulated programmed cell death during metamorphic midgut remodelling. However, whether this is also true during the remodelling of the honey bee midgut is unclear. In the present study, we explored the relationship between autophagy and midgut remodelling and sought to identify miRNAs involved in this physiological process. We found that autophagy occurred during midgut remodelling and that the inhibition of autophagy resulted in midgut dysplasia in prepupae. Differentially expressed miRNAs enriched in the autophagy signalling pathway during midgut remodelling were identified by small RNA-seq. Ame-miR-980-3p, which targets the autophagy-related gene Atg2B, was screened out. Furthermore, abnormal expression of ame-miR-980-3p in the pupal stage led to the thinning of the midgut wall of newly emerged bees (NE). When ame-miR-980-3p expression was inhibited, the intestinal villi of NE bees became significantly shorter and sparse, and the lipid signal in the peritrophic matrix of Pb almost disappeared, indicating that the adult midgut was underdeveloped and the lipid absorption ability was weakened. Taken together, ame-miR-980-3p targeted Atg2B to participate in the regulation of midgut autophagy in the pupae, and the abnormal expression of ame-miR-980-3p would interfere with cell proliferation and death in the process of midgut remodelling, hinder the formation of adult midgut and eventually lead to adult midgut dysplasia and affect the lipid absorption function of the midgut in Apis mellifera.
Collapse
Affiliation(s)
- Wen-Feng Chen
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Xue-Peng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Hong-Yu Song
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Hong-Fang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhen-Guo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
6
|
Demir E, Kacew S. Drosophila as a Robust Model System for Assessing Autophagy: A Review. TOXICS 2023; 11:682. [PMID: 37624187 PMCID: PMC10458868 DOI: 10.3390/toxics11080682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Autophagy is the process through which a body breaks down and recycles its own cellular components, primarily inside lysosomes. It is a cellular response to starvation and stress, which plays decisive roles in various biological processes such as senescence, apoptosis, carcinoma, and immune response. Autophagy, which was first discovered as a survival mechanism during starvation in yeast, is now known to serve a wide range of functions in more advanced organisms. It plays a vital role in how cells respond to stress, starvation, and infection. While research on yeast has led to the identification of many key components of the autophagy process, more research into autophagy in more complex systems is still warranted. This review article focuses on the use of the fruit fly Drosophila melanogaster as a robust testing model in further research on autophagy. Drosophila provides an ideal environment for exploring autophagy in a living organism during its development. Additionally, Drosophila is a well-suited compact tool for genetic analysis in that it serves as an intermediate between yeast and mammals because evolution conserved the molecular machinery required for autophagy in this species. Experimental tractability of host-pathogen interactions in Drosophila also affords great convenience in modeling human diseases on analogous structures and tissues.
Collapse
Affiliation(s)
- Esref Demir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Medical Laboratory Techniques Program, Department of Medical Services and Techniques, Vocational School of Health Services, Antalya Bilim University, 07190 Antalya, Turkey
| | - Sam Kacew
- R. Samuel McLaughllin Center for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, 1 Stewart (320), Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
7
|
Zhang J, Zhang W, Wei L, Zhang L, Liu J, Huang S, Li S, Yang W, Li K. E93 promotes transcription of RHG genes to initiate apoptosis during Drosophila salivary gland metamorphosis. INSECT SCIENCE 2023; 30:588-598. [PMID: 36281570 DOI: 10.1111/1744-7917.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 06/15/2023]
Abstract
20-hydroxyecdysone (20E) induced transcription factor E93 is important for larval-adult transition, which functions in programmed cell death of larval obsolete tissues, and the formation of adult new tissues. However, the apoptosis-related genes directly regulated by E93 are still ambiguous. In this study, an E93 mutation fly strain was obtained by clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated long exon deletion to investigate whether and how E93 induces apoptosis during larval tissues metamorphosis. The transcriptional profile of E93 was consistent with 3 RHG (rpr, hid, and grim) genes and the effector caspase gene drice, and all their expressions peaked at the initiation of apoptosis during the degradation of salivary glands. The transcription expression of 3 RHG genes decreased and apoptosis was blocked in E93 mutation salivary gland during metamorphosis. In contrast, E93 overexpression promoted the transcription of 3 RHG genes, and induced advanced apoptosis in the salivary gland. Moreover, E93 not only enhance the promoter activities of the 3 RHG genes in Drosophila Kc cells in vitro, but also in the salivary gland in vivo. Our results demonstrated that 20E induced E93 promotes the transcription of RHG genes to trigger apoptosis during obsolete tissues degradation at metamorphosis in Drosophila.
Collapse
Affiliation(s)
- Jiahui Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhao Zhang
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Lin Wei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lidan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiali Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shumin Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Weike Yang
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan, 661100, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| |
Collapse
|
8
|
Abstract
Endocrine signaling networks control diverse biological processes and life history traits across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate immune system function in response to intrinsic and environmental stimuli, such as microbial infection. The mechanisms of this endocrine-immune regulation are complex and constitute an ongoing research endeavor facilitated by genetically tractable animal models. The 20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for its essential role in mediating developmental transitions and metamorphosis; 20E also modulates innate immunity in a variety of insect taxa. This review provides an overview of our current understanding of 20E-mediated innate immune responses. The prevalence of correlations between 20E-driven developmental transitions and innate immune activation are summarized across a range of holometabolous insects. Subsequent discussion focuses on studies conducted using the extensive genetic resources available in Drosophila that have begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of both development and bacterial infection. Lastly, I propose directions for future research into 20E regulation of immunity that will advance our knowledge of how interactive endocrine networks coordinate animals' physiological responses to environmental microbes.
Collapse
Affiliation(s)
- Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
9
|
Chen WF, Wang HF, Wang Y, Liu ZG, Xu BH. AmAtg2B-Mediated Lipophagy Regulates Lipolysis of Pupae in Apis mellifera. Int J Mol Sci 2023; 24:2096. [PMID: 36768418 PMCID: PMC9916532 DOI: 10.3390/ijms24032096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Lipophagy plays an important role in regulating lipid metabolism in mammals. The exact function of autophagy-related protein 2 (Atg2) has been investigated in mammals, but research on the existence and functions of Atg2 in Apis mellifera (AmAtg2) is still limited. Here, autophagy occurred in honeybee pupae, which targeted lipid droplets (LDs) in fat body, namely lipophagy, which was verified by co-localization of LDs with microtubule-associated protein 1A/1B light chain 3 beta (LC3). Moreover, AmAtg2 homolog B (AmAtg2B) was expressed specifically in pupal fat body, which indicated that AmAtg2B might have special function in fat body. Further, AmAtg2B antibody neutralization and AmAtg2B knock-down were undertaken to verify the functions in pupae. Results showed that low expression of AmAtg2B at the protein and transcriptional levels led to lipophagy inhibition, which down-regulated the expression levels of proteins and genes related to lipolysis. Altogether, results in this study systematically revealed that AmAtg2B interfered with lipophagy and then caused abnormal lipolysis in the pupal stage.
Collapse
Affiliation(s)
| | | | | | | | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
10
|
Zhao H, Long S, Liu S, Yuan D, Huang D, Xu J, Ma Q, Wang G, Wang J, Li S, Tian L, Li K. Atg1 phosphorylation is activated by AMPK and indispensable for autophagy induction in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103888. [PMID: 36493962 DOI: 10.1016/j.ibmb.2022.103888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Phosphorylation is a key post-translational modification in regulating autophagy in yeast and mammalians, yet it is not fully illustrated in invertebrates such as insects. ULK1/Atg1 is a functionally conserved serine/threonine protein kinase involved in autophagosome initiation. As a result of alternative splicing, Atg1 in the silkworm, Bombyx mori, is present as three mRNA isoforms, with BmAtg1c showing the highest expression levels. Here, we found that BmAtg1c mRNA expression, BmAtg1c protein expression and phosphorylation, and autophagy simultaneously peaked in the fat body during larval-pupal metamorphosis. Importantly, two BmAtg1c phosphorylation sites were identified at Ser269 and Ser270, which were activated by BmAMPK, the major energy-sensing kinase, upon stimulation with 20-hydroxyecdysone and starvation; additionally, these Atg1 phosphorylation sites are evolutionarily conserved in insects. The two BmAMPK-activated phosphorylation sites in BmAtg1c were found to be required for BmAMPK-induced autophagy. Moreover, the two corresponding DmAtg1 phosphorylation sites in the fruit fly, Drosophila melanogaster, are functionally conserved for autophagy induction. In conclusion, AMPK-activated Atg1 phosphorylation is indispensable for autophagy induction and evolutionarily conserved in insects, shedding light on how various groups of organisms differentially regulate ULK1/Atg1 phosphorylation for autophagy induction.
Collapse
Affiliation(s)
- Haigang Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; ChemPartner PharmaTech Co., Ltd, Jiangmen, 529081, China; Quantum Hi-Tech (Guangdong) Biological Co., Ltd, Jiangmen, 529081, China
| | - Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danyan Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jing Xu
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuqin Ma
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guirong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Ling Tian
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China.
| |
Collapse
|
11
|
Zhu GH, Gaddelapati SC, Jiao Y, Koo J, Palli SR. CRISPR-Cas9 Genome Editing Uncovers the Mode of Action of Methoprene in the Yellow Fever Mosquito, Aedes aegypti. CRISPR J 2022; 5:813-824. [PMID: 36374965 PMCID: PMC9805843 DOI: 10.1089/crispr.2022.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methoprene, a juvenile hormone (JH) analog, is widely used for insect control, but its mode of action is not known. To study methoprene action in the yellow fever mosquito, Aedes aegypti, the E93 (ecdysone-induced transcription factor) was knocked out using the CRISPR-Cas9 system. The E93 mutant pupae retained larval tissues similar to methoprene-treated insects. These insects completed pupal ecdysis and died as pupa. In addition, the expression of transcription factors, broad complex and Krüppel homolog 1 (Kr-h1), increased and that of programmed cell death (PCD) and autophagy genes decreased in E93 mutants. These data suggest that methoprene functions through JH receptor, methoprene-tolerant, and induces the expression of Kr-h1, which suppresses the expression of E93, resulting in a block in PCD and autophagy of larval tissues. Failure in the elimination of larval tissues and the formation of adult structures results in their death. These results answered long-standing questions on the mode of action of methoprene.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Sharath Chandra Gaddelapati
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Yaoyu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Jinmo Koo
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA.,Address correspondence to: Subba Reddy Palli, Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
12
|
Liu XJ, Jun G, Liang XY, Zhang XY, Zhang TT, Liu WM, Zhang JZ, Zhang M. Silencing of transcription factor E93 inhibits adult morphogenesis and disrupts cuticle, wing and ovary development in Locusta migratoria. INSECT SCIENCE 2022; 29:333-343. [PMID: 34117716 DOI: 10.1111/1744-7917.12924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Ecdysone-induced protein 93F (E93) plays important roles during the metamorphosis process in insects. In this study, a cDNA of the LmE93 gene was identified from the transcriptome of Locusta migratoria, which consists of the 3378-nucleotide open-reading frame (ORF) and encodes 1125 amino acids with helix-turn-helix (HTH) motifs. Reverse transcription quantitative polymerase chain reaction analysis revealed that LmE93 was highest expressed in ovary. The LmE93 expression level was markedly low from the 3rd to 4th instar nymphs, and greatly increased in 1-day-old 5th instar nymphs with a peak on middle nymphal days, then declined in the late nymphal days. Moreover, injected dsLmE93 into 4th and 5th instar nymphs greatly reduced LmE93 transcripts, respectively, and prevented the process of metamorphosis, causing supernumerary nymphal stages. Hematoxylin-eosin staining of the integument showed that the apolysis occurred in advance in 4th instar nymphs, and old cuticle degradation was decreased in dsLmE93-injected locusts of 5th instar nymphs. Smaller and no fully developed wings with reduced columns between the anterior and posterior regions were found in N6 and N7 supernumerary nymphs. In addition, the development of the ovary in dsLmE93-injected locusts was severely blocked, the yolk was almost not formed and there was no development of ovarioles. The results indicated that LmE93 play key roles in the metamorphosis, cuticle, wing and ovarian development of locusts.
Collapse
Affiliation(s)
- Xiao-Jian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Guo Jun
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xiao-Yu Liang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Ting-Ting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Wei-Min Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
13
|
Tzou FY, Wen JK, Yeh JY, Huang SY, Chen GC, Chan CC. Drosophila as a model to study autophagy in neurodegenerative diseases and digestive tract. IUBMB Life 2021; 74:339-360. [PMID: 34874101 DOI: 10.1002/iub.2583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Autophagy regulates cellular homeostasis by degrading and recycling cytosolic components and damaged organelles. Disruption of autophagic flux has been shown to induce or facilitate neurodegeneration and accumulation of autophagic vesicles is overt in neurodegenerative diseases. The fruit fly Drosophila has been used as a model system to identify new factors that regulate physiology and disease. Here we provide a historical perspective of how the fly models have offered mechanistic evidence to understand the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Charcot-Marie-Tooth neuropathy, and polyglutamine disorders. Autophagy also plays a pivotal role in maintaining tissue homeostasis and protecting organism health. The gastrointestinal tract regulates organism health by modulating food intake, energy balance, and immunity. Growing evidence is strengthening the link between autophagy and digestive tract health in recent years. Here, we also discuss how the fly models have advanced the understanding of digestive physiology regulated by autophagy.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jui-Yu Yeh
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Guo MP, Qian WL, He XC, Peng J, Wang P, Wang WN, Xia QY, Cheng DJ. Genome-wide identification of target genes for transcription factor BR-C in the silkworm, Bombyx mori. INSECT SCIENCE 2021; 28:1530-1540. [PMID: 33372405 DOI: 10.1111/1744-7917.12893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/23/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Transcription factor Broad Complex (BR-C) is an ecdysone primary response gene in insects and participates in the regulation of insect growth and development. In this study, we performed a genome-wide identification of BR-C target genes in silkworm (Bombyx mori) using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). As a result, a total of 1006 BR-C ChIP peaks were identified, and 15% of peaks were located in the promoter regions of 133 protein-coding genes. Functional annotation revealed that these ChIP peak-associated genes, as potential BR-C targets, were enriched in pathways related to biosynthetic process, metabolic process, and development. Transcriptome analysis and quantitative real-time polymerase chain reaction (PCR) examination revealed that developmental changes in expression patterns of a portion of potential BR-C targets, including HR96 and GC-α1, were similar to those of BR-C. ChIP-PCR examination confirmed that BR-C could directly bind to the promoters of potential targets. Further, dual luciferase assays demonstrated that HR96 promoter activity was significantly upregulated following BR-C overexpression, and this upregulation was abolished when the binding motif in the promoter was truncated. This study will be helpful for deciphering the regulatory roles of BR-C during insect growth and development.
Collapse
Affiliation(s)
- Meng-Pei Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Wen-Liang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Xue-Chuan He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Peng Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Wei-Na Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, China
| | - Dao-Jun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
15
|
JNK Signaling in Drosophila Aging and Longevity. Int J Mol Sci 2021; 22:ijms22179649. [PMID: 34502551 PMCID: PMC8431792 DOI: 10.3390/ijms22179649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The evolutionarily conserved c-Jun N-terminal kinase (JNK) signaling pathway is a critical genetic determinant in the control of longevity. In response to extrinsic and intrinsic stresses, JNK signaling is activated to protect cells from stress damage and promote survival. In Drosophila, global JNK upregulation can delay aging and extend lifespan, whereas tissue/organ-specific manipulation of JNK signaling impacts lifespan in a context-dependent manner. In this review, focusing on several tissues/organs that are highly associated with age-related diseases-including metabolic organs (intestine and fat body), neurons, and muscles-we summarize the distinct effects of tissue/organ-specific JNK signaling on aging and lifespan. We also highlight recent progress in elucidating the molecular mechanisms underlying the tissue-specific effects of JNK activity. Together, these studies highlight an important and comprehensive role for JNK signaling in the regulation of longevity in Drosophila.
Collapse
|
16
|
Shen JL, Fortier TM, Zhao YG, Wang R, Burmeister M, Baehrecke EH. Vmp1, Vps13D, and Marf/Mfn2 function in a conserved pathway to regulate mitochondria and ER contact in development and disease. Curr Biol 2021; 31:3028-3039.e7. [PMID: 34019822 PMCID: PMC8319081 DOI: 10.1016/j.cub.2021.04.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease.
Collapse
Affiliation(s)
- James L Shen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tina M Fortier
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yan G Zhao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ruoxi Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Margit Burmeister
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
Di YQ, Han XL, Kang XL, Wang D, Chen CH, Wang JX, Zhao XF. Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy 2021; 17:1170-1192. [PMID: 32324083 PMCID: PMC8143247 DOI: 10.1080/15548627.2020.1752497] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
CTSD/CathD/CATD (cathepsin D) is a lysosomal aspartic protease. A distinguishing characteristic of CTSD is its dual functions of promoting cell proliferation via secreting a pro-enzyme outside the cells as a ligand, and promoting apoptosis via the mature form of this enzyme inside cells; however, the regulation of its secretion, expression, and maturation is undetermined. Using the lepidopteran insect Helicoverpa armigera, a serious agricultural pest, as a model, we revealed the dual functions and regulatory mechanisms of CTSD secretion, expression, and maturation. Glycosylation of asparagine 233 (N233) determined pro-CTSD secretion. The steroid hormone 20-hydroxyecdysone (20E) promoted CTSD expression. Macroautophagy/autophagy triggered CTSD maturation and localization inside midgut cells to activate CASP3 (caspase 3) and promote apoptosis. Pro-CTSD was expressed in the pupal epidermis and was secreted into the hemolymph to promote adult fat body endoreplication/endoreduplication, cell proliferation, and association. Our study revealed that the differential expression and autophagy-mediated maturation of CTSD in tissues determine its roles in apoptosis and cell proliferation, thereby determining the cell fates of tissues during lepidopteran metamorphosis.Abbreviations: 20E: 20-hydroxyecdysone; 3-MA: 3-methyladenine; ACTB/β-actin: actin beta; AKT: protein kinase B; ATG1: autophagy-related 1; ATG4: autophagy-related 4; ATG5: autophagy-related 5; ATG7: autophagy-related 7; ATG14: autophagy-related 14; BSA: bovine serum albumin; CASP3: caspase 3; CQ: choroquine; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; DMSO: dimethyl sulfoxide; DPBS: dulbecco's phosphate-buffered saline; DsRNA: double-stranded RNA; EcR: ecdysone receptor; EcRE: ecdysone response element; EdU: 5-ethynyl-2´-deoxyuridine; G-m-CTSD: glycosylated-mautre-CTSD; G-pro-CTSD: glycosylated-pro-CTSD; HaEpi: Helicoverpa armigera epidermal cell line; HE staining: hematoxylin and eosin staining; IgG: immunoglobin G; IM: imaginal midgut; JH: juvenile hormone; Kr-h1: krueppel homologous protein 1; LM: larval midgut; M6P: mannose-6-phosphate; PBS: phosphate-buffered saline; PCD: programmed cell death; PNGase: peptide-N-glycosidase F; RFP: red fluorescent protein; RNAi: RNA interference; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SYX17: syntaxin 17; USP1: ultraspiracle isoform 1.
Collapse
Affiliation(s)
- Yu-Qin Di
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Lin Han
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Di Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cai-Hua Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
18
|
Wu W, Luo M, Li K, Dai Y, Yi H, Zhong Y, Cao Y, Tettamanti G, Tian L. Cholesterol derivatives induce dephosphorylation of the histone deacetylases Rpd3/HDAC1 to upregulate autophagy. Autophagy 2021; 17:512-528. [PMID: 32013726 PMCID: PMC8007145 DOI: 10.1080/15548627.2020.1725376] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 01/06/2023] Open
Abstract
Histone deacetylases (HDACs) are important for global gene expression and contribute to numerous physiological events. Deacetylase Rpd3 in yeast and its conserved homolog HDAC1 in mammals oppositely regulate autophagy; however, how Rpd3/HDAC1 is regulated to mediate autophagy remains unclear. Here, we showed autophagy occurrence in silkworm (Bombyx mori) required BmRpd3, wherein steroid hormone 20-hydroxyecdysone (20E) signaling regulated its protein level and nuclear localization negatively. Inhibition of MTOR led to dephosphorylation and nucleo-cytoplasmic translocation of BmRpd3/HsHDAC1. Besides, cholesterol, 20E, and 27-hydroxycholesterol could all induce massive dephosphorylation and cytoplasmic localization of BmRpd3/HsHDAC1, and thus autophagy by affecting MTORC1 activity. In addition, three phosphorylation sites (Ser392, Ser421, and Ser423) identified in BmRpd3 were conserved in HsHDAC1. Single or triple phosphorylation-site mutation attenuated the phosphorylation levels of BmRpd3/HsHDAC1, leading to their cytoplasmic localization and autophagy activation. In general, cholesterol derivatives, especially hydroxylated cholesterol, caused dephosphorylation and nucleo-cytoplasmic shuttling of BmRpd3/HsHDAC1 through inhibition of MTOR signaling to facilitate autophagy in B. mori and mammals. These findings improve our understandings of BmRpd3/HsHDAC1-mediated autophagy induced by cholesterol derivatives and shed light on their potential as a therapeutic target for neurodegenerative diseases and autophagy-related studies.Abbreviations: 20E: 20-hydroxyecdysone; 27-OH: 27-hydroxycholesterol; ACTB: actin beta; AMPK: AMP-activated protein kinase; Atg: autophagy-related; BmSqstm1: Bombyx sequestosome 1; CQ: chloroquine; HDAC: histone deacetylase; LMNB: Lamin B1; MTOR: mechanistic target of rapamycin kinase; PE: phosphatidylethanolamine; SQSTM1/p62: sequestosome 1; TUBA1A: tubulin alpha 1a.
Collapse
Affiliation(s)
- Wenmei Wu
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Man Luo
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yichen Dai
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Huiyu Yi
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yangjin Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Cao
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Biological Science Research Center/Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Ling Tian
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Lee G, Park JH. Programmed cell death reshapes the central nervous system during metamorphosis in insects. CURRENT OPINION IN INSECT SCIENCE 2021; 43:39-45. [PMID: 33065339 PMCID: PMC10754214 DOI: 10.1016/j.cois.2020.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Metamorphosis is fascinating and dramatic stage of postembryonic development in insects [1]. The most prominent metamorphic changes seen in holometabolous insects involve destruction of most larval structures and concomitant generation of adult ones. Such diverse cellular events are orchestrated by ecdysone. The central nervous system (CNS) is also extensively remodeled to process new sensory inputs; to coordinate new types of locomotion; and to perform higher-order decision making [2]. Programmed cell death (PCD) is an integral part of the metamorphic development. It eliminates obsolete larval tissues and extra cells that are generated from the morphogenesis of adult tissues. In the CNS, PCD of selected neurons and glial cells as well as reshaping of persistent larval cells are essential for establishing the adult CNS. In this review, we summarize the ecdysone signaling, and then molecular and cellular events associated with PCD primarily in the metamorphosing CNS of Drosophila melanogaster.
Collapse
Affiliation(s)
- Gyunghee Lee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville TN 37996, United States
| | - Jae H Park
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville TN 37996, United States.
| |
Collapse
|
20
|
Duan X, Tong C. Autophagy in Drosophila and Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1208:333-356. [PMID: 34260032 DOI: 10.1007/978-981-16-2830-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autophagy is a highly conserved cellular process that delivers cellular contents to the lysosome for degradation. It not only serves as a bulk degradation system for various cytoplasmic components but also functions selectively to clear damaged organelles, aggregated proteins, and invading pathogens (Feng et al., Cell Res 24:24-41, 2014; Galluzzi et al., EMBO J 36:1811-36, 2017; Klionsky et al., Autophagy 12:1-222, 2016). The malfunction of autophagy leads to multiple developmental defects and diseases (Mizushima et al., Nature 451:1069-75, 2008). Drosophila and zebrafish are higher metazoan model systems with sophisticated genetic tools readily available, which make it possible to dissect the autophagic processes and to understand the physiological functions of autophagy (Lorincz et al., Cells 6:22, 2017a; Mathai et al., Cells 6:21, 2017; Zhang and Baehrecke, Trends Cell Biol 25:376-87, 2015). In this chapter, we will discuss recent progress that has been made in the autophagic field by using these animal models. We will focus on the protein machineries required for autophagosome formation and maturation as well as the physiological roles of autophagy in both Drosophila and zebrafish.
Collapse
Affiliation(s)
- Xiuying Duan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China. .,The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Kamsoi O, Belles X. E93-depleted adult insects preserve the prothoracic gland and molt again. Development 2020; 147:dev.190066. [PMID: 33077428 DOI: 10.1242/dev.190066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023]
Abstract
Insect metamorphosis originated around the middle Devonian, associated with the innovation of the final molt; this occurs after histolysis of the prothoracic gland (PG; which produces the molting hormone) in the first days of adulthood. We previously hypothesized that transcription factor E93 is crucial in the emergence of metamorphosis, because it triggers metamorphosis in extant insects. This work on the cockroach Blattella germanica reveals that E93 also plays a crucial role in the histolysis of PG, which fits the above hypothesis. Previous studies have shown that the transcription factor FTZ-F1 is essential for PG histolysis. We have found that FTZ-F1 depletion towards the end of the final nymphal instar downregulates the expression of E93, whereas E93-depleted nymphs molt to adults that retain a functional PG. Interestingly, these adults are able to molt again, which is exceptional in insects. The study of insects able to molt again in the adult stage may reveal clues about how nymphal epidermal cells definitively become adult cells, and whether it is possible to reverse this process.
Collapse
Affiliation(s)
- Orathai Kamsoi
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim 37, 08003 Barcelona, Spain
| |
Collapse
|
22
|
Xu T, Nicolson S, Sandow JJ, Dayan S, Jiang X, Manning JA, Webb AI, Kumar S, Denton D. Cp1/cathepsin L is required for autolysosomal clearance in Drosophila. Autophagy 2020; 17:2734-2749. [PMID: 33112206 DOI: 10.1080/15548627.2020.1838105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved lysosomal degradative pathway important for maintaining cellular homeostasis. Much of our current knowledge of autophagy is focused on the initiation steps in this process. Recently, an understanding of later steps, particularly lysosomal fusion leading to autolysosome formation and the subsequent role of lysosomal enzymes in degradation and recycling, is becoming evident. Autophagy can function in both cell survival and cell death, however, the mechanisms that distinguish adaptive/survival autophagy from autophagy-dependent cell death remain to be established. Here, using proteomic analysis of Drosophila larval midguts during degradation, we identify a group of proteins with peptidase activity, suggesting a role in autophagy-dependent cell death. We show that Cp1/cathepsin L-deficient larval midgut cells accumulate aberrant autophagic vesicles due to a block in autophagic flux, yet later stages of midgut degradation are not compromised. The accumulation of large aberrant autolysosomes in the absence of Cp1 appears to be the consequence of decreased degradative capacity as they contain undigested cytoplasmic material, rather than a defect in autophagosome-lysosome fusion. Finally, we find that other cathepsins may also contribute to proper autolysosomal degradation in Drosophila larval midgut cells. Our findings provide evidence that cathepsins play an essential role in the autolysosome to maintain basal autophagy flux by balancing autophagosome production and turnover.
Collapse
Affiliation(s)
- Tianqi Xu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Shannon Nicolson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jarrod J Sandow
- Advanced Technology and Biology, The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sonia Dayan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jantina A Manning
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Andrew I Webb
- Advanced Technology and Biology, The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| |
Collapse
|
23
|
Eid DM, Chereddy SCRR, Palli SR. The effect of E93 knockdown on female reproduction in the red flour beetle, Tribolium castaneum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21688. [PMID: 32394503 PMCID: PMC9939234 DOI: 10.1002/arch.21688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 05/07/2023]
Abstract
The E93 transcription factor is a member of helix-turn-helix transcription factor family containing a Pip-squeak motif. This ecdysone primary response gene was identified as a regulator of cell death in Drosophila melanogaster where it is involved in ecdysone-induced autophagy and caspase activity that mediate degeneration of larval tissues during metamorphosis from larva to pupa. However, its function in adult insects is not well studied. To study E93 function in the red flour beetle, Tribolium castaneum, double-stranded RNA (dsRNA) targeting E93 (dsE93) was injected into newly emerged adults. Knockdown of E93 caused a decrease in the synthesis of vitellogenin (Vg), oocyte development, and egg-laying. Sequencing of RNA isolated from adults injected with dsE93 and control dsmalE (dsRNA targeting Escherichia coli malE gene) followed by differential gene expression analysis showed upregulation of genes involved in the metabolism of reserved nutrients. E93 knockdown induced changes in gene expression resulted in a decrease in Vg synthesis in the fat body and oocyte maturation in ovaries. Mating experiments showed that females injected with dsE93 did not lay eggs. Knockdown of E93 caused a reduction in the number and size of lipid droplets in the fat body when compared with that in control beetles injected with dsmalE. These data suggest that during the first 2-3 days after the emergence of adult females, E93 suppresses genes coding for enzymes that metabolize reserved nutrients until initiation of vitellogenesis and oogenesis.
Collapse
Affiliation(s)
- Duaa Musleh Eid
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| | | | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
24
|
Lamb HM. Double agents of cell death: novel emerging functions of apoptotic regulators. FEBS J 2020; 287:2647-2663. [PMID: 32239637 PMCID: PMC8796856 DOI: 10.1111/febs.15308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Apoptosis is a highly regulated form of cell death that is required for many homeostatic and pathological processes. Recently, alternative cell death pathways have emerged whose regulation is dependent on proteins with canonical functions in apoptosis. Dysregulation of apoptotic signaling frequently underlies the pathogenesis of many cancers, reinforcing the need to develop therapies that initiate alternative cell death processes. This review outlines the convergence points between apoptosis and other death pathways with the purpose of identifying novel strategies for the treatment of apoptosis-refractory cancers. Apoptosis proteins can play key roles in the initiation, regulation, and execution of nonapoptotic death processes that include necroptosis, autophagy, pyroptosis, mPTP-mediated necrosis, and ferroptosis. Notably, recent evidence illustrates that dying cells can exhibit biochemical and molecular characteristics of more than one different type of regulated cell death. Thus, this review highlights the amazing complexity and interconnectivity of cell death processes and also raises the idea that a top-to-bottom approach to describing cell death mechanisms may be inadequate for fully understanding the means by which cells die.
Collapse
Affiliation(s)
- Heather M. Lamb
- W. Harry Feinstone Department of Molecular Microbiology and
Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore,
MD 21205 USA
| |
Collapse
|
25
|
Allen EA, Baehrecke EH. Autophagy in animal development. Cell Death Differ 2020; 27:903-918. [PMID: 31988494 PMCID: PMC7206001 DOI: 10.1038/s41418-020-0497-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 01/13/2023] Open
Abstract
Macroautophagy (autophagy) delivers intracellular constituents to the lysosome to promote catabolism. During development in multiple organisms, autophagy mediates various cellular processes, including survival during starvation, programmed cell death, phagocytosis, organelle elimination, and miRNA regulation. Our current understanding of autophagy has been enhanced by developmental biology research during the last quarter of a century. Through experiments that focus on animal development, fundamental mechanisms that control autophagy and that contribute to disease were elucidated. Studies in embryos revealed specific autophagy molecules that mediate the removal of paternally derived mitochondria, and identified autophagy components that clear protein aggregates during development. Importantly, defects in mtDNA inheritance, or removal of paternal mtDNA via mitochondrial autophagy, can contribute to mitochondrial-associated disease. In addition, impairment of the clearance of protein aggregates by autophagy underlies neurodegenerative diseases. Experiments in multiple organisms also reveal conserved mechanisms of tissue remodeling that rely on the cooperation between autophagy and apoptosis to clear cell corpses, and defects in autophagy and apoptotic cell clearance can contribute to inflammation and autoimmunity. Here we provide an overview of key developmental processes that are mediated by autophagy in multiple animals.
Collapse
Affiliation(s)
- Elizabeth A Allen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 423 Lazare Research Building, 364 Plantation St., Worcester, MA, 01655, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 423 Lazare Research Building, 364 Plantation St., Worcester, MA, 01655, USA.
| |
Collapse
|
26
|
Kazek M, Kaczmarek A, Wrońska AK, Boguś MI. Conidiobolus coronatus induces oxidative stress and autophagy response in Galleria mellonella larvae. PLoS One 2020; 15:e0228407. [PMID: 32012188 PMCID: PMC6996803 DOI: 10.1371/journal.pone.0228407] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/14/2020] [Indexed: 01/31/2023] Open
Abstract
Cell homeostasis requires the correct levels of reactive oxygen species (ROS) to be maintained as these regulate the proliferation and differentiation of cells, and control the immune response and inflammation. High levels of ROS can cause oxidative stress, leading to protein, lipid and DNA damage, or even cell death. Under physiological conditions, the rate of autophagy remains stable; however, it can be accelerated by a number of exogenous stimuli such as oxidative stress, starvation or hypoxia, leading to cell death. The present paper examines the effect of Conidiobolus coronatus infection on the immune response, oxidative stress processes and autophagy in the greater wax moth, Galleria mellonella. Fungal infection was found to result in the disorganization of the cytoskeleton of the larval immune cells and the enhancement of oxidative defense processes. Lipid peroxidation and autophagy were also induced in the hemocytes. Our findings show that G. mellonella is an ideal model for exploring immune mechanisms.
Collapse
Affiliation(s)
- Michalina Kazek
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Warsaw, Poland
| | - Anna Katarzyna Wrońska
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| |
Collapse
|
27
|
Yu F, Hao P, Ye C, Feng Y, Pang K, Yu X. NlATG1 Gene Participates in Regulating Autophagy and Fission of Mitochondria in the Brown Planthopper, Nilaparvata lugens. Front Physiol 2020; 10:1622. [PMID: 32082181 PMCID: PMC7004972 DOI: 10.3389/fphys.2019.01622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023] Open
Abstract
Autophagy plays multiple roles in regulating various physiological processes in cells. However, we currently lack a systematic analysis of autophagy and the autophagy-related gene 1 ATG1 in the brown planthopper (BPH, Nilaparvata lugens), one of the most destructive of the insect pests of rice. In this study, the full-length cDNA of an autophagy-related gene, NlATG1, was cloned from BPH. Real-time qPCR (RT-qPCR) revealed that this NlATG1 gene was expressed differently across developmental stages, at higher levels in nymphs but lower levels in adults. RNA interference with dsNlATG1 significantly decreased the mRNA level of the target gene to 14.6% at day 4 compared with that of the dsGFP control group. The survival of the dsNlATG1-treated group decreased significantly from day 4 onward, dropping to 48.3% on day 8. Examination using transmission electron microscopy (TEM) showed that epithelial cells of the BPH’s midgut in the dsNlATG1-treated group had less autophagic vacuoles than did the dsGFP control, and knockdown of NlATG1 clearly inhibited the starvation-induced autophagy response in this insect. RNA interference of NlATG1 upregulated the NlFis1 gene involved in mitochondrial fission, leading to reductions in mitochondrial width and area. Furthermore, knockdown of NlATG1 also decreased the ATP content and accumulation of glycogen. Together, these results demonstrate that the NlATG1 gene participates in regulating autophagy and fission of mitochondria in the brown planthopper, making it a potentially promising target for pest control given its key role in autophagy, including maintaining the normal structure and function of mitochondria.
Collapse
Affiliation(s)
- Feifei Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chenglong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yalin Feng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kun Pang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
28
|
Xu T, Jiang X, Denton D, Kumar S. Ecdysone controlled cell and tissue deletion. Cell Death Differ 2020; 27:1-14. [PMID: 31745213 PMCID: PMC7205961 DOI: 10.1038/s41418-019-0456-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The removal of superfluous and unwanted cells is a critical part of animal development. In insects the steroid hormone ecdysone, the focus of this review, is an essential regulator of developmental transitions, including molting and metamorphosis. Like other steroid hormones, ecdysone works via nuclear hormone receptors to direct spatial and temporal regulation of gene transcription including genes required for cell death. During insect metamorphosis, pulses of ecdysone orchestrate the deletion of obsolete larval tissues, including the larval salivary glands and the midgut. In this review we discuss the molecular machinery and mechanisms of ecdysone-dependent cell and tissue removal, with a focus on studies in Drosophila and Lepidopteran insects.
Collapse
Affiliation(s)
- Tianqi Xu
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
29
|
Belles X. The innovation of the final moult and the origin of insect metamorphosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180415. [PMID: 31438822 DOI: 10.1098/rstb.2018.0415] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The three modes of insect postembryonic development are ametaboly, hemimetaboly and holometaboly, the latter being considered the only significant metamorphosis mode. However, the emergence of hemimetaboly, with the genuine innovation of the final moult, represents the origin of insect metamorphosis and a necessary step in the evolution of holometaboly. Hemimetaboly derives from ametaboly and might have appeared as a consequence of wing emergence in Pterygota, in the early Devonian. In extant insects, the final moult is mainly achieved through the degeneration of the prothoracic gland (PG), after the formation of the winged and reproductively competent adult stage. Metamorphosis, including the formation of the mature wings and the degeneration of the PG, is regulated by the MEKRE93 pathway, through which juvenile hormone precludes the adult morphogenesis by repressing the expression of transcription factor E93, which triggers this change. The MEKRE93 pathway appears conserved in extant metamorphosing insects, which suggest that this pathway was operative in the Pterygota last common ancestor. We propose that the final moult, and the consequent hemimetabolan metamorphosis, is a monophyletic innovation and that the role of E93 as a promoter of wing formation and the degeneration of the PG was mechanistically crucial for their emergence. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim 37, 08003 Barcelona, Spain
| |
Collapse
|
30
|
The digestive system of the adult Hermetia illucens (Diptera: Stratiomyidae): morphological features and functional properties. Cell Tissue Res 2019; 378:221-238. [DOI: 10.1007/s00441-019-03025-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
|
31
|
Staats S, Wagner AE, Lüersen K, Künstner A, Meyer T, Kahns AK, Derer S, Graspeuntner S, Rupp J, Busch H, Sina C, Ipharraguerre IR, Rimbach G. Dietary ursolic acid improves health span and life span in male Drosophila melanogaster. Biofactors 2019; 45:169-186. [PMID: 30496629 DOI: 10.1002/biof.1467] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
The health and life span of Drosophila melanogaster are partly determined by intestinal barrier integrity, metabolic rate as well as stress response and the expression of longevity-associated genes, depending on genetic and dietary factors. Ursolic acid (UA) is a naturally occurring triterpenoid exhibiting potential antimicrobial, anti-inflammatory, and antiobesity activity and counteracting age-related deficits in muscle strength. In this study, UA was dietarily administered to w1118 D. melanogaster which significantly elongated the health and life span of males. Spargel (srl) is the Drosophila orthologue of mammalian peroxisome proliferator-activated receptor-gamma coactivator 1 α(PGC1α), an important regulator of energy homeostasis and mitochondrial function. Our results indicate that the health-promoting effect of UA, demonstrated by a significant increase in climbing activity, occurs via an upregulation of srl expression leading to a metabolic shift in the fly without reducing fecundity or gut integrity. Moreover, UA affected the flies' microbiota in a manner that contributed to life span extension. Srl expression and microbiota both seem to be affected by UA, as we determined by using srl-mutant and axenic flies. © 2018 BioFactors, 45(2):169-186, 2019.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Axel Künstner
- Group for Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Timo Meyer
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Anna K Kahns
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Group for Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | | | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
32
|
Denton D, Xu T, Dayan S, Nicolson S, Kumar S. Crosstalk between Dpp and Tor signaling coordinates autophagy-dependent midgut degradation. Cell Death Dis 2019; 10:111. [PMID: 30737370 PMCID: PMC6368623 DOI: 10.1038/s41419-019-1368-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/06/2019] [Accepted: 01/14/2019] [Indexed: 11/17/2022]
Abstract
The majority of developmentally programmed cell death (PCD) is mediated by caspase-dependent apoptosis; however, additional modalities, including autophagy-dependent cell death, have important spatiotemporally restricted functions. Autophagy involves the engulfment of cytoplasmic components in a double membrane vesicle for delivery to the lysosome. An established model for autophagy-dependent PCD is Drosophila larval midgut removal during metamorphosis. Our previous work demonstrated that growth arrest is required to initiate autophagy-dependent midgut degradation and Target of rapamycin (Tor) limits autophagy induction. In further studies, we uncovered a role for Decapentaplegic (Dpp) in coordinating midgut degradation. Here, we provide new data to show that Dpp interacts with Tor during midgut degradation. Inhibiting Tor rescued the block in midgut degradation due to Dpp signaling. We propose that Dpp is upstream of Tor and down-regulation promotes growth arrest and autophagy-dependent midgut degradation. These findings underscore a relationship between Dpp and Tor signaling in the regulation of cell growth and tissue removal.
Collapse
Affiliation(s)
- Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| | - Tianqi Xu
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Sonia Dayan
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Shannon Nicolson
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
33
|
Wang Z, Zhang H. Mitophagy: Vps13D Couples Mitochondrial Fission and Autophagic Clearance. Curr Biol 2019; 28:R66-R68. [PMID: 29374445 DOI: 10.1016/j.cub.2017.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitophagy maintains mitochondrial homeostasis and cell health. A new study demonstrates that the ubiquitin-binding protein Vps13D functions downstream of the fission factor Drp1 to control mitochondrial size and autophagic clearance in Drosophila midgut cells.
Collapse
Affiliation(s)
- Zheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
34
|
Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ 2018; 26:605-616. [PMID: 30568239 DOI: 10.1038/s41418-018-0252-y] [Citation(s) in RCA: 522] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy-dependent cell death can be defined as cell demise that has a strict requirement of autophagy. Although autophagy often accompanies cell death following many toxic insults, the requirement of autophagic machinery for cell death execution, as established through specific genetic or chemical inhibition of the process, is highly contextual. During animal development, perhaps the best validated model of autophagy-dependent cell death is the degradation of the larval midgut during larval-pupal metamorphosis, where a number of key autophagy genes are required for the removal of the tissues. Surprisingly though, even in the midgut, not all of the 'canonical' autophagic machinery appears to be required. In other organisms and cancer cells many variations of autophagy-dependent cell death are apparent, pointing to the lack of a unifying cell death pathway. It is thus possible that components of the autophagy machinery are selectively utilised or repurposed for this type of cell death. In this review, we discuss examples of cell death that utilise autophagy machinery (or part thereof), the current knowledge of the complexity of autophagy-dependent cellular demise and the potential mechanisms and regulatory pathways involved in such cell death.
Collapse
Affiliation(s)
- Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
35
|
Li KL, Yuan SY, Nanda S, Wang WX, Lai FX, Fu Q, Wan PJ. The Roles of E93 and Kr-h1 in Metamorphosis of Nilaparvata lugens. Front Physiol 2018; 9:1677. [PMID: 30524315 PMCID: PMC6262030 DOI: 10.3389/fphys.2018.01677] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
Metamorphosis is a crucial process in insect development. Ecdysone-induced protein 93 (E93) is a determinant that promotes adult metamorphosis in both hemimetabolous and holometabolous insects. Krüppel-homolog 1 (Kr-h1), an early juvenile hormone (JH)-inducible gene, participates in JH signaling pathway controlling insect metamorphosis. In the current study, an E93 cDNA (NlE93) and two Kr-h1 cDNA variants (NlKr-h1-a and NlKr-h1-b) were cloned from Nilaparvata lugens (Stål), one of the most destructive hemimetabolous insect pests on rice. Multiple sequence alignment showed that both NlE93 and NlKr-h1 share high identity with their orthologs from other insects. The expression patterns revealed that decreasing NlKr-h1 mRNA levels were correlated with increasing NlE93 mRNA levels and vice versa. Moreover, RNA interference (RNAi) assays showed that the knockdown of one of the two genes resulted in significantly upregulated expression of the other. Correspondingly, phenotypical observation of the RNAi insects revealed that depletion of NlE93 prevented nymph–adult transition (causing a supernumerary nymphal instar), while depletion of NlKr-h1 triggered precocious formation of incomplete adult features. The results suggest that Nlkr-h1 and NlE93 are mutual repressors, fitting into the MEKRE93 pathway. The balance between these two genes plays a critical role in the metamorphosis of N. lugens determining the proper timing for activating metamorphosis during the nymphal stage.
Collapse
Affiliation(s)
- Kai Long Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, China
| | - San Yue Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Satyabrata Nanda
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Xia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Xiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Pin Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
36
|
Yalonetskaya A, Mondragon AA, Elguero J, McCall K. I Spy in the Developing Fly a Multitude of Ways to Die. J Dev Biol 2018; 6:E26. [PMID: 30360387 PMCID: PMC6316796 DOI: 10.3390/jdb6040026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
Cell proliferation and cell death are two opposing, yet complementary fundamental processes in development. Cell proliferation provides new cells, while developmental programmed cell death adjusts cell numbers and refines structures as an organism grows. Apoptosis is the best-characterized form of programmed cell death; however, there are many other non-apoptotic forms of cell death that occur throughout development. Drosophila is an excellent model for studying these varied forms of cell death given the array of cellular, molecular, and genetic techniques available. In this review, we discuss select examples of apoptotic and non-apoptotic cell death that occur in different tissues and at different stages of Drosophila development. For example, apoptosis occurs throughout the nervous system to achieve an appropriate number of neurons. Elsewhere in the fly, non-apoptotic modes of developmental cell death are employed, such as in the elimination of larval salivary glands and midgut during metamorphosis. These and other examples discussed here demonstrate the versatility of Drosophila as a model organism for elucidating the diverse modes of programmed cell death.
Collapse
Affiliation(s)
- Alla Yalonetskaya
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Albert A Mondragon
- Molecular Biology, Cell Biology, and Biochemistry Program, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Johnny Elguero
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Kimberly McCall
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
- Molecular Biology, Cell Biology, and Biochemistry Program, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
37
|
Abstract
Autophagy influences cell survival through maintenance of cell bioenergetics and clearance of protein aggregates and damaged organelles. Several lines of evidence indicate that autophagy is a multifaceted regulator of cell death, but controversy exists over whether autophagy alone can drive cell death under physiologically relevant circumstances. Here, we review the role of autophagy in cell death and examine how autophagy interfaces with other forms of cell death including apoptosis and necrosis.
Collapse
|
38
|
Zhao R, Kaakati R, Lee AK, Liu X, Li F, Li CY. Novel roles of apoptotic caspases in tumor repopulation, epigenetic reprogramming, carcinogenesis, and beyond. Cancer Metastasis Rev 2018; 37:227-236. [PMID: 29858742 PMCID: PMC6204284 DOI: 10.1007/s10555-018-9736-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptotic caspases have long been studied for their roles in programmed cell death and tumor suppression. With recent discoveries, however, it is becoming apparent these cell death executioners are involved in additional biological pathways beyond killing cells. In some cases, apoptotic cells secrete growth signals to stimulate proliferation of neighboring cells. This pathway functions to regenerate tissues in multiple organisms, but it also poses problems in tumor resistance to chemo- and radiotherapy. Additionally, it was found that activation of caspases does not irreversibly lead to cell death, contrary to the established paradigm. Sub-lethal activation of caspases is evident in cell differentiation and epigenetic reprogramming. Furthermore, evidence indicates spontaneous, unprovoked activation of caspases in many cancer cells, which plays pivotal roles in maintaining their tumorigenicity and metastasis. These unexpected findings challenge current cancer therapy approaches aimed at activation of the apoptotic pathway. At the same time, the newly discovered functions of caspases suggest new treatment approaches for cancer and other pathological conditions in the future.
Collapse
Affiliation(s)
- Ruya Zhao
- Duke University School of Medicine, Durham, NC, USA
| | | | - Andrew K Lee
- Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA
| | - Xinjian Liu
- Department of Dermatology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA
| | - Fang Li
- Department of Dermatology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA
| | - Chuan-Yuan Li
- Duke University School of Medicine, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA.
- Department of Dermatology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA.
| |
Collapse
|
39
|
Feng D, Amgalan D, Singh R, Wei J, Wen J, Wei TP, McGraw TE, Kitsis RN, Pessin JE. SNAP23 regulates BAX-dependent adipocyte programmed cell death independently of canonical macroautophagy. J Clin Invest 2018; 128:3941-3956. [PMID: 30102258 PMCID: PMC6118598 DOI: 10.1172/jci99217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/26/2018] [Indexed: 01/19/2023] Open
Abstract
The t-SNARE protein SNAP23 conventionally functions as a component of the cellular machinery required for intracellular transport vesicle fusion with target membranes and has been implicated in the regulation of fasting glucose levels, BMI, and type 2 diabetes. Surprisingly, we observed that adipocyte-specific KO of SNAP23 in mice resulted in a temporal development of severe generalized lipodystrophy associated with adipose tissue inflammation, insulin resistance, hyperglycemia, liver steatosis, and early death. This resulted from adipocyte cell death associated with an inhibition of macroautophagy and lysosomal degradation of the proapoptotic regulator BAX, with increased BAX activation. BAX colocalized with LC3-positive autophagic vacuoles and was increased upon treatment with lysosome inhibitors. Moreover, BAX deficiency suppressed the lipodystrophic phenotype in the adipocyte-specific SNAP23-KO mice and prevented cell death. In addition, ATG9 deficiency phenocopied SNAP23 deficiency, whereas ATG7 deficiency had no effect on BAX protein levels, BAX activation, or apoptotic cell death. These data demonstrate a role for SNAP23 in the control of macroautophagy and programmed cell death through an ATG9-dependent, but ATG7-independent, pathway regulating BAX protein levels and BAX activation.
Collapse
Affiliation(s)
- Daorong Feng
- Department of Medicine
- Department of Molecular Pharmacology
| | | | - Rajat Singh
- Department of Medicine
- Department of Molecular Pharmacology
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jianwen Wei
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, and
| | - Jennifer Wen
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | | | - Timothy E. McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | - Richard N. Kitsis
- Department of Medicine
- Department of Cell Biology, and
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jeffrey E. Pessin
- Department of Medicine
- Department of Molecular Pharmacology
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
40
|
Dpp regulates autophagy-dependent midgut removal and signals to block ecdysone production. Cell Death Differ 2018; 26:763-778. [PMID: 29959404 PMCID: PMC6460390 DOI: 10.1038/s41418-018-0154-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/08/2023] Open
Abstract
Animal development and homeostasis require the programmed removal of cells. Autophagy-dependent cell deletion is a unique form of cell death often involved in bulk degradation of tissues. In Drosophila the steroid hormone ecdysone controls developmental transitions and triggers the autophagy-dependent removal of the obsolete larval midgut. The production of ecdysone is exquisitely coordinated with signals from numerous organ systems to mediate the correct timing of such developmental programs. Here we report an unexpected role for the Drosophila bone morphogenetic protein/transforming growth factor β ligand, Decapentaplegic (Dpp), in the regulation of ecdysone-mediated midgut degradation. We show that blocking Dpp signaling induces premature autophagy, rapid cell death, and midgut degradation, whereas sustained Dpp signaling inhibits autophagy induction. Furthermore, Dpp signaling in the midgut prevents the expression of ecdysone responsive genes and impairs ecdysone production in the prothoracic gland. We propose that Dpp has dual roles: one within the midgut to prevent improper tissue degradation, and one in interorgan communication to coordinate ecdysone biosynthesis and developmental timing.
Collapse
|
41
|
Tang Z, Takahashi Y, Chen C, Liu Y, He H, Tsotakos N, Serfass JM, Gebru MT, Chen H, Young MM, Wang HG. Atg2A/B deficiency switches cytoprotective autophagy to non-canonical caspase-8 activation and apoptosis. Cell Death Differ 2017; 24:2127-2138. [PMID: 28800131 DOI: 10.1038/cdd.2017.133] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagosomal membranes are emerging as platforms for various cell survival and death signaling networks beyond autophagy. While autophagy-dependent cell death has been reported in response to a variety of stimuli, the underlying molecular mechanisms remain far from clear. Here, we demonstrate that inhibition of autophagosome completion by Atg2A/B deletion accumulates immature autophagosomal membranes that promote non-canonical caspase-8 activation in response to nutrient starvation via an intracellular death-inducing signaling complex (iDISC). Importantly, iDISC-induced caspase-8 dimerization and activation occurs on accumulated autophagosomal membranes and requires the LC3 conjugation machinery but is independent from the extrinsic pathway of apoptosis. Moreover, we have identified NF-κB signaling and c-FLIP as negative regulators of iDISC-mediated caspase-8 activation and apoptosis. Collectively, these findings reveal autophagosomal membrane completion as a novel target to switch cytoprotective autophagy to apoptosis.
Collapse
Affiliation(s)
- Zhenyuan Tang
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA, USA
| | - Chong Chen
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA, USA
| | - Ying Liu
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Haiyan He
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA, USA
| | - Nikolaos Tsotakos
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA, USA
| | - Jacob M Serfass
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Melat T Gebru
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA, USA
| | - Han Chen
- The Microscopy Imaging Facility, Penn State University College of Medicine, Hershey, PA, USA
| | - Megan M Young
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA, USA.,Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
42
|
Lőrincz P, Mauvezin C, Juhász G. Exploring Autophagy in Drosophila. Cells 2017; 6:cells6030022. [PMID: 28704946 PMCID: PMC5617968 DOI: 10.3390/cells6030022] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/06/2017] [Accepted: 07/08/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a catabolic process in eukaryotic cells promoting bulk or selective degradation of cellular components within lysosomes. In recent decades, several model systems were utilized to dissect the molecular machinery of autophagy and to identify the impact of this cellular “self-eating” process on various physiological and pathological processes. Here we briefly discuss the advantages and limitations of using the fruit fly Drosophila melanogaster, a popular model in cell and developmental biology, to apprehend the main pathway of autophagy in a complete animal.
Collapse
Affiliation(s)
- Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary.
| | - Caroline Mauvezin
- Catalan Institute of Oncology-IDIBELL, Laboratory of Cancer Metabolism (LMC), Hospital Duran i Reynals, 08908 Barcelona, Spain.
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary.
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary.
| |
Collapse
|
43
|
Midgut morphological changes and autophagy during metamorphosis in sand flies. Cell Tissue Res 2017; 368:513-529. [DOI: 10.1007/s00441-017-2586-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
|
44
|
Yang C, Lin XW, Xu WH. Cathepsin L participates in the remodeling of the midgut through dissociation of midgut cells and activation of apoptosis via caspase-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:21-30. [PMID: 28153644 DOI: 10.1016/j.ibmb.2017.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The larval midgut in holometabolous insects must undergo a remodeling process during metamorphosis to form the pupal-adult midgut. However, the molecular mechanism of larval midgut cell dissociation remains unknown. Here, we show that the expression and activity of Helicoverpa armigera cathepsin L (Har-CatL) are high in the midgut at the mid-late stage of the 6th-instar larvae and are responsive to the upstream hormone ecdysone. Immunocytochemistry shows that signals for Har-CatL-like are localized in midgut cells, and an inhibitor experiment demonstrates that Har-CatL functions in the dissociation of midgut epithelial cells. Mechanistically, Har-CatL can cleave pro-caspase-1 into the mature peptide, thereby increasing the activity of caspase-1, which plays a key role in apoptosis, indicating that Har-CatL is also involved in the apoptosis of midgut cells by activating caspase-1. We believe that this is the first report that Har-CatL regulates the dissociation and apoptosis of the larval midgut epithelium for midgut remodeling.
Collapse
Affiliation(s)
- Cui Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xian-Wu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
45
|
Fujita N, Huang W, Lin TH, Groulx JF, Jean S, Nguyen J, Kuchitsu Y, Koyama-Honda I, Mizushima N, Fukuda M, Kiger AA. Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy. eLife 2017; 6. [PMID: 28063257 PMCID: PMC5249261 DOI: 10.7554/elife.23367] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/17/2016] [Indexed: 01/04/2023] Open
Abstract
Transverse (T)-tubules make-up a specialized network of tubulated muscle cell membranes involved in excitation-contraction coupling for power of contraction. Little is known about how T-tubules maintain highly organized structures and contacts throughout the contractile system despite the ongoing muscle remodeling that occurs with muscle atrophy, damage and aging. We uncovered an essential role for autophagy in T-tubule remodeling with genetic screens of a developmentally regulated remodeling program in Drosophila abdominal muscles. Here, we show that autophagy is both upregulated with and required for progression through T-tubule disassembly stages. Along with known mediators of autophagosome-lysosome fusion, our screens uncovered an unexpected shared role for Rab2 with a broadly conserved function in autophagic clearance. Rab2 localizes to autophagosomes and binds to HOPS complex members, suggesting a direct role in autophagosome tethering/fusion. Together, the high membrane flux with muscle remodeling permits unprecedented analysis both of T-tubule dynamics and fundamental trafficking mechanisms. DOI:http://dx.doi.org/10.7554/eLife.23367.001
Collapse
Affiliation(s)
- Naonobu Fujita
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Wilson Huang
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Tzu-Han Lin
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Jean-Francois Groulx
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Steve Jean
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Jen Nguyen
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Yoshihiko Kuchitsu
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Amy A Kiger
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
46
|
Xu T, Kumar S, Denton D. Characterization of Autophagic Responses in Drosophila melanogaster. Methods Enzymol 2017; 588:445-465. [DOI: 10.1016/bs.mie.2016.09.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Liu Y, Lin J, Zhang M, Chen K, Yang S, Wang Q, Yang H, Xie S, Zhou Y, Zhang X, Chen F, Yang Y. PINK1 is required for timely cell-type specific mitochondrial clearance during Drosophila midgut metamorphosis. Dev Biol 2016; 419:357-372. [DOI: 10.1016/j.ydbio.2016.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022]
|
48
|
Eng MW, van Zuylen MN, Severson DW. Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:70-83. [PMID: 27418459 PMCID: PMC5010484 DOI: 10.1016/j.ibmb.2016.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/06/2016] [Accepted: 07/10/2016] [Indexed: 05/12/2023]
Abstract
The mosquito Aedes aegypti is the primary urban vector for dengue virus (DENV) worldwide. Insight into interactions occurring between host and pathogen is important in understanding what factors contribute to vector competence. However, many of the molecular mechanisms for vector competence remain unknown. Our previous global transcriptional analysis suggested that differential expression of apoptotic proteins is involved in determining refractoriness vs susceptibility to DENV-2 infection in Ae. aegypti females following a DENV-infected blood meal. To determine whether DENV-refractory Ae. aegypti showed more robust apoptosis upon infection, we compared numbers of apoptotic cells from midguts of refractory and susceptible strains and observed increased numbers of apoptotic cells in only the refractory strain upon DENV-2 infection. Thereafter, we manipulated apoptosis through dsRNA interference of the initiator caspase, Aedronc. Unexpectedly, dsAedronc-treated females showed both decreased frequency of disseminated infection and decreased virus titer in infected individuals. Insect caspases have also previously been identified as regulators of the cellular recycling process known as autophagy. We observed activation of autophagy in midgut and fat body tissues following a blood meal, as well as programmed activation of several apoptosis-related genes, including the effector caspase, Casps7. To determine whether autophagy was affected by caspase knockdown, we silenced Aedronc and Casps7, and observed reduced activation of autophagy upon silencing. Our results provide evidence that apoptosis-related genes are also involved in regulating autophagy, and that Aedronc may play an important role in DENV-2 infection success in Ae. aegypti, possibly through its regulation of autophagy.
Collapse
Affiliation(s)
- Matthew W Eng
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Madeleine N van Zuylen
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David W Severson
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
49
|
Mukherjee A, Patel B, Koga H, Cuervo AM, Jenny A. Selective endosomal microautophagy is starvation-inducible in Drosophila. Autophagy 2016; 12:1984-1999. [PMID: 27487474 DOI: 10.1080/15548627.2016.1208887] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body.
Collapse
Affiliation(s)
- Anindita Mukherjee
- a Department of Developmental and Molecular Biology , Albert Einstein College of Medicine , New York , NY , USA
| | - Bindi Patel
- a Department of Developmental and Molecular Biology , Albert Einstein College of Medicine , New York , NY , USA
| | - Hiroshi Koga
- a Department of Developmental and Molecular Biology , Albert Einstein College of Medicine , New York , NY , USA
| | - Ana Maria Cuervo
- a Department of Developmental and Molecular Biology , Albert Einstein College of Medicine , New York , NY , USA.,b Institute for Aging Studies, Albert Einstein College of Medicine , New York , NY , USA.,c Marion Bessin Liver Research Center, Albert Einstein College of Medicine , New York , NY , USA
| | - Andreas Jenny
- a Department of Developmental and Molecular Biology , Albert Einstein College of Medicine , New York , NY , USA.,b Institute for Aging Studies, Albert Einstein College of Medicine , New York , NY , USA.,c Marion Bessin Liver Research Center, Albert Einstein College of Medicine , New York , NY , USA.,d Department of Genetics , Albert Einstein College of Medicine , New York , NY , USA
| |
Collapse
|
50
|
Steroid hormone 20-hydroxyecdysone promotes higher calcium mobilization to induce apoptosis. Cell Calcium 2016; 60:1-12. [DOI: 10.1016/j.ceca.2016.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022]
|