1
|
Schimmich C, Vabret A, Zientara S, Valle-Casuso JC. Equine Infectious Anemia Virus Cellular Partners Along the Viral Cycle. Viruses 2024; 17:5. [PMID: 39861793 PMCID: PMC11769393 DOI: 10.3390/v17010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2024] [Revised: 12/21/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Equine infectious anemia virus (EIAV) is the simplest described lentivirus within the Retroviridae family, related to the human immunodeficiency viruses (HIV-1 and HIV-2). There is an important interplay between host cells and viruses. Viruses need to hijack cellular proteins for their viral cycle completion and some cellular proteins are antiviral agents interfering with viral replication. HIV cellular partners have been extensively studied and described, with a special attention to host proteins able to inhibit specific steps of the viral cycle, called restriction factors. Viruses develop countermeasures against these restriction factors. Here, we aim to describe host cellular protein partners of EIAV viral replication, being proviral or antiviral. A comprehensive vision of the interactions between the virus and specific host's proteins can help with the discovery of new targets for the design of therapeutics. Studies performed on HIV-1 can provide insights into the functioning of EIAV, as well as differences, as both types of virus research can benefit from each other.
Collapse
Affiliation(s)
- Cécile Schimmich
- ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France;
| | - Astrid Vabret
- Department of Virology, University of Caen Normandy, Dynamicure INSERM UMR 1311, Centre Hospitalo Universitaire (CHU) Caen, 14000 Caen, France;
| | - Stéphan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - José Carlos Valle-Casuso
- ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France;
- Mixed Technological Unit “Equine Health and Welfare—Organisation and Traceability of the Equine Industry” (UMT SABOT), 14430 Goustranville, France
| |
Collapse
|
2
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
3
|
Lu H, Li Z, Zhang W, Schulze-Gahmen U, Xue Y, Zhou Q. Gene target specificity of the Super Elongation Complex (SEC) family: how HIV-1 Tat employs selected SEC members to activate viral transcription. Nucleic Acids Res 2015; 43:5868-79. [PMID: 26007649 PMCID: PMC4499153 DOI: 10.1093/nar/gkv541] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2015] [Accepted: 05/11/2015] [Indexed: 01/23/2023] Open
Abstract
The AF4/FMR2 proteins AFF1 and AFF4 act as a scaffold to assemble the Super Elongation Complex (SEC) that strongly activates transcriptional elongation of HIV-1 and cellular genes. Although they can dimerize, it is unclear whether the dimers exist and function within a SEC in vivo. Furthermore, it is unknown whether AFF1 and AFF4 function similarly in mediating SEC-dependent activation of diverse genes. Providing answers to these questions, our current study shows that AFF1 and AFF4 reside in separate SECs that display largely distinct gene target specificities. While the AFF1-SEC is more potent in supporting HIV-1 transactivation by the viral Tat protein, the AFF4-SEC is more important for HSP70 induction upon heat shock. The functional difference between AFF1 and AFF4 in Tat-transactivation has been traced to a single amino acid variation between the two proteins, which causes them to enhance the affinity of Tat for P-TEFb, a key SEC component, with different efficiency. Finally, genome-wide analysis confirms that the genes regulated by AFF1-SEC and AFF4-SEC are largely non-overlapping and perform distinct functions. Thus, the SEC represents a family of related complexes that exist to increase the regulatory diversity and gene control options during transactivation of diverse cellular and viral genes.
Collapse
Affiliation(s)
- Huasong Lu
- Innovation Center of Cell Signaling Network, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, Fujian, China Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zichong Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ursula Schulze-Gahmen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuhua Xue
- Innovation Center of Cell Signaling Network, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Liu RD, Wu J, Shao R, Xue YH. Mechanism and factors that control HIV-1 transcription and latency activation. J Zhejiang Univ Sci B 2015; 15:455-65. [PMID: 24793763 DOI: 10.1631/jzus.b1400059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
After reverse transcription, the HIV-1 proviral DNA is integrated into the host genome and thus subjected to transcription by the host RNA polymerase II (Pol II). With the identification and characterization of human P-TEFb in the late 1990 s as a specific host cofactor required for HIV-1 transcription, it is now believed that the elongation stage of Pol II transcription plays a particularly important role in regulating HIV-1 gene expression. HIV-1 uses a sophisticated scheme to recruit human P-TEFb and other cofactors to the viral long terminal repeat (LTR) to produce full-length HIV-1 transcripts. In this process, P-TEFb is regulated by the reversible association with various transcription factors/cofactors to form several multi-subunit complexes (e.g., 7SK snRNP, super elongation complexes (SECs), and the Brd4-P-TEFb complex) that collectively constitute a P-TEFb network for controlling cellular and HIV-1 transcription. Recent progresses in HIV-1 transcription were reviewed in the paper, with the emphasis on the mechanism and factors that control HIV-1 transcription and latency activation.
Collapse
Affiliation(s)
- Rong-diao Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | | | | | | |
Collapse
|
5
|
AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation. Proc Natl Acad Sci U S A 2013; 111:E15-24. [PMID: 24367103 DOI: 10.1073/pnas.1318503111] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) stimulates RNA polymerase elongation by inducing the transition of promoter proximally paused polymerase II into a productively elongating state. P-TEFb itself is regulated by reversible association with various transcription factors/cofactors to form several multisubunit complexes [e.g., the 7SK small nuclear ribonucleoprotein particle (7SK snRNP), the super elongation complexes (SECs), and the bromodomain protein 4 (Brd4)-P-TEFb complex] that constitute a P-TEFb network controlling cellular and HIV transcription. These complexes have been thought to share no components other than the core P-TEFb subunits cyclin-dependent kinase 9 (CDK9) and cyclin T (CycT, T1, T2a, and T2b). Here we show that the AF4/FMR2 family member 1 (AFF1) is bound to CDK9-CycT and is present in all major P-TEFb complexes and that the tripartite CDK9-CycT-AFF1 complex is transferred as a single unit within the P-TEFb network. By increasing the affinity of the HIV-encoded transactivating (Tat) protein for CycT1, AFF1 facilitates Tat's extraction of P-TEFb from 7SK snRNP and the formation of Tat-SECs for HIV transcription. Our data identify AFF1 as a ubiquitous P-TEFb partner and demonstrate that full Tat transactivation requires the complete SEC.
Collapse
|
6
|
Zhao W, Liu Y, Timani KA, He JJ. Tip110 protein binds to unphosphorylated RNA polymerase II and promotes its phosphorylation and HIV-1 long terminal repeat transcription. J Biol Chem 2013; 289:190-202. [PMID: 24217245 DOI: 10.1074/jbc.m113.529784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Transcription plays an important role in both HIV-1 gene expression and replication and mandates complicated but coordinated interactions between the host and virus. Our previous studies have shown that an HIV-1 Tat-interacting protein of 110 kDa, Tip110, binds to and enhances Tat function in Tat-mediated HIV-1 gene transcription and replication (Liu, Y., Li, J., Kim, B. O., Pace, B. S., and He, J. J. (2002) HIV-1 Tat protein-mediated transactivation of the HIV-1 long terminal repeat promoter is potentiated by a novel nuclear Tat-interacting protein of 110 kDa, Tip110. J. Biol. Chem. 277, 23854-23863). However, the underlying molecular mechanisms by which this takes place were not understood. In this study, we demonstrated that Tip110 bound to unphosphorylated RNA polymerase II (RNAPII) in a direct and specific manner. In addition, we detected Tip110 at the HIV-1 long terminal repeat (LTR) promoter and found that Tip110 expression was associated with increased phosphorylation of serine 2 of the heptapeptide repeats within the RNAPII C-terminal domain and increased recruitment of positive transcription elongation factor b to the LTR promoter. Consistent with these findings, we showed that Tip110 interaction with Tat directly enhanced transcription elongation of the LTR promoter. Taken together, these findings have provided additional and mechanistic evidence to support Tip110 function in HIV-1 transcription.
Collapse
Affiliation(s)
- Weina Zhao
- From the Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | | | | | | |
Collapse
|
7
|
Cook R, Leroux C, Issel C. Equine infectious anemia and equine infectious anemia virus in 2013: A review. Vet Microbiol 2013; 167:181-204. [DOI: 10.1016/j.vetmic.2013.09.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
|
8
|
Tat acetylation modulates assembly of a viral-host RNA-protein transcription complex. Proc Natl Acad Sci U S A 2009; 106:3101-6. [PMID: 19223581 DOI: 10.1073/pnas.0900012106] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 Tat enhances viral transcription elongation by forming a ribonucleoprotein complex with transactivating responsive (TAR) RNA and P-TEFb, an elongation factor composed of cyclin T1 (CycT1) and Cdk9 that phosphorylates the C-terminal domain of RNA polymerase II. Previous studies have shown that Lys-28 in the activation domain (AD) of Tat is essential for HIV-1 transcription and replication and is acetylated by p300/CBP-associated factor (PCAF), but the mechanistic basis of the Lys-28 requirement is unknown. Here, we show that Lys-28 acetylation modulates the affinity and stability of HIV-1 Tat-CycT1-TAR complexes by enhancing an interaction with the CycT1 Tat-TAR recognition motif. High-affinity assembly correlates strongly with stimulation of transcription elongation in vitro and Tat activation in vivo. In marked contrast, bovine lentiviral Tat proteins have evolved a high-affinity TAR interaction that does not require PCAF-mediated acetylation of the Tat AD or CycT1 for RNA binding, whereas HIV-2 Tat has evolved an intermediate mechanism that uses a duplicated TAR element and CycT1 to enhance RNA affinity and consequently transcription activation. The coevolution of Tat acetylation, CycT1 dependence, and TAR binding affinity is seen in viral replication assays using Tat proteins that rely on CycT1 for TAR binding but are acetylation deficient, where compensatory mutations rapidly accrue in TAR to generate high-affinity, CycT1-independent complexes reminiscent of the bovine viruses. Thus, lysine acetylation can be used to modulate and evolve the strength of a viral-host RNA-protein complex, thereby tuning the levels of transcription elongation.
Collapse
|
9
|
Montanuy I, Torremocha R, Hernández-Munain C, Suñé C. Promoter Influences Transcription Elongation. J Biol Chem 2008; 283:7368-78. [DOI: 10.1074/jbc.m706243200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
|
10
|
Sánchez-Alvarez M, Goldstrohm AC, Garcia-Blanco MA, Suñé C. Human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Mol Cell Biol 2006; 26:4998-5014. [PMID: 16782886 PMCID: PMC1489151 DOI: 10.1128/mcb.01991-05] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2005] [Revised: 11/15/2005] [Accepted: 04/22/2006] [Indexed: 11/20/2022] Open
Abstract
The human transcription elongation factor CA150 contains three N-terminal WW domains and six consecutive FF domains. WW and FF domains, versatile modules that mediate protein-protein interactions, are found in nuclear proteins involved in transcription and splicing. CA150 interacts with the splicing factor SF1 and with the phosphorylated C-terminal repeat domain (CTD) of RNA polymerase II (RNAPII) through its WW and FF domains, respectively. WW and FF domains may, therefore, serve to link transcription and splicing components and play a role in coupling transcription and splicing in vivo. In the study presented here, we investigated the subcellular localization and association of CA150 with factors involved in pre-mRNA transcriptional elongation and splicing. Endogenous CA150 colocalized with nuclear speckles, and this was not affected either by inhibition of cellular transcription or by RNAPII CTD phosphorylation. FF domains are essential for the colocalization to speckles, while WW domains are not required for colocalization. We also performed biochemical assays to understand the role of WW and FF domains in mediating the assembly of transcription and splicing components into higher-order complexes. Transcription and splicing components bound to a region in the amino-terminal part of CA150 that contains the three WW domains; however, we identified a region of the C-terminal FF domains that was also critical. Our results suggest that sequences located at both the amino and carboxyl regions of CA150 are required to assemble transcription/splicing complexes, which may be involved in the coupling of those processes.
Collapse
Affiliation(s)
- Miguel Sánchez-Alvarez
- Department of Molecular Biology, Instituto de Parasitología y Biomedicine, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | | | | | | |
Collapse
|
11
|
St-Louis MC, Cojocariu M, Archambault D. The molecular biology of bovine immunodeficiency virus: a comparison with other lentiviruses. Anim Health Res Rev 2005; 5:125-43. [PMID: 15984320 DOI: 10.1079/ahr200496] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Bovine immunodeficiency virus (BIV) was first isolated in 1969 from a cow, R-29, with a wasting syndrome. The virus isolated induced the formation of syncytia in cell cultures and was structurally similar to maedi-visna virus. Twenty years later, it was demonstrated that the bovine R-29 isolate was indeed a lentivirus with striking similarity to the human immunodeficiency virus. Like other lentiviruses, BIV has a complex genomic structure characterized by the presence of several regulatory/accessory genes that encode proteins, some of which are involved in the regulation of virus gene expression. This manuscript aims to review biological and, more particularly, molecular aspects of BIV, with emphasis on regulatory/accessory viral genes/proteins, in comparison with those of other lentiviruses.
Collapse
Affiliation(s)
- Marie-Claude St-Louis
- University of Québec at Montréal, Department of Biological Sciences, Montréal, Québec, Canada
| | | | | |
Collapse
|
12
|
Hoque M, Young TM, Lee CG, Serrero G, Mathews MB, Pe'ery T. The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription. Mol Cell Biol 2003; 23:1688-702. [PMID: 12588988 PMCID: PMC151712 DOI: 10.1128/mcb.23.5.1688-1702.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin T1, together with the kinase CDK9, is a component of the transcription elongation factor P-TEFb which binds the human immunodeficiency virus type 1 (HIV-1) transactivator Tat. P-TEFb facilitates transcription by phosphorylating the carboxy-terminal domain (CTD) of RNA polymerase II. Cyclin T1 is an exceptionally large cyclin and is therefore a candidate for interactions with regulatory proteins. We identified granulin as a cyclin T1-interacting protein that represses expression from the HIV-1 promoter in transfected cells. The granulins, mitogenic growth factors containing repeats of a cysteine-rich motif, were reported previously to interact with Tat. We show that granulin formed stable complexes in vivo and in vitro with cyclin T1 and Tat. Granulin bound to the histidine-rich domain of cyclin T1, which was recently found to bind to the CTD, but not to cyclin T2. Binding of granulin to P-TEFb inhibited the phosphorylation of a CTD peptide. Granulin expression inhibited Tat transactivation, and tethering experiments showed that this effect was due, at least in part, to a direct action on cyclin T1 in the absence of Tat. In addition, granulin was a substrate for CDK9 but not for the other transcription-related kinases CDK7 and CDK8. Thus, granulin is a cellular protein that interacts with cyclin T1 to inhibit transcription.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07013-1709, USA
| | | | | | | | | | | |
Collapse
|
13
|
Hooker CW, Scott J, Apolloni A, Parry E, Harrich D. Human immunodeficiency virus type 1 reverse transcription is stimulated by tat from other lentiviruses. Virology 2002; 300:226-35. [PMID: 12350353 DOI: 10.1006/viro.2002.1554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
The tat gene is required by HIV-1 for efficient reverse transcription and this function of Tat can be distinguished from its role in transcription by RNA polymerase II using tat point mutations that abrogate each function independently. The mechanism of Tat's role in reverse transcription, however, is not known, nor is it known whether this role is conserved among trans-activating factors in other retroviruses. Here we examine the abilities of heterologous viral trans-activating proteins from jembrana disease virus (jTat), HIV-2 (Tat2), and equine infectious anemia virus (eTat) to substitute for HIV-1 Tat (Tat1) and restore reverse transcription in HIV-1 carrying an inactivated tat gene. Natural endogenous reverse transcription assays showed that trans-activators from some retroviruses (Tat2 and jTat, but not eTat) could substitute for Tat1 in complementation of HIV-1 reverse transcription. Finally, we show that Y47 is critical for Tat1 to function in reverse transcription, but not HIV-1 gene expression. We mutated the homologous position in jTat to H62Y and found it did not improve its ability to stimulate reverse transcription, but an H62A mutation did inhibit jTat complementation. These data highlight the finding that the role of Tat in reverse transcription is not related to trans-activation and demonstrate that other tat genes conserve this function.
Collapse
Affiliation(s)
- C William Hooker
- HIV-1 Research Unit, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston Road, Herston, Queensland, Australia 4029
| | | | | | | | | |
Collapse
|