1
|
Kuo EY, Yang RY, Chin YY, Chien YL, Chen YC, Wei CY, Kao LJ, Chang YH, Li YJ, Chen TY, Lee TM. Multi-omics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae. Biotechnol J 2022; 17:e2100603. [PMID: 35467782 DOI: 10.1002/biot.202100603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022]
Abstract
Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value-added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome-editing tools in microalgae biorefinery and wastewater treatment. The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eva YuHua Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yuan Yu Chin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Lin Chien
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu Chu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Cheng-Yu Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Li-Jung Kao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Hua Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu-Jia Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Te-Yuan Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
2
|
Seydoux C, Storti M, Giovagnetti V, Matuszyńska A, Guglielmino E, Zhao X, Giustini C, Pan Y, Blommaert L, Angulo J, Ruban AV, Hu H, Bailleul B, Courtois F, Allorent G, Finazzi G. Impaired photoprotection in Phaeodactylum tricornutum KEA3 mutants reveals the proton regulatory circuit of diatoms light acclimation. THE NEW PHYTOLOGIST 2022; 234:578-591. [PMID: 35092009 PMCID: PMC9306478 DOI: 10.1111/nph.18003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Diatoms are successful phytoplankton clades able to acclimate to changing environmental conditions, including e.g. variable light intensity. Diatoms are outstanding at dissipating light energy exceeding the maximum photosynthetic electron transfer (PET) capacity via the nonphotochemical quenching (NPQ) process. While the molecular effectors of NPQ as well as the involvement of the proton motive force (PMF) in its regulation are known, the regulators of the PET/PMF relationship remain unidentified in diatoms. We generated mutants of the H+ /K+ antiporter KEA3 in the model diatom Phaeodactylum tricornutum. Loss of KEA3 activity affects the PET/PMF coupling and NPQ responses at the onset of illumination, during transients and in steady-state conditions. Thus, this antiporter is a main regulator of the PET/PMF coupling. Consistent with this conclusion, a parsimonious model including only two free components, KEA3 and the diadinoxanthin de-epoxidase, describes most of the feedback loops between PET and NPQ. This simple regulatory system allows for efficient responses to fast (minutes) or slow (e.g. diel) changes in light environment, thanks to the presence of a regulatory calcium ion (Ca2+ )-binding domain in KEA3 modulating its activity. This circuit is likely tuned by the NPQ-effector proteins, LHCXs, providing diatoms with the required flexibility to thrive in different ocean provinces.
Collapse
Affiliation(s)
- Claire Seydoux
- CNRSCEAINRAEIRIGLPCVUniversité Grenoble AlpesGrenoble38000France
| | - Mattia Storti
- CNRSCEAINRAEIRIGLPCVUniversité Grenoble AlpesGrenoble38000France
| | - Vasco Giovagnetti
- Departement of BiochemistryQueen Mary University of LondonMile End RoadLondonE14NSUK
| | - Anna Matuszyńska
- Computational Life ScienceDepartment of BiologyRWTH Aachen UniversityWorringer Weg 1Aachen52074Germany
| | | | - Xue Zhao
- CNRSCEAINRAEIRIGLPCVUniversité Grenoble AlpesGrenoble38000France
| | - Cécile Giustini
- CNRSCEAINRAEIRIGLPCVUniversité Grenoble AlpesGrenoble38000France
| | - Yufang Pan
- Key Laboratory of Algal BiologyInstitute of HydrobiologyChinese Academy of SciencesWuhan430072China
| | - Lander Blommaert
- Laboratory of Chloroplast Biology and Light Sensing in MicroalgaeInstitut de Biologie Physico ChimiqueCNRSSorbonne UniversitéParis75005France
| | - Jhoanell Angulo
- CNRSCEAINRAEIRIGLPCVUniversité Grenoble AlpesGrenoble38000France
| | - Alexander V. Ruban
- Departement of BiochemistryQueen Mary University of LondonMile End RoadLondonE14NSUK
| | - Hanhua Hu
- Key Laboratory of Algal BiologyInstitute of HydrobiologyChinese Academy of SciencesWuhan430072China
| | - Benjamin Bailleul
- Laboratory of Chloroplast Biology and Light Sensing in MicroalgaeInstitut de Biologie Physico ChimiqueCNRSSorbonne UniversitéParis75005France
| | | | | | - Giovanni Finazzi
- CNRSCEAINRAEIRIGLPCVUniversité Grenoble AlpesGrenoble38000France
| |
Collapse
|
3
|
Zhang P, Burel C, Plasson C, Kiefer-Meyer MC, Ovide C, Gügi B, Wan C, Teo G, Mak A, Song Z, Driouich A, Lerouge P, Bardor M. Characterization of a GDP-Fucose Transporter and a Fucosyltransferase Involved in the Fucosylation of Glycoproteins in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2019; 10:610. [PMID: 31164895 PMCID: PMC6536626 DOI: 10.3389/fpls.2019.00610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/25/2019] [Indexed: 05/21/2023]
Abstract
Although Phaeodactylum tricornutum is gaining importance in plant molecular farming for the production of high-value molecules such as monoclonal antibodies, little is currently known about key cell metabolism occurring in this diatom such as protein glycosylation. For example, incorporation of fucose residues in the glycans N-linked to protein in P. tricornutum is questionable. Indeed, such epitope has previously been found on N-glycans of endogenous glycoproteins in P. tricornutum. Meanwhile, the potential immunogenicity of the α(1,3)-fucose epitope present on plant-derived biopharmaceuticals is still a matter of debate. In this paper, we have studied molecular actors potentially involved in the fucosylation of the glycoproteins in P. tricornutum. Based on sequence similarities, we have identified a putative P. tricornutum GDP-L-fucose transporter and three fucosyltransferase (FuT) candidates. The putative P. tricornutum GDP-L-fucose transporter coding sequence was expressed in the Chinese Hamster Ovary (CHO)-gmt5 mutant lacking its endogenous GDP-L-fucose transporter activity. We show that the P. tricornutum transporter is able to rescue the fucosylation of proteins in this CHO-gmt5 mutant cell line, thus demonstrating the functional activity of the diatom transporter and its appropriate Golgi localization. In addition, we overexpressed one of the three FuT candidates, namely the FuT54599, in P. tricornutum and investigated its localization within Golgi stacks of the diatom. Our findings show that overexpression of the FuT54599 leads to a significant increase of the α(1,3)-fucosylation of the diatom endogenous glycoproteins.
Collapse
Affiliation(s)
- Peiqing Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Carole Burel
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Carole Plasson
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Marie-Christine Kiefer-Meyer
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Clément Ovide
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Bruno Gügi
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Corrine Wan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Gavin Teo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Amelia Mak
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Azeddine Driouich
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Patrice Lerouge
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
| | - Muriel Bardor
- Laboratoire Glyco-MEV EA4358, UNIROUEN, Normandy University, Rouen, France
- Fédération de Recherche Normandie-Végétal – FED 4277, Rouen, France
- Institut Universitaire de France (I.U.F.), Paris, France
| |
Collapse
|
4
|
Kroth PG, Bones AM, Daboussi F, Ferrante MI, Jaubert M, Kolot M, Nymark M, Río Bártulos C, Ritter A, Russo MT, Serif M, Winge P, Falciatore A. Genome editing in diatoms: achievements and goals. PLANT CELL REPORTS 2018; 37:1401-1408. [PMID: 30167805 DOI: 10.1007/s00299-018-2334-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/07/2018] [Indexed: 05/20/2023]
Abstract
Diatoms are major components of phytoplankton and play a key role in the ecology of aquatic ecosystems. These algae are of great scientific importance for a wide variety of research areas, ranging from marine ecology and oceanography to biotechnology. During the last 20 years, the availability of genomic information on selected diatom species and a substantial progress in genetic manipulation, strongly contributed to establishing diatoms as molecular model organisms for marine biology research. Recently, tailored TALEN endonucleases and the CRISPR/Cas9 system were utilized in diatoms, allowing targeted genetic modifications and the generation of knockout strains. These approaches are extremely valuable for diatom research because breeding, forward genetic screens by random insertion, and chemical mutagenesis are not applicable to the available model species Phaeodactylum tricornutum and Thalassiosira pseudonana, which do not cross sexually in the lab. Here, we provide an overview of the genetic toolbox that is currently available for performing stable genetic modifications in diatoms. We also discuss novel challenges that need to be addressed to fully exploit the potential of these technologies for the characterization of diatom biology and for metabolic engineering.
Collapse
Affiliation(s)
- Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany.
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Maria I Ferrante
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Marianne Jaubert
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France
| | - Misha Kolot
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Marianne Nymark
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | | | - Andrés Ritter
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France
| | - Monia T Russo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Manuel Serif
- LISBP, Université de Toulouse, CNRS, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Angela Falciatore
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|