1
|
Subramanian S, Ghafouri A, Scheufele KM, Himthani N, Davatzikos C, Biros G. Ensemble Inversion for Brain Tumor Growth Models With Mass Effect. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:982-995. [PMID: 36378796 PMCID: PMC10201550 DOI: 10.1109/tmi.2022.3221913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We propose a method for extracting physics-based biomarkers from a single multiparametric Magnetic Resonance Imaging (mpMRI) scan bearing a glioma tumor. We account for mass effect, the deformation of brain parenchyma due to the growing tumor, which on its own is an important radiographic feature but its automatic quantification remains an open problem. In particular, we calibrate a partial differential equation (PDE) tumor growth model that captures mass effect, parameterized by a single scalar parameter, tumor proliferation, migration, while localizing the tumor initiation site. The single-scan calibration problem is severely ill-posed because the precancerous, healthy, brain anatomy is unknown. To address the ill-posedness, we introduce an ensemble inversion scheme that uses a number of normal subject brain templates as proxies for the healthy precancer subject anatomy. We verify our solver on a synthetic dataset and perform a retrospective analysis on a clinical dataset of 216 glioblastoma (GBM) patients. We analyze the reconstructions using our calibrated biophysical model and demonstrate that our solver provides both global and local quantitative measures of tumor biophysics and mass effect. We further highlight the improved performance in model calibration through the inclusion of mass effect in tumor growth models-including mass effect in the model leads to 10% increase in average dice coefficients for patients with significant mass effect. We further evaluate our model by introducing novel biophysics-based features and using them for survival analysis. Our preliminary analysis suggests that including such features can improve patient stratification and survival prediction.
Collapse
|
2
|
Meaney C, Das S, Colak E, Kohandel M. Deep learning characterization of brain tumours with diffusion weighted imaging. J Theor Biol 2023; 557:111342. [PMID: 36368560 DOI: 10.1016/j.jtbi.2022.111342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most deadly forms of cancer. Methods of characterizing these tumours are valuable for improving predictions of their progression and response to treatment. A mathematical model called the proliferation-invasion (PI) model has been used extensively in the literature to model the growth of these tumours, though it relies on known values of two key parameters: the tumour cell diffusivity and proliferation rate. Unfortunately, these parameters are difficult to estimate in a patient-specific manner, making personalized tumour forecasting challenging. In this paper, we develop and apply a deep learning model capable of making accurate estimates of these key GBM-characterizing parameters while simultaneously producing a full prediction of the tumour progression curve. Our method uses two sets of multi sequence MRI in order to produce estimations and relies on a preprocessing pipeline which includes brain tumour segmentation and conversion to tumour cellularity. We first apply our deep learning model to synthetic tumours to showcase the model's capabilities and identify situations where prediction errors are likely to occur. We then apply our model to a clinical dataset consisting of five patients diagnosed with GBM. For all patients, we derive evidence-based estimates for each of the PI model parameters and predictions for the future progression of the tumour, along with estimates of the parameter uncertainties. Our work provides a new, easily generalizable method for the estimation of patient-specific tumour parameters, which can be built upon to aid physicians in designing personalized treatments.
Collapse
Affiliation(s)
- Cameron Meaney
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada.
| | - Sunit Das
- Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Errol Colak
- Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Medical Imaging and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Odette Professorship in Artificial Intelligence for Medical Imaging, St. Michael's Hospital, Toronto, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
| |
Collapse
|
3
|
Phillips CM, Lima EABF, Gadde M, Jarrett AM, Rylander MN, Yankeelov TE. Towards integration of time-resolved confocal microscopy of a 3D in vitro microfluidic platform with a hybrid multiscale model of tumor angiogenesis. PLoS Comput Biol 2023; 19:e1009499. [PMID: 36652468 PMCID: PMC9886306 DOI: 10.1371/journal.pcbi.1009499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/30/2023] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
The goal of this study is to calibrate a multiscale model of tumor angiogenesis with time-resolved data to allow for systematic testing of mathematical predictions of vascular sprouting. The multi-scale model consists of an agent-based description of tumor and endothelial cell dynamics coupled to a continuum model of vascular endothelial growth factor concentration. First, we calibrate ordinary differential equation models to time-resolved protein concentration data to estimate the rates of secretion and consumption of vascular endothelial growth factor by endothelial and tumor cells, respectively. These parameters are then input into the multiscale tumor angiogenesis model, and the remaining model parameters are then calibrated to time resolved confocal microscopy images obtained within a 3D vascularized microfluidic platform. The microfluidic platform mimics a functional blood vessel with a surrounding collagen matrix seeded with inflammatory breast cancer cells, which induce tumor angiogenesis. Once the multi-scale model is fully parameterized, we forecast the spatiotemporal distribution of vascular sprouts at future time points and directly compare the predictions to experimentally measured data. We assess the ability of our model to globally recapitulate angiogenic vasculature density, resulting in an average relative calibration error of 17.7% ± 6.3% and an average prediction error of 20.2% ± 4% and 21.7% ± 3.6% using one and four calibrated parameters, respectively. We then assess the model's ability to predict local vessel morphology (individualized vessel structure as opposed to global vascular density), initialized with the first time point and calibrated with two intermediate time points. In this study, we have rigorously calibrated a mechanism-based, multiscale, mathematical model of angiogenic sprouting to multimodal experimental data to make specific, testable predictions.
Collapse
Affiliation(s)
- Caleb M. Phillips
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas, United States of America
| | - Manasa Gadde
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Angela M. Jarrett
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, United States of America
| | - Marissa Nichole Rylander
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Oncology, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Imaging Physics, The University of Texas at Austin, MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
4
|
Ezhov I, Mot T, Shit S, Lipkova J, Paetzold JC, Kofler F, Pellegrini C, Kollovieh M, Navarro F, Li H, Metz M, Wiestler B, Menze B. Geometry-Aware Neural Solver for Fast Bayesian Calibration of Brain Tumor Models. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1269-1278. [PMID: 34928790 DOI: 10.1109/tmi.2021.3136582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modeling of brain tumor dynamics has the potential to advance therapeutic planning. Current modeling approaches resort to numerical solvers that simulate the tumor progression according to a given differential equation. Using highly-efficient numerical solvers, a single forward simulation takes up to a few minutes of compute. At the same time, clinical applications of tumor modeling often imply solving an inverse problem, requiring up to tens of thousands of forward model evaluations when used for a Bayesian model personalization via sampling. This results in a total inference time prohibitively expensive for clinical translation. While recent data-driven approaches become capable of emulating physics simulation, they tend to fail in generalizing over the variability of the boundary conditions imposed by the patient-specific anatomy. In this paper, we propose a learnable surrogate for simulating tumor growth which maps the biophysical model parameters directly to simulation outputs, i.e. the local tumor cell densities, whilst respecting patient geometry. We test the neural solver in a Bayesian model personalization task for a cohort of glioma patients. Bayesian inference using the proposed surrogate yields estimates analogous to those obtained by solving the forward model with a regular numerical solver. The near real-time computation cost renders the proposed method suitable for clinical settings. The code is available at https://github.com/IvanEz/tumor-surrogate.
Collapse
|
5
|
Lipková J, Menze B, Wiestler B, Koumoutsakos P, Lowengrub JS. Modelling glioma progression, mass effect and intracranial pressure in patient anatomy. J R Soc Interface 2022; 19:20210922. [PMID: 35317645 PMCID: PMC8941421 DOI: 10.1098/rsif.2021.0922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Increased intracranial pressure is the source of most critical symptoms in patients with glioma, and often the main cause of death. Clinical interventions could benefit from non-invasive estimates of the pressure distribution in the patient's parenchyma provided by computational models. However, existing glioma models do not simulate the pressure distribution and they rely on a large number of model parameters, which complicates their calibration from available patient data. Here we present a novel model for glioma growth, pressure distribution and corresponding brain deformation. The distinct feature of our approach is that the pressure is directly derived from tumour dynamics and patient-specific anatomy, providing non-invasive insights into the patient's state. The model predictions allow estimation of critical conditions such as intracranial hypertension, brain midline shift or neurological and cognitive impairments. A diffuse-domain formalism is employed to allow for efficient numerical implementation of the model in the patient-specific brain anatomy. The model is tested on synthetic and clinical cases. To facilitate clinical deployment, a high-performance computing implementation of the model has been publicly released.
Collapse
Affiliation(s)
- Jana Lipková
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bjoern Menze
- Department of Informatics, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Petros Koumoutsakos
- Computational Science and Engineering Lab, ETH Zürich, Zürich, Switzerland
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - John S. Lowengrub
- Department of Mathematics, University of California, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| |
Collapse
|
6
|
Brunn M, Himthani N, Biros G, Mehl M, Mang A. CLAIRE: Constrained Large Deformation Diffeomorphic Image Registration on Parallel Computing Architectures. JOURNAL OF OPEN SOURCE SOFTWARE 2021; 6:3038. [PMID: 35295546 PMCID: PMC8923611 DOI: 10.21105/joss.03038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
CLAIRE (Mang & Biros, 2019) is a computational framework for Constrained LArge deformation diffeomorphic Image REgistration (Mang et al., 2019). It supports highly-optimized, parallel computational kernels for (multi-node) CPU (Gholami et al., 2017; Mang et al., 2019; Mang & Biros, 2016) and (multi-node multi-)GPU architectures (Brunn et al., 2020, 2021). CLAIRE uses MPI for distributed-memory parallelism and can be scaled up to thousands of cores (Mang et al., 2019; Mang & Biros, 2016) and GPU devices (Brunn et al., 2020). The multi-GPU implementation uses device direct communication. The computational kernels are interpolation for semi-Lagrangian time integration, and a mixture of high-order finite difference operators and Fast-Fourier-Transforms (FFTs) for differentiation. CLAIRE uses a Newton-Krylov solver for numerical optimization (Mang & Biros, 2015, 2017). It features various schemes for regularization of the control problem (Mang & Biros, 2016) and different similarity measures. CLAIRE implements different preconditioners for the reduced space Hessian (Brunn et al., 2020; Mang et al., 2019) to optimize computational throughput and enable fast convergence. It uses PETSc (Balay et al., n.d.) for scalable and efficient linear algebra operations and solvers and TAO (Balay et al., n.d.; Munson et al., 2015) for numerical optimization. CLAIRE can be downloaded at https://github.com/andreasmang/claire.
Collapse
Affiliation(s)
- Malte Brunn
- Institute for Parallel and Distributed Systems, University Stuttgart
| | - Naveen Himthani
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin
| | - George Biros
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin
| | - Miriam Mehl
- Institute for Parallel and Distributed Systems, University Stuttgart
| | - Andreas Mang
- Department of Mathematics, University of Houston
| |
Collapse
|