1
|
Thiel CT, Mortier G, Kaitila I, Reis A, Rauch A. Type and level of RMRP functional impairment predicts phenotype in the cartilage hair hypoplasia-anauxetic dysplasia spectrum. Am J Hum Genet 2007; 81:519-29. [PMID: 17701897 PMCID: PMC1950841 DOI: 10.1086/521034] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 06/05/2007] [Indexed: 11/03/2022] Open
Abstract
Mutations in the RMRP gene lead to a wide spectrum of autosomal recessive skeletal dysplasias, ranging from the milder phenotypes metaphyseal dysplasia without hypotrichosis and cartilage hair hypoplasia (CHH) to the severe anauxetic dysplasia (AD). This clinical spectrum includes different degrees of short stature, hair hypoplasia, defective erythrogenesis, and immunodeficiency. The RMRP gene encodes the untranslated RNA component of the mitochondrial RNA-processing ribonuclease, RNase MRP. We recently demonstrated that mutations may affect both messenger RNA (mRNA) and ribosomal RNA (rRNA) cleavage and thus cell-cycle regulation and protein synthesis. To investigate the genotype-phenotype correlation, we analyzed the position and the functional effect of 13 mutations in patients with variable features of the CHH-AD spectrum. Those at the end of the spectrum include a novel patient with anauxetic dysplasia who was compound heterozygous for the null mutation g.254_263delCTCAGCGCGG and the mutation g.195C-->T, which was previously described in patients with milder phenotypes. Mapping of nucleotide conservation to the two-dimensional structure of the RMRP gene revealed that disease-causing mutations either affect evolutionarily conserved nucleotides or are likely to alter secondary structure through mispairing in stem regions. In vitro testing of RNase MRP multiprotein-specific mRNA and rRNA cleavage of different mutations revealed a strong correlation between the decrease in rRNA cleavage in ribosomal assembly and the degree of bone dysplasia, whereas reduced mRNA cleavage, and thus cell-cycle impairment, predicts the presence of hair hypoplasia, immunodeficiency, and hematological abnormalities and thus increased cancer risk.
Collapse
Affiliation(s)
- Christian T Thiel
- Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
2
|
Thiel CT, Horn D, Zabel B, Ekici AB, Salinas K, Gebhart E, Rüschendorf F, Sticht H, Spranger J, Müller D, Zweier C, Schmitt ME, Reis A, Rauch A. Severely incapacitating mutations in patients with extreme short stature identify RNA-processing endoribonuclease RMRP as an essential cell growth regulator. Am J Hum Genet 2005; 77:795-806. [PMID: 16252239 PMCID: PMC1271388 DOI: 10.1086/497708] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 08/25/2005] [Indexed: 01/05/2023] Open
Abstract
The growth of an individual is deeply influenced by the regulation of cell growth and division, both of which also contribute to a wide variety of pathological conditions, including cancer, diabetes, and inflammation. To identify a major regulator of human growth, we performed positional cloning in an autosomal recessive type of profound short stature, anauxetic dysplasia. Homozygosity mapping led to the identification of novel mutations in the RMRP gene, which was previously known to cause two milder types of short stature with susceptibility to cancer, cartilage hair hypoplasia, and metaphyseal dysplasia without hypotrichosis. We show that different RMRP gene mutations lead to decreased cell growth by impairing ribosomal assembly and by altering cyclin-dependent cell cycle regulation. Clinical heterogeneity is explained by a correlation between the level and type of functional impairment in vitro and the severity of short stature or predisposition to cancer. Whereas the cartilage hair hypoplasia founder mutation affects both pathways intermediately, anauxetic dysplasia mutations do not affect B-cyclin messenger RNA (mRNA) levels but do severely incapacitate ribosomal assembly via defective endonucleolytic cleavage. Anauxetic dysplasia mutations thus lead to poor processing of ribosomal RNA while allowing normal mRNA processing and, therefore, genetically separate the different functions of RNase MRP.
Collapse
Affiliation(s)
- Christian T Thiel
- Institute of Human Genetics, University of Erlangen-Nurnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Walker SC, Avis JM. A conserved element in the yeast RNase MRP RNA subunit can participate in a long-range base-pairing interaction. J Mol Biol 2004; 341:375-88. [PMID: 15276830 DOI: 10.1016/j.jmb.2004.05.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 05/26/2004] [Indexed: 11/24/2022]
Abstract
RNase MRP is a ribonucleoprotein endoribonuclease involved in eukaryotic pre-rRNA processing. The enzyme possesses a putatively catalytic RNA subunit, structurally related to that of RNase P. A thorough structure analysis of Saccharomyces cerevisiae MRP RNA, entailing enzymatic and chemical probing, mutagenesis and thermal melting, identifies a previously unrecognised stem that occupies a position equivalent to the P7 stem of RNase P. Inclusion of this P7-like stem confers on yeast MRP RNA a greater degree of similarity to the core RNase P RNA structure than that described previously and better delimits domain 2, the proposed specificity domain. The additional stem is created by participation of a conserved sequence element (ymCR-II) in a long-range base-pairing interaction. There is potential for this base-pairing throughout the known yeast MRP RNA sequences. Formation of a P7-like stem is not required, however, for the pre-rRNA processing or essential function of RNase MRP. Mutants that can base-pair are nonetheless detrimental to RNase MRP function, indicating that the stem will form in vivo but that only the wild-type pairing is accommodated. Although the alternative MRP RNA structure described is clearly not part of the active RNase MRP enzyme, it would be the more stable structure in the absence of protein subunits and the probability that it represents a valid intermediate species in the process of yeast RNase MRP assembly is discussed.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biomolecular Sciences, UMIST, P.O. Box 88, Manchester, M60 1QD, UK
| | | |
Collapse
|
4
|
Li Y, Altman S. Partial reconstitution of human RNase P in HeLa cells between its RNA subunit with an affinity tag and the intact protein components. Nucleic Acids Res 2002; 30:3706-11. [PMID: 12202755 PMCID: PMC137421 DOI: 10.1093/nar/gkf499] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An RNA affinity tag was incorporated into the RNA subunit of human nuclear RNase P. The tagged RNA assembled with the protein components of RNase P inside HeLa cells to generate an active enzyme. Because of the specificity of the RNA tag to streptavidin, the reconstituted complex could be separated from the native enzyme and other ribonucleoproteins (particularly RNase MRP) by streptavidin agarose chromatography and could be recovered by the eluting agent, biotin. A mutant, tagged RNase P RNA, whose P3 domain was partially replaced, could not reconstitute with the proteins to yield an active enzyme. The P3 domain, therefore, is critical for the structure and function of RNase P.
Collapse
Affiliation(s)
- Yong Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| | | |
Collapse
|
5
|
Houser-Scott F, Xiao S, Millikin CE, Zengel JM, Lindahl L, Engelke DR. Interactions among the protein and RNA subunits of Saccharomyces cerevisiae nuclear RNase P. Proc Natl Acad Sci U S A 2002; 99:2684-9. [PMID: 11880623 PMCID: PMC122408 DOI: 10.1073/pnas.052586299] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2001] [Indexed: 12/28/2022] Open
Abstract
Ribonuclease P (RNase P) is a ubiquitous endoribonuclease that cleaves precursor tRNAs to generate mature 5' termini. Although RNase P from all kingdoms of life have been found to have essential RNA subunits, the number and size of the protein subunits ranges from one small protein in bacteria to at least nine proteins of up to 100 kDa. In Saccharomyces cerevisiae nuclear RNase P, the enzyme is composed of ten subunits: a single RNA and nine essential proteins. The spatial organization of these components within the enzyme is not yet understood. In this study we examine the likely binary protein-protein and protein-RNA subunit interactions by using directed two- and three-hybrid tests in yeast. Only two protein subunits, Pop1p and Pop4p, specifically bind the RNA subunit. Pop4p also interacted with seven of the other eight protein subunits. The remaining protein subunits all showed one or more specific protein-protein interactions with the other integral protein subunits. Of particular interest was the behavior of Rpr2p, the only protein subunit found in RNase P but not in the closely related enzyme, RNase MRP. Rpr2p interacts strongly with itself as well as with Pop4p. Similar interactions with self and Pop4p were also detected for Snm1p, the only unique protein subunit so far identified in RNase MRP. This observation is consistent with Snm1p and Rpr2p serving analogous functions in the two enzymes. This study provides a low-resolution map of the multisubunit architecture of the ribonucleoprotein enzyme, nuclear RNase P from S. cerevisiae.
Collapse
Affiliation(s)
- Felicia Houser-Scott
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Ribonuclease P (RNase P) is an essential endonuclease that acts early in the tRNA biogenesis pathway. This enzyme catalyzes cleavage of the leader sequence of precursor tRNAs (pre-tRNAs), generating the mature 5' end of tRNAs. RNase P activities have been identified in Bacteria, Archaea, and Eucarya, as well as organelles. Most forms of RNase P are ribonucleoproteins, i.e., they consist of an essential RNA subunit and protein subunits, although the composition of the enzyme in mitochondria and chloroplasts is still under debate. The recent purification of the eukaryotic nuclear RNase P has demonstrated a significantly larger protein content compared to the bacterial enzyme. Moreover, emerging evidence suggests that the eukaryotic RNase P has evolved into at least two related nuclear enzymes with distinct functions, RNase P and RNase MRP. Here we review current information on RNase P, with emphasis on the composition, structure, and functions of the eukaryotic nuclear holoenzyme, and its relationship with RNase MRP.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Felicia Scott
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| |
Collapse
|
7
|
XIAO SHAOHUA, HOUSER-SCOTT FELICIA, ENGELKE DAVIDR. Eukaryotic ribonuclease P: increased complexity to cope with the nuclear pre-tRNA pathway. J Cell Physiol 2001; 187:11-20. [PMID: 11241345 PMCID: PMC3758117 DOI: 10.1002/1097-4652(200104)187:1<11::aid-jcp1055>3.0.co;2-k] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ribonuclease P is an ancient enzyme that cleaves pre-tRNAs to generate mature 5' ends. It contains an essential RNA subunit in Bacteria, Archaea, and Eukarya, but the degree to which the RNA subunit relies on proteins to supplement catalysis is highly variable. The eukaryotic nuclear holoenzyme has recently been found to contain almost twenty times the protein content of the bacterial enzymes, in addition to having split into at least two related enzymes with distinct substrate specificity. In this review, recent progress in understanding the molecular architecture and functions of nuclear forms of RNase P will be considered.
Collapse
Affiliation(s)
| | | | - DAVID R. ENGELKE
- Correspondence: David R. Engelke, Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA.
| |
Collapse
|
8
|
Shadel GS, Buckenmeyer GA, Clayton DA, Schmitt ME. Mutational analysis of the RNA component of Saccharomyces cerevisiae RNase MRP reveals distinct nuclear phenotypes. Gene 2000; 245:175-84. [PMID: 10713458 DOI: 10.1016/s0378-1119(00)00013-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 340-nucleotide RNA component of Saccharomyces cerevisiae RNase MRP is encoded by the single-copy essential gene, NME1. To gain additional insight into the proposed structure and functions of this endoribonuclease, we have extensively mutagenized the NME1 gene and characterized yeast strains expressing mutated forms of the RNA using a gene shuffle technique. Strains expressing each of 26 independent mutations in the RNase MRP RNA gene were characterized for their ability to grow at various temperatures and on various carbon sources, stability of the RNase MRP RNA and processing of the 5.8S rRNA (a nuclear function of RNase MRP). 11 of the mutations resulted in a lethal phenotype, six displayed temperature-conditional lethality, and several preferred a non-fermentable carbon source for growth. In those mutants that exhibited altered growth phenotypes, the severity of the growth defect was directly proportional to the severity of the 5.8S rRNA processing defect in the nucleus. Together this analysis has defined essential regions of the RNase MRP RNA and provides evidence that is consistent with the proposed function of the RNase MRP enzyme.
Collapse
Affiliation(s)
- G S Shadel
- Department of Biochemistry, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, USA
| | | | | | | |
Collapse
|