1
|
Abstract
Herpesviruses comprise a family of DNA viruses that cause a variety of human and veterinary diseases. During productive infection, mammalian, avian, and reptilian herpesviruses replicate their genomes using a set of conserved viral proteins that include a two subunit DNA polymerase. This enzyme is both a model system for family B DNA polymerases and a target for inhibition by antiviral drugs. This chapter reviews the structure, function, and mechanisms of the polymerase of herpes simplex viruses 1 and 2 (HSV), with only occasional mention of polymerases of other herpesviruses such as human cytomegalovirus (HCMV). Antiviral polymerase inhibitors have had the most success against HSV and HCMV. Detailed structural information regarding HSV DNA polymerase is available, as is much functional information regarding the activities of the catalytic subunit (Pol), which include a DNA polymerization activity that can utilize both DNA and RNA primers, a 3'-5' exonuclease activity, and other activities in DNA synthesis and repair and in pathogenesis, including some remaining to be biochemically defined. Similarly, much is known regarding the accessory subunit, which both resembles and differs from sliding clamp processivity factors such as PCNA, and the interactions of this subunit with Pol and DNA. Both subunits contribute to replication fidelity (or lack thereof). The availability of both pharmacologic and genetic tools not only enabled the initial identification of Pol and the pol gene, but has also helped dissect their functions. Nevertheless, important questions remain for this long-studied enzyme, which is still an attractive target for new drug discovery.
Collapse
|
2
|
Manska S, Rossetto CC. Characteristics of Immediate-Early 2 (IE2) and UL84 Proteins in UL84-Independent Strains of Human Cytomegalovirus (HCMV). Microbiol Spectr 2021; 9:e0053921. [PMID: 34550009 PMCID: PMC8557881 DOI: 10.1128/spectrum.00539-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is the major transactivator for viral gene expression and is required for lytic replication. In addition to transcriptional activation, IE2 is known to mediate transcriptional repression of promoters, including the major immediate-early (MIE) promoter and a bidirectional promoter within the lytic origin of replication (oriLyt). The activity of IE2 is modulated by another viral protein, UL84. UL84 is multifunctional and is proposed to act as the origin-binding protein (OBP) during lytic replication. UL84 specifically interacts with IE2 to relieve IE2-mediated repression at the MIE and oriLyt promoters. Originally, UL84 was thought to be indispensable for viral replication, but recent work demonstrated that some strains of HCMV (TB40E and TR) can replicate independently of UL84. This peculiarity is due to a single amino acid change of IE2 (UL122 H388D). Here, we identified that a UL84-dependent (AD169) Δ84 viral mutant had distinct IE2 localization and was unable to synthesize DNA. We also demonstrated that a TB40E Δ84 IE2 D388H mutant containing the reversed IE2 amino acid switch adopted the phenotype of AD169 Δ84. Further functional experiments, including chromatin-immunoprecipitation sequencing (ChIP-seq), suggest distinct protein interactions and transactivation function at oriLyt between strains. Together, these data further highlight the complexity of initiation of HCMV viral DNA replication. IMPORTANCE Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in immunocompromised individuals and is also the leading viral cause of congenital birth defects. After initial infection, HCMV establishes a lifelong latent infection with periodic reactivation and lytic replication. During lytic DNA synthesis, IE2 and UL84 have been regarded as essential factors required for initiation of viral DNA replication. However, previous reports identified that some isolates of HCMV can replicate in a UL84-independent manner due to a single amino acid change in IE2 (H388D). These UL84-independent strains are an important consideration, as they may have implications for HCMV disease and research. This has prompted renewed interest into the functional roles of IE2 and UL84. The work presented here focuses on the described functions of UL84 and ascertains if those required functions are fulfilled by IE2 in UL84-independent strains.
Collapse
Affiliation(s)
- Salome Manska
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Cyprian C. Rossetto
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
3
|
Herpesvirus DNA polymerase processivity factors: Not just for DNA synthesis. Virus Res 2021; 298:198394. [PMID: 33775751 DOI: 10.1016/j.virusres.2021.198394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Herpesviruses encode multiple proteins directly involved in DNA replication, including a DNA polymerase and a DNA polymerase processivity factor. As the name implies, these processivity factors are essential for efficient DNA synthesis, however they also make additional contributions to DNA replication, as well as having novel roles in transcription and modulation of host processes. Here we review the mechanisms by which DNA polymerase processivity factors from all three families of mammalian herpesviruses contribute to viral DNA replication as well as to additional aspects of viral infection.
Collapse
|
4
|
Meier AF, Fraefel C, Seyffert M. The Interplay between Adeno-Associated Virus and its Helper Viruses. Viruses 2020; 12:E662. [PMID: 32575422 PMCID: PMC7354565 DOI: 10.3390/v12060662] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The adeno-associated virus (AAV) is a small, nonpathogenic parvovirus, which depends on helper factors to replicate. Those helper factors can be provided by coinfecting helper viruses such as adenoviruses, herpesviruses, or papillomaviruses. We review the basic biology of AAV and its most-studied helper viruses, adenovirus type 5 (AdV5) and herpes simplex virus type 1 (HSV-1). We further outline the direct and indirect interactions of AAV with those and additional helper viruses.
Collapse
Affiliation(s)
| | | | - Michael Seyffert
- Institute of Virology, University of Zurich, CH-8057 Zurich, Switzerland; (A.F.M.); (C.F.)
| |
Collapse
|
5
|
Marzulli M, Mazzacurati L, Zhang M, Goins WF, Hatley ME, Glorioso JC, Cohen JB. A Novel Oncolytic Herpes Simplex Virus Design based on the Common Overexpression of microRNA-21 in Tumors. ACTA ACUST UNITED AC 2018; 3. [PMID: 30465046 PMCID: PMC6241327 DOI: 10.13188/2381-3326.1000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Recognition sequences for microRNAs (miRs) that are down-regulated in tumor cells have recently been used to render lytic viruses tumor-specific. Since different tumor types down-regulate different miRs, this strategy requires virus customization to the target tumor. We have explored a feature that is shared by many tumor types, the up-regulation of miR-21, as a means to generate an oncolytic herpes simplex virus (HSV) that is applicable to a broad range of cancers. Methods We assembled an expression construct for a dominant-negative (dn) form of the essential HSV replication factor UL9 and inserted tandem copies of the miR-21 recognition sequence (T21) in the 3' untranslated region. Bacterial Artificial Chromosome (BAC) recombineering was used to introduce the dnUL9 construct with or without T21 into the HSV genome. Virus was produced by transfection and replication was assessed in different tumor and control cell lines. Results Virus production was conditional on the presence of the T21 sequence. The dnUL9-T21 virus replicated efficiently in tumor cell lines, less efficiently in cells that contained reduced miR-21 activity, and not at all in the absence of miR-21. Conclusion miR-21-sensitive expression of a dominant-negative inhibitor of HSV replication allows preferential destruction of tumor cells in vitro. This observation provides a basis for further development of a widely applicable oncolytic HSV.
Collapse
Affiliation(s)
- M Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - L Mazzacurati
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - M Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - W F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - M E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, USA
| | - J C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - J B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| |
Collapse
|
6
|
Smith JA, Ndoye AMN, Geary K, Lisanti MP, Igoucheva O, Daniel R. A role for the Werner syndrome protein in epigenetic inactivation of the pluripotency factor Oct4. Aging Cell 2010; 9:580-91. [PMID: 20477760 PMCID: PMC2910250 DOI: 10.1111/j.1474-9726.2010.00585.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Werner syndrome (WS) is an autosomal recessive disorder, the hallmarks of which are premature aging and early onset of neoplastic diseases (Orren, 2006; Bohr, 2008). The gene, whose mutation underlies the WS phenotype, is called WRN. The protein encoded by the WRN gene, WRNp, has DNA helicase activity (Gray et al., 1997; Orren, 2006; Bohr, 2008; Opresko, 2008). Extensive evidence suggests that WRNp plays a role in DNA replication and DNA repair (Chen et al., 2003; Hickson, 2003; Orren, 2006; Turaga et al., 2007; Bohr, 2008). However, WRNp function is not yet fully understood. In this study, we show that WRNp is involved in de novo DNA methylation of the promoter of the Oct4 gene, which encodes a crucial stem cell transcription factor. We demonstrate that WRNp localizes to the Oct4 promoter during retinoic acid-induced differentiation of human pluripotent cells and associates with the de novo methyltransferase Dnmt3b in the chromatin of differentiating pluripotent cells. Depletion of WRNp does not affect demethylation of lysine 4 of the histone H3 at the Oct4 promoter, nor methylation of lysine 9 of H3, but it blocks the recruitment of Dnmt3b to the promoter and results in the reduced methylation of CpG sites within the Oct4 promoter. The lack of DNA methylation was associated with continued, albeit greatly reduced, Oct4 expression in WRN-deficient, retinoic acid-treated cells, which resulted in attenuated differentiation. The presented results reveal a novel function of WRNp and demonstrate that WRNp controls a key step in pluripotent stem cell differentiation.
Collapse
Affiliation(s)
- Johanna A. Smith
- Division of Infectious Diseases - Center for Human Virology, and Jefferson Center for Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, U.S.A
| | - Abibatou M. N. Ndoye
- Division of Infectious Diseases - Center for Human Virology, and Jefferson Center for Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, U.S.A
| | - Kyla Geary
- Division of Infectious Diseases - Center for Human Virology, and Jefferson Center for Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, U.S.A
| | - Michael P. Lisanti
- Department of Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, U.S.A
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, U.S.A
| | - René Daniel
- Division of Infectious Diseases - Center for Human Virology, and Jefferson Center for Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, U.S.A
| |
Collapse
|
7
|
Manolaridis I, Mumtsidu E, Konarev P, Makhov AM, Fullerton SW, Sinz A, Kalkhof S, McGeehan JE, Cary PD, Griffith JD, Svergun D, Kneale GG, Tucker PA. Structural and biophysical characterization of the proteins interacting with the herpes simplex virus 1 origin of replication. J Biol Chem 2009; 284:16343-16353. [PMID: 19329432 DOI: 10.1074/jbc.m806134200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C terminus of the herpes simplex virus type 1 origin-binding protein, UL9ct, interacts directly with the viral single-stranded DNA-binding protein ICP8. We show that a 60-amino acid C-terminal deletion mutant of ICP8 (ICP8DeltaC) also binds very strongly to UL9ct. Using small angle x-ray scattering, the low resolution solution structures of UL9ct alone, in complex with ICP8DeltaC, and in complex with a 15-mer double-stranded DNA containing Box I of the origin of replication are described. Size exclusion chromatography, analytical ultracentrifugation, and electrophoretic mobility shift assays, backed up by isothermal titration calorimetry measurements, are used to show that the stoichiometry of the UL9ct-dsDNA15-mer complex is 2:1 at micromolar protein concentrations. The reaction occurs in two steps with initial binding of UL9ct to DNA (Kd approximately 6 nM) followed by a second binding event (Kd approximately 0.8 nM). It is also shown that the stoichiometry of the ternary UL9ct-ICP8DeltaC-dsDNA15-mer complex is 2:1:1, at the concentrations used in the different assays. Electron microscopy indicates that the complex assembled on the extended origin, oriS, rather than Box I alone, is much larger. The results are consistent with a simple model whereby a conformational switch of the UL9 DNA-binding domain upon binding to Box I allows the recruitment of a UL9-ICP8 complex by interaction between the UL9 DNA-binding domains.
Collapse
Affiliation(s)
- Ioannis Manolaridis
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany; Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Eleni Mumtsidu
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany
| | - Peter Konarev
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany; Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Alexander M Makhov
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| | - Stephen W Fullerton
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Stefan Kalkhof
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - John E McGeehan
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Peter D Cary
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| | - Dmitri Svergun
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany; Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Geoff G Kneale
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Paul A Tucker
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany.
| |
Collapse
|
8
|
Jiang C, Hwang YT, Wang G, Randell JCW, Coen DM, Hwang CBC. Herpes simplex virus mutants with multiple substitutions affecting DNA binding of UL42 are impaired for viral replication and DNA synthesis. J Virol 2007; 81:12077-9. [PMID: 17715219 PMCID: PMC2168780 DOI: 10.1128/jvi.01133-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/13/2007] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus mutants with single substitutions that decrease DNA binding by the DNA polymerase processivity subunit UL42 are only modestly impaired for viral replication. In this study, recombinant viruses harboring two or four of these mutations were constructed. The more substitutions, the more severe the defects in viral replication and DNA synthesis, suggesting that DNA binding by UL42 is important for these processes.
Collapse
Affiliation(s)
- Changying Jiang
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
9
|
Direct interaction between the N- and C-terminal portions of the herpes simplex virus type 1 origin binding protein UL9 implies the formation of a head-to-tail dimer. J Virol 2007; 81:13659-67. [PMID: 17942532 DOI: 10.1128/jvi.01204-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UL9, a superfamily II helicase, is a multifunctional protein required for herpes simplex virus type 1 replication in vivo. Although the C-terminal 317-amino-acid DNA binding domain of UL9 exists as a monomer, the full-length protein behaves as a dimer in solution. Thus, it has been assumed that the N-terminal 534 residues contain a region necessary for efficient dimerization and that UL9 dimers are in a head-to-head configuration. We recently showed, however, that residues in the N terminus could modulate the inhibitory properties of UL9 by decreasing the DNA binding ability of the C terminus (S. Chattopadhyay and S. K. Weller, J. Virol. 80:4491-4500, 2006). We suggested that a direct interaction between the N- and C-terminal portions of UL9 might exist and serve to modulate the DNA binding activities of the C terminus. In this study, we used a coimmunoprecipitation assay to show that the N-terminal portion of UL9 can indeed directly interact with the C terminus. A series of truncation mutant proteins were used to show that a region in the N terminus between residues 293 and 321 is necessary for efficient interaction. Similarly, a region in the C terminus between residues 600 and 800 is required for this interaction. The simplest model to explain these data is that UL9 dimers are oriented in a head-to-tail arrangement in which the N terminus is in contact with the C terminus.
Collapse
|
10
|
Link MA, Schaffer PA. Herpes simplex virus type 1 C-terminal variants of the origin binding protein (OBP), OBPC-1 and OBPC-2, cooperatively regulate viral DNA levels in vitro, and OBPC-2 affects mortality in mice. J Virol 2007; 81:10699-711. [PMID: 17634223 PMCID: PMC2045454 DOI: 10.1128/jvi.01213-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Two in-frame, C-terminal isoforms of the herpes simplex virus type 1 (HSV-1) origin binding protein (OBP), OBPC-1 and OBPC-2, and a unique C-terminal transcript, UL8.5, are specified by HSV-1 DNA. As the first isoform identified, OBPC-1 was initially assumed to be the product of the UL8.5 transcript. Recent evidence has demonstrated, however, that OBPC-1 is a cathepsin B-mediated cleavage product of OBP, suggesting that OBPC-2 is the product of the UL8.5 transcript. Because both OBPC-1 and -2 contain the majority of the OBP DNA binding domain, we hypothesized that both may be involved in regulating origin-dependent, OBP-mediated viral DNA replication. In this paper, we demonstrate that OBPC-2 is, indeed, the product of the UL8.5 transcript. The translational start site of OBPC-2 was mapped, and a virus (M571A) that does not express this protein efficiently was constructed. Using M571A, we have shown that OBPC-2 is able to bind origin DNA, even though it lacks seven N-terminal amino acid residues of the previously mapped OBP DNA binding domain, resulting in a revision of the limits of the OBP DNA binding domain. Consistent with their proposed roles in regulating viral DNA replication, OBPC-1 and -2 act together to down-regulate viral DNA replication in vitro. During functional studies in vivo, OBPC-2 was identified as a factor that increases mortality in the mouse ocular model of HSV-1 infection.
Collapse
Affiliation(s)
- Malen A Link
- Department of Medicine, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | |
Collapse
|
11
|
Link MA, Silva LA, Schaffer PA. Cathepsin B mediates cleavage of herpes simplex virus type 1 origin binding protein (OBP) to yield OBPC-1, and cleavage is dependent upon viral DNA replication. J Virol 2007; 81:9175-82. [PMID: 17553869 PMCID: PMC1951438 DOI: 10.1128/jvi.00676-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the seven viral proteins required for herpes simplex virus type 1 (HSV-1) DNA replication have been identified, the mechanism by which viral DNA synthesis is regulated is unclear. HSV-1 DNA replication is thought to occur in two stages: origin-dependent DNA replication (stage I) mediated by the origin binding protein (OBP), followed by origin- and OBP-independent DNA replication (stage II). The mechanism that facilitates the switch from stage I to stage II is unknown; however, it must involve the loss of OBP function or OBP itself from the replication initiation complex. Previous studies from this laboratory identified a transcript (UL8.5) and protein (OBPC) that are in frame with and comprise the C terminus of the gene specifying OBP. Because of its DNA binding ability, OBPC has been hypothesized to mediate the switch from stage I to stage II. Here, we identify a second protein (OBPC-2) that is also in frame with the C terminus of OBP but comprises a smaller portion of the protein. We demonstrate that the protein originally identified (OBPC-1) is a cathepsin B-mediated cleavage product of OBP, while OBPC-2 may be the product of the UL8.5 transcript. We further demonstrate that the cleavage of OBP to yield OBPC-1 is dependent upon viral DNA replication. These results suggest that cleavage may be a mechanism by which OBP levels and/or activity are regulated during infection.
Collapse
Affiliation(s)
- Malen A Link
- Department of Medicine, Harvard Medical School at the Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN 123, Boston, MA 02215, USA
| | | | | |
Collapse
|
12
|
Jiang C, Hwang YT, Randell JCW, Coen DM, Hwang CBC. Mutations that decrease DNA binding of the processivity factor of the herpes simplex virus DNA polymerase reduce viral yield, alter the kinetics of viral DNA replication, and decrease the fidelity of DNA replication. J Virol 2007; 81:3495-502. [PMID: 17229696 PMCID: PMC1866068 DOI: 10.1128/jvi.02359-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/09/2007] [Indexed: 01/17/2023] Open
Abstract
The processivity subunit of the herpes simplex virus DNA polymerase, UL42, is essential for viral replication and possesses both Pol- and DNA-binding activities. Previous studies demonstrated that the substitution of alanine for each of four arginine residues, which reside on the positively charged surface of UL42, resulted in decreased DNA binding affinity and a decreased ability to synthesize long-chain DNA by the polymerase. In this study, the effects of each substitution on the production of viral progeny, viral DNA replication, and DNA replication fidelity were examined. Each substitution mutant was able to complement the replication of a UL42 null mutant in transient complementation assays and to support the replication of plasmid DNA containing herpes simplex virus type 1 (HSV-1) origin sequences in transient DNA replication assays. Mutant viruses containing each substitution and a lacZ insertion in a nonessential region of the genome were constructed and characterized. In single-cycle growth assays, the mutants produced significantly less progeny virus than the control virus containing wild-type UL42. Real-time PCR assays revealed that these UL42 mutants synthesized less viral DNA during the early phase of infection. Interestingly, during the late phase of infection, the mutant viruses synthesized larger amounts of viral DNA than the control virus. The frequencies of mutations of the virus-borne lacZ gene increased significantly in the substitution mutants compared to those observed for the control virus. These results demonstrate that the reduced DNA binding of UL42 is associated with significant effects on virus yields, viral DNA replication, and replication fidelity. Thus, a processivity factor can influence replication fidelity in mammalian cells.
Collapse
Affiliation(s)
- Changying Jiang
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
13
|
Chattopadhyay S, Weller SK. DNA binding activity of the herpes simplex virus type 1 origin binding protein, UL9, can be modulated by sequences in the N terminus: correlation between transdominance and DNA binding. J Virol 2006; 80:4491-500. [PMID: 16611909 PMCID: PMC1471996 DOI: 10.1128/jvi.80.9.4491-4500.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UL9, the origin binding protein of herpes simplex virus type 1, is a member of the SF2 family of helicases. Cotransfection of cells with infectious viral DNA and plasmids expressing either full-length UL9 or the C-terminal DNA binding domain alone results in the drastic inhibition of plaque formation which can be partially relieved by an insertion mutant lacking DNA binding activity. In this work, C-terminally truncated mutants which terminate at or near residue 359 were shown to potentiate plaque formation, while other C-terminal truncations were inhibitory. Thus, residues in the N-terminal region appear to regulate the inhibitory properties of UL9. To identify which residues were involved in this regulation, a series of N-terminally truncated mutants were constructed which contain the DNA binding domain and various N-terminal extensions. Mutants whose N terminus is either at residue 494 or 535 were able to bind the origin efficiently and were inhibitory to plaque formation, whereas constructs whose N terminus is at residue 304 or 394 were defective in origin binding activity and were able to relieve inhibition. Since UL9 is required for viral infection at early but not late times and is inhibitory to infection when overexpressed, we propose that the DNA binding activities of UL9 are regulated during infection. For infection to proceed, UL9 may need to switch from a DNA binding to a non-DNA binding mode, and we suggest that sequences residing in the N terminus play a role in this switch.
Collapse
Affiliation(s)
- Soma Chattopadhyay
- Department of Molecular, Microbial and Structural Biology, MC3205, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
14
|
Naesens L, Stephens CE, Andrei G, Loregian A, De Bolle L, Snoeck R, Sowell JW, De Clercq E. Antiviral properties of new arylsulfone derivatives with activity against human betaherpesviruses. Antiviral Res 2006; 72:60-7. [PMID: 16650489 DOI: 10.1016/j.antiviral.2006.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 11/20/2022]
Abstract
Based on our previous experience with arylsulfone derivatives displaying antiherpetic activity, we synthesized several analogues in which the sulfonyl group is part of a bicyclic structure. The benzene-fused derivative 2H-3-(4-chlorophenyl)-3,4-dihydro-1,4-benzo-thiazine-2-carbonitrile 1,1-dioxide and its thiophene-fused analogue were shown to have favorable activity and selectivity against the betaherpesviruses human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6) and 7 (HHV-7). The benzene-fused derivative retained its anti-HCMV activity when evaluated against virus strains resistant to foscarnet, ganciclovir, and/or cidofovir. The compound conferred >or=95% inhibition of viral DNA synthesis in HHV-6-infected cells. RT-PCR analysis of immediate-early, early and late gene products revealed that this arylsulfone compound acts at a step preceding late gene expression, and coinciding with the inhibition exerted by foscarnet. No inhibitory effect was seen in an enzyme assay for DNA elongation catalyzed by the HCMV or HHV-6 DNA polymerase catalytic subunit. The arylsulfone derivatives had no effect on the functional interaction between the catalytic subunit of HCMV DNA polymerase and its accessory protein, nor did they disrupt the physical interaction between the two proteins. We conclude that these arylsulfone derivatives represent new betaherpesvirus inhibitors with a novel mode of action that results in indirect inhibition of viral DNA synthesis.
Collapse
Affiliation(s)
- Lieve Naesens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Schildgen O, Gräper S, Blümel J, Matz B. Genome replication and progeny virion production of herpes simplex virus type 1 mutants with temperature-sensitive lesions in the origin-binding protein. J Virol 2005; 79:7273-8. [PMID: 15890967 PMCID: PMC1112152 DOI: 10.1128/jvi.79.11.7273-7278.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Genome replication of herpes simplex viruses (HSV) in cultured cells is thought to be started by the action of the virus-encoded origin-binding protein (OBP). In experiments using two HSV-1 mutants with temperature-sensitive lesions in the helicase domain of OBP, we demonstrated that this function is essential during the first 6 hours of the lytic cycle. Once DNA synthesis has started, this function is no longer required, suggesting that origin-driven initiation of viral DNA replication is a single event rather than a continuous process.
Collapse
Affiliation(s)
- Oliver Schildgen
- Institut für Medizinische Mikrobiologie und Immunologie, Universität Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn, Germany
| | | | | | | |
Collapse
|
16
|
Trego KS, Zhu Y, Parris DS. The herpes simplex virus type 1 DNA polymerase processivity factor, UL42, does not alter the catalytic activity of the UL9 origin-binding protein but facilitates its loading onto DNA. Nucleic Acids Res 2005; 33:536-45. [PMID: 15673714 PMCID: PMC548344 DOI: 10.1093/nar/gki196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The herpes simplex virus type 1 UL42 DNA polymerase processivity factor interacts physically with UL9 and enhances its ability to unwind short, partially duplex DNA. In this report, ATP hydrolysis during translocation of UL9 on single-stranded (ss) or partially duplex DNA was examined in the presence and absence of UL42 to determine the effect of UL42 on the catalytic function of UL9. Our studies reveal that a homodimer of UL9 is sufficient for DNA translocation coupled to ATP hydrolysis, and the steady-state ATPase catalytic rate was greater on partially duplex DNA than on ss DNA in the presence or absence of UL42. Although UL42 protein increased the steady-state rate for ATP hydrolysis by UL9 during translocation on either partially duplex or ss DNA, UL42 had no significant effect on the intrinsic ATPase activity of UL9. UL42 also had no effect on the catalytic rate of ATP hydrolysis when UL9 was not limiting but enhanced the steady-state ATPase rate at only subsaturating UL9 concentrations. At subsaturating UL9 to DNA ratios, stoichiometric concentrations of UL42 were shown to increase the amount of UL9 bound to ss DNA at equilibrium. These data support a model whereby UL42 increases the ability of UL9 to load onto DNA, thus increasing its ability to assemble into a functional complex capable of unwinding duplex DNA.
Collapse
Affiliation(s)
- Kelly S. Trego
- Department of Molecular Genetics, Immunology and Medical Genetics, Ohio State UniversityColumbus, OH 43210, USA
| | - Yali Zhu
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State UniversityColumbus, OH 43210, USA
| | - Deborah S. Parris
- Department of Molecular Genetics, Immunology and Medical Genetics, Ohio State UniversityColumbus, OH 43210, USA
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State UniversityColumbus, OH 43210, USA
- To whom correspondence should be addressed at Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, 2198 Graves Hall, 333 West Tenth Avenue, Columbus, OH 43210, USA. Tel: +1 614 292 0735; Fax: +1 614 292 9805;
| |
Collapse
|
17
|
Trego KS, Parris DS. Functional interaction between the herpes simplex virus type 1 polymerase processivity factor and origin-binding proteins: enhancement of UL9 helicase activity. J Virol 2004; 77:12646-59. [PMID: 14610187 PMCID: PMC262563 DOI: 10.1128/jvi.77.23.12646-12659.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The origin (ori)-binding protein of herpes simplex virus type 1 (HSV-1), encoded by the UL9 open reading frame, has been shown to physically interact with a number of cellular and viral proteins, including three HSV-1 proteins (ICP8, UL42, and UL8) essential for ori-dependent DNA replication. In this report, it is demonstrated for the first time that the DNA polymerase processivity factor, UL42 protein, provides accessory function to the UL9 protein by enhancing the 3'-to-5' helicase activity of UL9 on partially duplex nonspecific DNA substrates. UL42 fails to enhance the unwinding activity of a noncognate helicase, suggesting that enhancement of unwinding requires the physical interaction between UL42 and UL9. UL42 increases the steady-state rate for unwinding a 23/38-mer by UL9, but only at limiting UL9 concentrations, consistent with a role in increasing the affinity of UL9 for DNA. Optimum enhancement of unwinding was observed at UL42/UL9 molecular ratios of 4:1, although enhancement was reduced when high UL42/DNA ratios were present. Under the assay conditions employed, UL42 did not alter the rate constant for dissociation of UL9 from the DNA substrate. UL42 also did not significantly reduce the lag period which was observed following the addition of UL9 to DNA, regardless of whether UL42 was added to DNA prior to or at the same time as UL9. Moreover, addition of UL42 to ongoing unwinding reactions increased the steady-state rate for unwinding, but only after a 10- to 15-min lag period. Thus, the increased affinity of UL9 for DNA most likely is the result of an increase in the rate constant for binding of UL9 to DNA, and it explains why helicase enhancement is observed only at subsaturating concentrations of UL9 with respect to DNA. In contrast, ICP8 enhances unwinding at both saturating and subsaturating UL9 concentrations and reduces or eliminates the lag period. The different means by which ICP8 and UL42 enhance the ability of UL9 to unwind DNA suggest that these two members of the presumed functional replisome may act synergistically on UL9 to effect initiation of HSV-1 DNA replication in vivo.
Collapse
Affiliation(s)
- Kelly S Trego
- Department of Molecular Genetics, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
18
|
Marintcheva B, Weller SK. Existence of transdominant and potentiating mutants of UL9, the herpes simplex virus type 1 origin-binding protein, suggests that levels of UL9 protein may be regulated during infection. J Virol 2003; 77:9639-51. [PMID: 12915576 PMCID: PMC187383 DOI: 10.1128/jvi.77.17.9639-9651.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UL9 is a multifunctional protein required for herpes simplex virus type 1 (HSV-1) replication in vivo. UL9 is a member of the superfamily II helicases and exhibits helicase and origin-binding activities. We have previously shown that mutations in the conserved helicase motifs of UL9 can have either a transdominant or potentiating effect on the plaque-forming ability of infectious DNA from wild-type virus (A. J. Malik and S. K. Weller, J. Virol. 70:7859-7866, 1996). In this paper, the mechanisms of transdominance and potentiation are explored. We show that the motif V mutant protein containing a G to A substitution at residue 354 is unstable when expressed by transfection and is either processed to a 38-kDa N-terminal fragment or degraded completely. The overexpression of the MV mutant protein is able to influence the steady-state protein levels of wild-type UL9 and to override the inhibitory effects of wild-type UL9. Potentiation correlates with the ability of the UL9 variants containing the G354A mutation to be processed or degraded to the 38-kDa form. We propose that the MV mutant protein is able to interact with full-length UL9 and that this interaction results in a decrease in the steady-state levels of UL9, which in turn leads to enhanced viral infection. Furthermore, we demonstrate that inhibition of HSV-1 infection can be obtained by overexpression of full-length UL9, the C-terminal third of the protein containing the origin-binding domain, or the N-terminal two-thirds of UL9 containing the conserved helicase motifs and the putative dimerization domain. Our results suggest that transdominance can be mediated by overexpression, origin-binding activity, and dimerization, whereas potentiation is most likely caused by the ability of the UL9 MV mutant to influence the steady-state levels of wild-type UL9. Taken together, the results presented in this paper suggest that the regulation of steady-state levels of UL9 may play an important role in controlling viral infection.
Collapse
Affiliation(s)
- Boriana Marintcheva
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
19
|
Reid GG, Ellsmore V, Stow ND. An analysis of the requirements for human cytomegalovirus oriLyt-dependent DNA synthesis in the presence of the herpes simplex virus type 1 replication fork proteins. Virology 2003; 308:303-16. [PMID: 12706080 DOI: 10.1016/s0042-6822(03)00005-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of the human cytomegalovirus (HCMV) origin of replication (oriLyt) was previously demonstrated in transient transfection assays in permissive human fetal fibroblasts and nonpermissive Vero cells, and shown to require six viral proteins that function at the replication fork plus a number of HCMV products that perform auxiliary roles. The six replication fork proteins could be substituted by their Epstein-Barr virus homologues. In this paper we demonstrate that the corresponding herpes simplex virus type 1 replication fork proteins can similarly replace those of HCMV in Vero cells. Under these conditions the essential auxiliary functions were mapped to two plasmids: pSVH (containing the major immediate-early locus) and pZP8 (spanning genes UL32-UL38). Mutants of pSVH and pZP8 and cloned cDNAs encoding the IE1-p72 and IE2-p86 proteins were tested for their ability to support DNA synthesis. The results showed that IE2-p86 was necessary for activation of the origin, and that the UL37x1 and IE1-p72 products exerted strong stimulatory effects. In contrast to the previous work, omission of the UL84 protein had no effect upon oriLyt-dependent DNA synthesis.
Collapse
Affiliation(s)
- G Gordon Reid
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | | | | |
Collapse
|
20
|
Chaudhuri M, Song L, Parris DS. The herpes simplex virus type 1 DNA polymerase processivity factor increases fidelity without altering pre-steady-state rate constants for polymerization or excision. J Biol Chem 2003; 278:8996-9004. [PMID: 12519753 DOI: 10.1074/jbc.m210023200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pre-steady-state and steady-state kinetics of nucleotide incorporation and excision were used to assess potential mechanisms by which the fidelity of the herpes simplex virus type 1 DNA polymerase catalytic subunit (Pol) is enhanced by its processivity factor, UL42. UL42 had no effect on the pre-steady-state rate constant for correct nucleotide incorporation (150 s(-1)) nor on the primary rate-limiting conformational step. However, the equilibrium dissociation constant for the enzyme in a stable complex with primer-template was 44 nm for Pol and 7.0 nm for Pol/UL42. The catalytic subunit and holoenzyme both selected against incorrect nucleotide incorporation predominantly at the level of nucleotide affinity, although UL42 slowed by 4-fold the maximum rate of incorporation of incorrect, compared with correct, nucleotide. Pol, with or without UL42, cleaved matched termini at a slower rate than mismatched ones, but UL42 did not significantly alter the pre-steady-state rate constant for mismatch excision ( approximately 16 s(-1)). The steady-state rate constant for nucleotide addition was 0.09 s(-1) and 0.03 s(-1) for Pol and Pol/UL42, respectively, and enzyme dissociation was the rate-limiting step. The longer half-life for DNA complexes with Pol/UL42 (23 s) compared with that with Pol (8 s) affords a greater probability for excision when a misincorporation event does occur, accounting predominantly for the failure of Pol/UL42 to accumulate mismatched product at moderate nucleotide concentrations.
Collapse
Affiliation(s)
- Murari Chaudhuri
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
21
|
Makhov AM, Lee SSK, Lehman IR, Griffith JD. Origin-specific unwinding of herpes simplex virus 1 DNA by the viral UL9 and ICP8 proteins: visualization of a specific preunwinding complex. Proc Natl Acad Sci U S A 2003; 100:898-903. [PMID: 12552114 PMCID: PMC298698 DOI: 10.1073/pnas.0237171100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus 1 contains three origins of replication; two copies of oriS and one of a similar sequence, oriL. Here, the combined action of multiple factors known or thought to influence the opening of oriS are examined. These include the viral origin-binding protein, UL9, and single-strand binding protein ICP8, host cell topoisomerase I, and superhelicity of the DNA template. By using electron microscopy, it was observed that when ICP8 and UL9 proteins were added together to oriS-containing supertwisted DNA, a discrete preunwinding complex was formed at oriS on 40% of the molecules, which was shown by double immunolabeling electron microscopy to contain both proteins. This complex was relatively stable to extreme dilution. Addition of ATP led to the efficient unwinding of approximately 50% of the DNA templates. Unwinding proceeded until the acquisition of a high level of positive supertwists in the remaining duplex DNA inhibited further unwinding. Addition of topoisomerase I allowed further unwinding, opening >1 kb of DNA around oriS.
Collapse
Affiliation(s)
- Alexander M Makhov
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
22
|
Marintcheva B, Weller SK. Helicase motif Ia is involved in single-strand DNA-binding and helicase activities of the herpes simplex virus type 1 origin-binding protein, UL9. J Virol 2003; 77:2477-88. [PMID: 12551986 PMCID: PMC141079 DOI: 10.1128/jvi.77.4.2477-2488.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UL9 is a multifunctional protein essential for herpes simplex virus type 1 (HSV-1) replication in vivo. UL9 is a member of the superfamily II helicases and exhibits helicase and origin-binding activities. It is thought that UL9 binds the origin of replication and unwinds it in the presence of ATP and the HSV-1 single-stranded DNA (ssDNA)-binding protein. We have previously characterized the biochemical properties of mutants in all helicase motifs except for motif Ia (B. Marintcheva and S. Weller, J. Biol. Chem. 276:6605-6615, 2001). Structural information for other superfamily I and II helicases indicates that motif Ia is involved in ssDNA binding. By analogy, we hypothesized that UL9 motif Ia is important for the ssDNA-binding function of the protein. On the basis of sequence conservation between several UL9 homologs within the Herpesviridae family and distant homology with helicases whose structures have been solved, we designed specific mutations in motif Ia and analyzed them genetically and biochemically. Mutant proteins with residues predicted to be involved in ssDNA binding (R112A and R113A/F115A) exhibited wild-type levels of intrinsic ATPase activity and moderate to severe defects in ssDNA-stimulated ATPase activity and ssDNA binding. The S110T mutation targets a residue not predicted to contact ssDNA directly. The mutant protein with this mutation exhibited wild-type levels of intrinsic ATPase activity and near wild-type levels of ssDNA-stimulated ATPase activity and ssDNA binding. All mutant proteins lack helicase activity but were able to dimerize and bind the HSV-1 origin of replication as well as wild-type UL9. Our results indicate that residues from motif Ia contribute to the ssDNA-binding and helicase activities of UL9 and are essential for viral growth. This work represents the successful application of an approach based on a combination of bioinformatics and structural information from related proteins to deduce valuable information about a protein of interest.
Collapse
Affiliation(s)
- Boriana Marintcheva
- Department of Microbiology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | |
Collapse
|
23
|
Boehmer PE, Villani G. Herpes simplex virus type-1: a model for genome transactions. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:139-71. [PMID: 14604012 DOI: 10.1016/s0079-6603(03)75005-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In many respects, HSV-1 is the prototypic herpes virus. However, HSV-1 also serves as an excellent model system to study genome transactions, including DNA replication, homologous recombination, and the interaction of DNA replication enzymes with DNA damage. Like eukaryotic chromosomes, the HSV-1 genome contains multiple origins of replication. Replication of the HSV-1 genome is mediated by the concerted action of several virus-encoded proteins that are thought to assemble into a multiprotein complex. Several host-encoded factors have also been implicated in viral DNA replication. Furthermore, replication of the HSV-1 genome is known to be closely associated with homologous recombination that, like in many cellular organisms, may function in recombinational repair. Finally, recent data have shed some light on the interaction of essential HSV-1 replication proteins, specifically its DNA polymerase and DNA helicases, with damaged DNA.
Collapse
Affiliation(s)
- Paul E Boehmer
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL 33101-6129, USA
| | | |
Collapse
|
24
|
Chaudhuri M, Parris DS. Evidence against a simple tethering model for enhancement of herpes simplex virus DNA polymerase processivity by accessory protein UL42. J Virol 2002; 76:10270-81. [PMID: 12239303 PMCID: PMC136589 DOI: 10.1128/jvi.76.20.10270-10281.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The DNA polymerase holoenzyme of herpes simplex virus type 1 (HSV-1) is a stable heterodimer consisting of a catalytic subunit (Pol) and a processivity factor (UL42). HSV-1 UL42 differs from most DNA polymerase processivity factors in possessing an inherent ability to bind to double-stranded DNA. It has been proposed that UL42 increases the processivity of Pol by directly tethering it to the primer and template (P/T). To test this hypothesis, we took advantage of the different sensitivities of Pol and Pol/UL42 activities to ionic strength. Although the activity of Pol is inhibited by salt concentrations in excess of 50 mM KCl, the activity of the holoenzyme is relatively refractory to changes in ionic strength from 50 to 125 mM KCl. We used nitrocellulose filter-binding assays and real-time biosensor technology to measure binding affinities and dissociation rate constants of the individual subunits and holoenzyme for a short model P/T as a function of the ionic strength of the buffer. We found that as observed for activity, the binding affinity and dissociation rate constant of the Pol/UL42 holoenzyme for P/T were not altered substantially in high- versus low-ionic-strength buffer. In 50 mM KCl, the apparent affinity with which UL42 bound the P/T did not differ by more than twofold compared to that observed for Pol or Pol/UL42 in the same low-ionic-strength buffer. However, increasing the ionic strength dramatically decreased the affinity of UL42 for P/T, such that it was reduced more than 3 orders of magnitude from that of Pol/UL42 in 125 mM KCl. Real-time binding kinetics revealed that much of the reduced affinity could be attributable to an extremely rapid dissociation of UL42 from the P/T in high-ionic-strength buffer. The resistance of the activity, binding affinity, and stability of the holoenzyme for the model P/T to increases in ionic strength, despite the low apparent affinity and poor stability with which UL42 binds the model P/T in high concentrations of salt, suggests that UL42 does not simply tether the Pol to DNA. Instead, it is likely that conformational alterations induced by interaction of UL42 with Pol allow for high-affinity and high-stability binding of the holoenzyme to the P/T even under high-ionic-strength conditions.
Collapse
Affiliation(s)
- Murari Chaudhuri
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, 333W. Tenth Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
25
|
Eom CY, Lehman IR. The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Proc Natl Acad Sci U S A 2002; 99:1894-8. [PMID: 11854491 PMCID: PMC122290 DOI: 10.1073/pnas.042689499] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified cellular proteins that interact with the herpes simplex virus type 1 (HSV-1) origin-binding protein (UL9 protein) by screening a HeLa cell complementary DNA library by using the yeast two-hybrid system. Approximately 7 x 10(5) colonies were screened. Five of the 48 positive clones contained cDNAs that encoded the p150(Glued) component of the dynactin complex, three contained cDNAs for the neural F Box 42-kDa protein (NFB42), which is highly enriched in neural tissue, and three contained hTid-1, a human homologue of the bacterial DnaJ protein. We have focused in this report on the interaction of the viral UL9 protein with the cellular hTid-1. In vitro immunoprecipitation experiments confirmed that hTid-1 interacts with the UL9 protein. Electrophoretic mobility-shift assays indicated that the hTid-1 enhances the binding of UL9 protein to an HSV-1 origin, ori(s), and facilitates formation of the multimer from the dimeric UL9 protein. hTid-1 had no effect on the DNA-dependent ATPase or helicase activities associated with the UL9 protein. These findings implicate hTid-1 in HSV-1 DNA replication, and suggest that this cellular protein may provide a chaperone function analogous to the DnaJ protein in Escherichia coli DNA replication.
Collapse
Affiliation(s)
- Chi-Yong Eom
- Department of Biochemistry, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | |
Collapse
|
26
|
Marintcheva B, Weller SK. A tale of two HSV-1 helicases: roles of phage and animal virus helicases in DNA replication and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:77-118. [PMID: 11642367 DOI: 10.1016/s0079-6603(01)70014-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicases play essential roles in many important biological processes such as DNA replication, repair, recombination, transcription, splicing, and translation. Many bacteriophages and plant and animal viruses encode one or more helicases, and these enzymes have been shown to play many roles in their respective viral life cycles. In this review we concentrate primarily on the roles of helicases in DNA replication and recombination with special emphasis on the bacteriophages T4, T7, and A as model systems. We explore comparisons between these model systems and the herpesviruses--primarily herpes simplex virus. Bacteriophage utilize various pathways of recombination-dependent DNA replication during the replication of their genomes. In fact the study of recombination in the phage systems has greatly enhanced our understanding of the importance of recombination in the replication strategies of bacteria, yeast, and higher eukaryotes. The ability to "restart" the replication process after a replication fork has stalled or has become disrupted for other reasons is a critical feature in the replication of all organisms studied. Phage helicases and other recombination proteins play critical roles in the "restart" process. Parallels between DNA replication and recombination in phage and in the herpesviruses is explored. We and others have proposed that recombination plays an important role in the life cycle of the herpesviruses, and in this review, we discuss models for herpes simplex virus type 1 (HSV-1) DNA replication. HSV-1 encodes two helicases. UL9 binds specifically to the origins of replication and is believed to initiate HSV DNA replication by unwinding at the origin; the heterotrimeric helicase-primase complex, encoded by UL5, UL8, and UL52 genes, is believed to unwind duplex viral DNA at replication forks. Structure-function analyses of UL9 and the helicase-primase are discussed with attention to the roles these proteins might play during HSV replication.
Collapse
Affiliation(s)
- B Marintcheva
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
27
|
Advani SJ, Weichselbaum RR, Roizman B. cdc2 cyclin-dependent kinase binds and phosphorylates herpes simplex virus 1 U(L)42 DNA synthesis processivity factor. J Virol 2001; 75:10326-33. [PMID: 11581401 PMCID: PMC114607 DOI: 10.1128/jvi.75.21.10326-10333.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier studies have shown that cdc2 kinase is activated during herpes simplex virus 1 infection and that its activity is enhanced late in infection even though the levels of cyclin A and B are decreased below levels of detection. Furthermore, activation of cdc2 requires the presence of infected cell protein no. 22 and the U(L)13 protein kinase, the same gene products required for optimal expression of a subset of late genes exemplified by U(S)11, U(L)38, and U(L)41. The possibility that the activation of cdc2 and expression of this subset may be connected emerged from the observation that dominant negative cdc2 specifically blocked the expression of U(S)11 protein in cells infected and expressing dominant negative cdc2. Here we report that in the course of searching for a putative cognate partner for cdc2 that may have replaced cyclins A and B, we noted that the DNA polymerase processivity factor encoded by the U(L)42 gene contains a degenerate cyclin box and has been reported to be structurally related to proliferating cell nuclear antigen, which also binds cdk2. Consistent with this finding, we report that (i) U(L)42 is able to physically interact with cdc2 at both the amino-terminal and carboxyl-terminal domains, (ii) the carboxyl-terminal domain of U(L)42 can be phosphorylated by cdc2, (iii) immunoprecipitates obtained with anti U(L)42 antibody contained a roscovitine-sensitive kinase activity, (iv) kinase activity associated with U(L)42 could be immunodepleted by antibody to cdc2, and (v) U(L)42 transfected into cells associates with a nocodazole-enhanced kinase. We conclude that U(L)42 can associate with cdc2 and that the kinase activity has the characteristic traits of cdc2 kinase.
Collapse
Affiliation(s)
- S J Advani
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
28
|
Isler JA, Schaffer PA. Origin binding protein-containing protein-DNA complex formation at herpes simplex virus type 1 oriS: role in oriS-dependent DNA replication. J Virol 2001; 75:6808-16. [PMID: 11435559 PMCID: PMC114407 DOI: 10.1128/jvi.75.15.6808-6816.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of herpes simplex virus type 1 (HSV-1) DNA replication during productive infection of fibroblasts and epithelial cells requires attachment of the origin binding protein (OBP), one of seven essential virus-encoded DNA replication proteins, to specific sequences within the two viral origins, oriL and oriS. Whether initiation of DNA replication during reactivation of HSV-1 from neuronal latency also requires OBP is not known. A truncated protein, consisting of the C-terminal 487 amino acids of OBP, termed OBPC, is the product of the HSV UL8.5 gene and binds to origin sequences, although OBPC's role in HSV DNA replication is not yet clear. To characterize protein-DNA complex formation at oriS in cells of neural and nonneural lineage, we used nuclear extracts of HSV-infected nerve growth factor-differentiated PC12 and Vero cells, respectively, as the source of protein in gel shift assays. In both cell types, three complexes (complexes A, B, and C) which contain either OBP or OBPC were shown to bind specifically to a probe which contains the highest-affinity OBP binding site in oriS, site 1. Complex A was shown to contain OBPC exclusively, whereas complexes B and C contained OBP and likely other cellular proteins. By fine-mapping the binding sites of these three complexes, we identified single nucleotides which, when mutated, eliminated formation of all three complexes, or complexes B and C, but not A. In transient DNA replication assays, both mutations significantly impaired oriS-dependent DNA replication, demonstrating that formation of OBP-containing complexes B and C is required for efficient initiation of oriS-dependent DNA replication, whereas formation of the OBPC-containing complex A is insufficient for efficient initiation.
Collapse
Affiliation(s)
- J A Isler
- Department of Microbiology and Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
29
|
Halford WP, Kemp CD, Isler JA, Davido DJ, Schaffer PA. ICP0, ICP4, or VP16 expressed from adenovirus vectors induces reactivation of latent herpes simplex virus type 1 in primary cultures of latently infected trigeminal ganglion cells. J Virol 2001; 75:6143-53. [PMID: 11390616 PMCID: PMC114330 DOI: 10.1128/jvi.75.13.6143-6153.2001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study, we demonstrated that infected-cell polypeptide 0 (ICP0) is necessary for the efficient reactivation of herpes simplex virus type 1 (HSV-1) in primary cultures of latently infected trigeminal ganglion (TG) cells (W. P. Halford and P. A. Schaffer, J. Virol. 75:3240-3249, 2001). The present study was undertaken to determine whether ICP0 is sufficient to trigger HSV-1 reactivation in latently infected TG cells. To test this hypothesis, replication-defective adenovirus vectors that express wild-type and mutant forms of ICP0 under the control of a tetracycline response element (TRE) promoter were constructed. Similar adenovirus vectors encoding wild-type ICP4, wild-type and mutant forms of the HSV-1 origin-binding protein (OBP), and wild-type and mutant forms of VP16 were also constructed. The TRE promoter was induced by coinfection of Vero cells with the test vector and an adenovirus vector that expresses the reverse tetracycline-regulated transactivator in the presence of doxycycline. Northern blot analysis demonstrated that transcription of the OBP gene in the adenovirus expression vector increased as a function of doxycycline concentration over a range of 0.1 to 10 microM. Likewise, Western blot analysis demonstrated that addition of 3 microM doxycycline to adenovirus vector-infected Vero cells resulted in a 100-fold increase in OBP expression. Wild-type forms of ICP0, ICP4, OBP, and VP16 expressed from adenovirus vectors were functional based on their ability to complement plaque formation in Vero cells by replication-defective HSV-1 strains with mutations in these genes. Adenovirus vectors that express wild-type forms of ICP0, ICP4, or VP16 induced reactivation of HSV-1 in 86% +/- 5%, 86% +/- 5%, and 97% +/- 5% of TG cell cultures, respectively (means +/- standard deviations). In contrast, vectors that express wild-type OBP or mutant forms of ICP0, OBP, or VP16 induced reactivation in 5% +/- 5%, 8% +/- 0%, 0% +/- 0%, and 13% +/- 6% of TG cell cultures, respectively. In control infections, an adenovirus vector expressed green fluorescent protein efficiently in TG neurons but did not induce HSV-1 reactivation. Therefore, expression of ICP0, ICP4, or VP16 is sufficient to induce HSV-1 reactivation in latently infected TG cell cultures. We conclude that this system provides a powerful tool for determining which cellular and viral proteins are sufficient to induce HSV-1 reactivation from neuronal latency.
Collapse
Affiliation(s)
- W P Halford
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
30
|
Bronstein JC, Weber PC. Purification of a bacterially expressed herpes simplex virus type 1 origin binding protein for use in posttranslational processing studies. Protein Expr Purif 2001; 22:276-85. [PMID: 11437604 DOI: 10.1006/prep.2001.1446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin binding protein (OBP) encoded by the UL9 open reading frame of herpes simplex virus type 1 (HSV-1) plays an essential role in productive infection by promoting the initiation of viral DNA synthesis. In this study, OBP was inducibly expressed in Escherichia coli and purified to homogeneity using a two-step chromatographic separation procedure. The properties of this recombinant OBP (rOBP) were found to be indistinguishable from those of the virus-encoded protein. Since rOBP was synthesized in bacterial cells, it lacked the posttranslational processing which normally occurs in OBP produced in HSV-1-infected mammalian cells and could therefore be exploited in experiments which addressed the effects of protein modification on OBP function. As an initial study, the impact of phosphorylation on enzymatic activity was examined using rOBP which had been treated with a panel of purified cellular kinases. rOBP was found to act as a substrate for nearly all of the kinases tested in (32)P-labeled phosphate transfer assays. However, only phosphorylation by protein kinase A (PKA, or cAMP-dependent protein kinase) was shown to significantly alter the enzymatic properties of rOBP, as it increased by five- to eightfold the ATPase activity associated with this protein. Activation of this critical viral DNA replication enzyme by a cAMP-dependent kinase such as PKA may be of some relevance in the natural course of HSV-1 infections, since reactivation of latent virus is thought to involve both signal transduction events and the induction of viral DNA synthesis. Thus, the expression and purification strategy outlined in this work provides an economical source of unmodified HSV-1 OBP that should prove useful in future in vitro studies.
Collapse
Affiliation(s)
- J C Bronstein
- Infectious Diseases Section, Pfizer Global Research and Development, Ann Arbor, Michigan, 48105, USA
| | | |
Collapse
|
31
|
Marintcheva B, Weller SK. Residues within the conserved helicase motifs of UL9, the origin-binding protein of herpes simplex virus-1, are essential for helicase activity but not for dimerization or origin binding activity. J Biol Chem 2001; 276:6605-15. [PMID: 11062243 DOI: 10.1074/jbc.m007743200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UL9, an essential gene for herpes simplex virus type 1 (HSV-1) DNA replication, exhibits helicase and origin DNA binding activities. It has been hypothesized that UL9 binds and unwinds the HSV-1 origin of replication, creating a replication bubble and promoting the assembly of the viral replication machinery; however, direct confirmation of this hypothesis has not been possible. Based on the presence of conserved helicase motifs, UL9 has been classified as a superfamily II helicase. Mutations in conserved residues of the helicase motifs I-VI of UL9 have been isolated, and most of them fail to complement a UL9 null virus in vivo (Martinez R., Shao L., and Weller S. (1992) J. Virol. 66, 6735-6746). In addition, mutants in motifs I, II, and VI were found to be transdominant (Malik, A. K., and Weller, S. K. (1996) J. Virol. 70, 7859-7866). Here we present the characterization of the biochemical properties of the UL9 helicase motif mutants. We report that mutations in motifs I-IV and VI affect the ATPase activity, and all but the motif III mutation completely abolish the helicase activity. In addition, mutations in these motifs do not interfere with UL9 dimerization or the ability of UL9 to bind the HSV-1 origin of replication. Based on the similarity of the helicase motif sequences between UL9 and UvrB, another superfamily II member with helicase-like activity, we were able to map the UL9 mutations on the structure of the UvrB protein and provide an explanation for the observed phenotypes. Our results indicate that the helicase function of UL9 is indispensable for viral replication, supporting the hypothesis that UL9 is essential for unwinding the HSV-1 origin of replication in vivo. Furthermore, the data presented provide insights into the mechanism of transdominance of the UL9 helicase motif mutants.
Collapse
Affiliation(s)
- B Marintcheva
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
32
|
Abstract
The herpes simplex virus type 1 (HSV-1) origin binding protein (OBP), the product of the UL9 gene, is one of seven HSV-encoded proteins required for viral DNA replication. OBP performs multiple functions characteristic of a DNA replication initiator protein, including origin-specific DNA binding and ATPase and helicase activities, as well as the ability to interact with viral and cellular proteins involved in DNA replication. Replication initiator proteins in other systems, including those of other DNA viruses, are known to be regulated by phosphorylation; however, the role of phosphorylation in OBP function has been difficult to assess due to the low level of OBP expression in HSV-infected cells. Using a metabolic labeling and immunoprecipitation approach, we obtained evidence that OBP is phosphorylated during HSV-1 infection. Kinetic analysis of metabolically labeled cells indicated that the levels of OBP expression and phosphorylation increased at approximately 4 h postinfection. Notably, when expressed from a transfected plasmid, a recombinant baculovirus, or a recombinant adenovirus (AdOBP), OBP was phosphorylated minimally, if at all. In contrast, superinfection of AdOBP-infected cells with an OBP-null mutant virus increased the level of OBP phosphorylation approximately threefold, suggesting that HSV-encoded viral or HSV-induced cellular factors enhance the level of OBP phosphorylation. Using HSV mutants inhibited at sequential stages of the viral life cycle, we demonstrated that this increase in OBP phosphorylation is dependent on early protein synthesis and is independent of viral DNA replication. Based on gel mobility shift assays, phosphorylation does not appear to affect the ability of OBP to bind to the HSV origins.
Collapse
Affiliation(s)
- J A Isler
- Department of Microbiology and Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
33
|
Thornton KE, Chaudhuri M, Monahan SJ, Grinstead LA, Parris DS. Analysis of in vitro activities of herpes simplex virus type 1 UL42 mutant proteins: correlation with in vivo function. Virology 2000; 275:373-90. [PMID: 10998337 DOI: 10.1006/viro.2000.0506] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA polymerase (pol) catalytic subunit of herpes simplex virus type 1, encoded by UL30, and its accessory factor, UL42 protein, are both essential for the replication of the virus. Because the stable interaction between UL42 and pol renders the pol fully processive for replicative DNA synthesis, disruption of this interaction represents a potential goal in the development of novel antiviral compounds. To better compare the effects of mutations in UL42 protein on its known in vitro functions, mutations were expressed as glutathione-S-transferase (GST)-fusions and the fusion proteins used in affinity chromatography. In this report, we demonstrate the relationship between the abilities of mutant UL42 fusion proteins to bind pol and to stimulate pol activity in vitro, and the abilities of nonfusion mutant proteins to function in viral replication. The pol stimulation assay using GST fusion proteins was found to be a more accurate and sensitive measure of the ability of the UL42 protein to function in vitro than the pol binding assay using the fusion proteins linked to a solid matrix. We also found an excellent correlation between the ability of purified GST fusion proteins to stimulate pol activity in vitro and the ability of full-length nonfusion UL42 mutant genes to support DNA replication in infected cells. Our results demonstrate that two noncontiguous stretches of amino acids, from 137 to 142 and from 274 to 282, are essential for UL42 function in vivo and in vitro. Although mutant d241-261 exhibited close to wild-type abilities to stimulate pol activity in vitro, it was not capable of complementing the replication of a UL42 null mutant virus. The region of UL42 protein within or close to 241-261 may serve to hinge the essential regions within the N- and C-terminal portions of the protein which are thought to interdigitate. It is hypothesized that reduction in the length of the hinge region could alter the ability of UL42, and/or its complex with pol, to function with one or more of the other proteins present in the DNA replisome within infected cells.
Collapse
Affiliation(s)
- K E Thornton
- Program in Molecular, Cellular, and Developmental Biology, Comprehensive Cancer Center, 333 West Tenth Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
34
|
Falkenberg M, Lehman IR, Elias P. Leading and lagging strand DNA synthesis in vitro by a reconstituted herpes simplex virus type 1 replisome. Proc Natl Acad Sci U S A 2000; 97:3896-900. [PMID: 10760262 PMCID: PMC18113 DOI: 10.1073/pnas.97.8.3896] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The synthesis of double-stranded DNA by a rolling circle mechanism was reconstituted in vitro with a replisome consisting of the DNA polymerase-UL42 complex and the heterotrimeric helicase-primase encoded by herpes simplex virus type 1. Okazaki fragments 3 kilobases in length and leading strands that may exceed 10 kilobases are produced. Lagging strand synthesis is stimulated by ribonucleoside triphosphates. DNA replication appears to be processive because it resists competition with an excess of (dT)(150)/(dA)(20). The single-strand DNA binding protein ICP8 is not required, and high concentrations of ICP8 can, in fact, inhibit lagging strand synthesis. The inhibition can, however, be overcome by the addition of an excess of the UL8 component of the helicase-primase. Rolling circle replication by the herpesvirus and bacteriophage T7 replisomes appears to proceed by a similar mechanism.
Collapse
Affiliation(s)
- M Falkenberg
- Department of Medical Biochemistry, Göteborg University, Box 440, S-405 30 Göteborg, Sweden
| | | | | |
Collapse
|
35
|
Zuccola HJ, Filman DJ, Coen DM, Hogle JM. The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase. Mol Cell 2000; 5:267-78. [PMID: 10882068 DOI: 10.1016/s1097-2765(00)80422-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Herpes simplex virus DNA polymerase is a heterodimer composed of a catalytic subunit, Pol, and an unusual processivity subunit, UL42, which, unlike processivity factors such as PCNA, directly binds DNA. The crystal structure of a complex of the C-terminal 36 residues of Pol bound to residues 1-319 of UL42 reveals remarkable similarities between UL42 and PCNA despite contrasting biochemical properties and lack of sequence homology. Moreover, the Pol-UL42 interaction resembles the interaction between the cell cycle regulator p21 and PCNA. The structure and previous data suggest that the UL42 monomer interacts with DNA quite differently than does multimeric toroidal PCNA. The details of the structure lead to a model for the mechanism of UL42, provide the basis for drug design, and allow modeling of other proteins that lack sequence homology with UL42 or PCNA.
Collapse
Affiliation(s)
- H J Zuccola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
36
|
Pederson NE. Regulation of herpesvirus replication by subcellular compartmentalization. Med Hypotheses 2000; 54:64-8. [PMID: 10790726 DOI: 10.1054/mehy.1998.0814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transcriptional regulation of herpesvirus gene expression has been well documented. A second model is proposed that is superimposed on regulation at the transcriptional level. The regulation is post-translational in nature. Three examples of the model are found in viral DNA replication, capsid assembly, and the cleavage and packaging of DNA into capsids. For each example, at least one viral protein depends upon an interaction with a second viral protein for transport into the nucleus. A model is proposed whereby these protein-protein interactions control the efficiency of these processes by the formation of the appropriate protein complexes in the cytoplasm. The model predicts that these interactions impose a necessary control and that mechanisms to bypass this control would deleteriously affect virus replication. It is probable that level of regulation extends for each of these processes among other herpesviruses.
Collapse
Affiliation(s)
- N E Pederson
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27858-4354, USA.
| |
Collapse
|
37
|
Toyoizumi T, Mick R, Abbas AE, Kang EH, Kaiser LR, Molnar-Kimber KL. Combined therapy with chemotherapeutic agents and herpes simplex virus type 1 ICP34.5 mutant (HSV-1716) in human non-small cell lung cancer. Hum Gene Ther 1999; 10:3013-29. [PMID: 10609661 DOI: 10.1089/10430349950016410] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A replication-selective herpes simplex virus type 1 ICP34.5 mutant (HSV-1716) has shown efficacy both in vitro and in vivo against human non-small cell lung cancer (NSCLC) cell lines but complete eradication of tumor has not been accomplished with a single viral treatment in our murine xenograft models. Therefore, strategies to enhance the efficacy of this treatment were investigated. We determined the oncolytic activity of HSV-1716 in NCI-H460 cells in combination with each of four chemotherapeutic agents: mitomycin C (MMC), cis-platinum II (cis-DDP), methotrexate (MTX), or doxorubicin (ADR). Isobologram analysis was performed to evaluate the interaction between the viral and chemotherapeutic agents. The oncolytic effect of HSV-1716 in combination with MMC was synergistic in two of five NSCLC cell lines. In the other three cell lines, the combined effect appeared additive. No antagonism was observed. The in vivo effect of this combination was then examined in a murine xenograft model. NCI-H460 flank tumors were directly injected with HSV-1716 (4 x 106 PFU) followed by intravenous MMC administration (0.17 mg/kg) 24 hr later. After 3 weeks, the mean tumor weight in the combined treatment group was significantly less than either individual treatment in an additive manner. The synergistic dose of MMC neither augmented nor inhibited viral replication in vitro and HSV-1716 infection did not upregulate DT-diaphorase, which is the primary enzyme responsible for MMC activation. In summary, the combination of HSV-1716 with common chemotherapeutic agents may augment the effect of HSV-based therapy in the treatment of NSCLC.
Collapse
Affiliation(s)
- T Toyoizumi
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
38
|
van der Vlag J, Otte AP. Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet 1999; 23:474-8. [PMID: 10581039 DOI: 10.1038/70602] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycomb-group (PcG) proteins form multimeric protein complexes, which are involved in maintaining the transcriptional repressive state of genes over successive cell generations. Components of PcG complexes and their mutual interactions have been identified and analysed through extensive genetic and biochemical analyses. Molecular mechanisms underlying PcG-mediated repression of gene activity, however, have remained largely unknown. Previously we reported the existence of two distinct human PcG protein complexes. The EED/EZH protein complex contains the embryonic ectoderm development (EED) and enhancer of zeste 2 (EZH2; refs 9,10) PcG proteins. The HPC/HPH PcG complex contains the human polycomb 2 (HPC2; ref. 11), human polyhomeotic (HPH), BMI1 (ref. 13 ) and RING1 (refs 14, 15) proteins. Here we show that EED (refs 4, 5, 6, 7, 8) interacts, both in vitro and in vivo, with histone deacetylase (HDAC) proteins. This interaction is highly specific because the HDAC proteins do not interact with other vertebrate PcG proteins. We further find that histone deacetylation activity co-immunoprecipitates with the EED protein. Finally, the histone deacetylase inhibitor trichostatin A (ref. 17) relieves transcriptional repression mediated by EED, but not by HPC2, a human homologue of polycomb. Our data indicate that PcG-mediated repression of gene activity involves histone deacetylation. This mechanistic link between two distinct, global gene repression systems is accomplished through the interaction of HDAC proteins with a particular PcG protein, EED.
Collapse
Affiliation(s)
- J van der Vlag
- E.C. Slater Instituut, BioCentrum Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
39
|
Jacobs A, Breakefield XO, Fraefel C. HSV-1-based vectors for gene therapy of neurological diseases and brain tumors: part I. HSV-1 structure, replication and pathogenesis. Neoplasia 1999; 1:387-401. [PMID: 10933054 PMCID: PMC1508113 DOI: 10.1038/sj.neo.7900055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of effective gene therapy strategies for brain tumors and other neurological disorders relies on the understanding of genetic and pathophysiological alterations associated with the disease, on the biological characteristics of the target tissue, and on the development of safe vectors and expression systems to achieve efficient, targeted and regulated, therapeutic gene expression. The herpes simplex virus type 1 (HSV-1) virion is one of the most efficient of all current gene transfer vehicles with regard to nuclear gene delivery in central nervous system-derived cells including brain tumors. HSV-1-related research over the past decades has provided excellent insight into the structure and function of this virus, which, in turn, facilitated the design of innovative vector systems. Here, we review aspects of HSV-1 structure, replication and pathogenesis, which are relevant for the engineering of HSV-1-based vectors.
Collapse
Affiliation(s)
- A Jacobs
- Department of Neurology at the University and MPI for Neurological Research, Cologne, Germany.
| | | | | |
Collapse
|
40
|
Miller CS, Danaher RJ, Jacob RJ. Molecular aspects of herpes simplex virus I latency, reactivation, and recurrence. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1998; 9:541-62. [PMID: 9825226 DOI: 10.1177/10454411980090040901] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The application of molecular biology in the study of the pathogenesis of herpes simplex virus type 1 (HSV-1) has led to significant advances in our understanding of mechanisms that regulate virus behavior in sensory neurons and epithelial tissue. Such study has provided insight into the relationship of host and viral factors that regulate latency, reactivation, and recurrent disease. This review attempts to distill decades of information involving human, animal, and cell culture studies of HSV-1 with the goal of correlating molecular events with the clinical and laboratory behavior of the virus during latency, reactivation, and recurrent disease. The purpose of such an attempt is to acquaint the clinician/scientist with the current thinking in the field, and to provide key references upon which current opinions rest.
Collapse
Affiliation(s)
- C S Miller
- Department of Oral Health Science, University of Kentucky Colleges of Dentistry and Medicine, Lexington 40536-0084, USA
| | | | | |
Collapse
|