1
|
Perspectives on the Combined Use of Electric Brain Stimulation and Perceptual Learning in Vision. Vision (Basel) 2022; 6:vision6020033. [PMID: 35737420 PMCID: PMC9227313 DOI: 10.3390/vision6020033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
A growing body of literature offers exciting perspectives on the use of brain stimulation to boost training-related perceptual improvements in humans. Recent studies suggest that combining visual perceptual learning (VPL) training with concomitant transcranial electric stimulation (tES) leads to learning rate and generalization effects larger than each technique used individually. Both VPL and tES have been used to induce neural plasticity in brain regions involved in visual perception, leading to long-lasting visual function improvements. Despite being more than a century old, only recently have these techniques been combined in the same paradigm to further improve visual performance in humans. Nonetheless, promising evidence in healthy participants and in clinical population suggests that the best could still be yet to come for the combined use of VPL and tES. In the first part of this perspective piece, we briefly discuss the history, the characteristics, the results and the possible mechanisms behind each technique and their combined effect. In the second part, we discuss relevant aspects concerning the use of these techniques and propose a perspective concerning the combined use of electric brain stimulation and perceptual learning in the visual system, closing with some open questions on the topic.
Collapse
|
2
|
The visual system as target of non-invasive brain stimulation for migraine treatment: Current insights and future challenges. PROGRESS IN BRAIN RESEARCH 2020. [PMID: 33008507 DOI: 10.1016/bs.pbr.2020.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The visual network is crucially implicated in the pathophysiology of migraine. Several lines of evidence indicate that migraine is characterized by an altered visual cortex excitability both during and between attacks. Visual symptoms, the most common clinical manifestation of migraine aura, are likely the result of cortical spreading depression originating from the extrastriate area V3A. Photophobia, a clinical hallmark of migraine, is linked to an abnormal sensory processing of the thalamus which is converged with the non-image forming visual pathway. Finally, visual snow is an increasingly recognized persistent visual phenomenon in migraine, possibly caused by increased perception of subthreshold visual stimuli. Emerging research in non-invasive brain stimulation (NIBS) has vastly developed into a diversity of areas with promising potential. One of its clinical applications is the single-pulse transcranial magnetic stimulation (sTMS) applied over the occipital cortex which has been approved for treating migraine with aura, albeit limited evidence. Studies have also investigated other NIBS techniques, such as repetitive TMS (rTMS) and transcranial direct current stimulation (tDCS), for migraine prophylaxis but with conflicting results. As a dynamic brain disorder with widespread pathophysiology, targeting migraine with NIBS is challenging. Furthermore, unlike the motor cortex, evidence suggests that the visual cortex may be less plastic. Controversy exists as to whether the same fundamental principles of NIBS, based mainly on findings in the motor cortex, can be applied to the visual cortex. This review aims to explore existing literature surrounding NIBS studies on the visual system of migraine. We will first provide an overview highlighting the direct implication of the visual network in migraine. Next, we will focus on the rationale behind using NIBS for migraine treatment, including its effects on the visual cortex, and the shortcomings of currently available evidence. Finally, we propose a broader perspective of how novel approaches, the concept of brain networks and the integration of multimodal imaging with computational modeling, can help refine current NIBS methods, with the ultimate goal of optimizing a more individualized treatment for migraine.
Collapse
|
3
|
Rehmann R, Sczesny-Kaiser M, Lenz M, Gucia T, Schliesing A, Schwenkreis P, Tegenthoff M, Höffken O. Polarity-Specific Cortical Effects of Transcranial Direct Current Stimulation in Primary Somatosensory Cortex of Healthy Humans. Front Hum Neurosci 2016; 10:208. [PMID: 27242473 PMCID: PMC4860403 DOI: 10.3389/fnhum.2016.00208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/22/2016] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive stimulation method that has been shown to modulate the excitability of the motor and visual cortices in human subjects in a polarity dependent manner in previous studies. The aim of our study was to investigate whether anodal and cathodal tDCS can also be used to modulate the excitability of the human primary somatosensory cortex (S1). We measured paired-pulse suppression (PPS) of somatosensory evoked potentials in 36 right-handed volunteers before and after anodal, cathodal, or sham stimulation over the right non-dominant S1. Paired-pulse stimulation of the median nerve was performed at the dominant and non-dominant hand. After anodal tDCS, PPS was reduced in the ipsilateral S1 compared to sham stimulation, indicating an excitatory effect of anodal tDCS. In contrast, PPS in the stimulated left hemisphere was increased after cathodal tDCS, indicating an inhibitory effect of cathodal tDCS. Sham stimulation induced no pre-post differences. Thus, tDCS can be used to modulate the excitability of S1 in polarity-dependent manner, which can be assessed by PPS. An interesting topic for further studies could be the investigation of direct correlations between sensory changes and excitability changes induced by tDCS.
Collapse
Affiliation(s)
- Robert Rehmann
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | | | - Melanie Lenz
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Tomasz Gucia
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Annika Schliesing
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Oliver Höffken
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| |
Collapse
|
4
|
Richard B, Johnson AP, Thompson B, Hansen BC. The Effects of tDCS Across the Spatial Frequencies and Orientations that Comprise the Contrast Sensitivity Function. Front Psychol 2015; 6:1784. [PMID: 26640448 PMCID: PMC4661264 DOI: 10.3389/fpsyg.2015.01784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has recently been employed in traditional psychophysical paradigms in an effort to measure direct manipulations on spatial frequency channel operations in the early visual system. However, the effects of tDCS on contrast sensitivity have only been measured at a single spatial frequency and orientation. Since contrast sensitivity is known to depend on spatial frequency and orientation, we ask how the effects of anodal and cathodal tDCS may vary according to these dimensions. We measured contrast sensitivity with sinusoidal gratings at four different spatial frequencies (0.5, 4, 8, and 12 cycles/°), two orientations (45° Oblique and Horizontal), and for two stimulus size conditions [fixed size (3°) and fixed period (1.5 cycles)]. Only contrast sensitivity measured with a 45° oblique grating with a spatial frequency of 8 cycles/° (period = 1.5 cycles) demonstrated clear polarity specific effects of tDCS, whereby cathodal tDCS increased and anodal tDCS decreased contrast sensitivity. Overall, effects of tDCS were largest for oblique stimuli presented at high spatial frequencies (i.e., 8 and 12 cycles/°), and were small or absent at lower spatial frequencies, other orientations and stimulus size. Thus, the impact of tDCS on contrast sensitivity, and therefore on spatial frequency channel operations, is opposite in direction to other behavioral effects of tDCS, and only measurable in stimuli that generally elicit lower contrast sensitivity (e.g., oblique gratings with period of 1.5 cycles at spatial frequencies above the peak of the contrast sensitivity function).
Collapse
Affiliation(s)
- Bruno Richard
- Department of Psychology, Concordia University, Montreal QC, Canada ; Department of Psychology, University of York York, UK
| | - Aaron P Johnson
- Department of Psychology, Concordia University, Montreal QC, Canada
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo ON, Canada ; School of Optometry and Vision Science, The University of Auckland Auckland, New Zealand
| | - Bruce C Hansen
- Department of Psychology and Neuroscience Program, Colgate University, Hamilton NY, USA
| |
Collapse
|
5
|
Tehovnik EJ, Slocum WM. Electrical induction of vision. Neurosci Biobehav Rev 2013; 37:803-18. [PMID: 23535445 DOI: 10.1016/j.neubiorev.2013.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/28/2013] [Accepted: 03/17/2013] [Indexed: 11/26/2022]
Abstract
We assess what monkeys see during electrical stimulation of primary visual cortex (area V1) and relate the findings to visual percepts evoked electrically from human V1. Discussed are: (1) the electrical, cytoarchitectonic, and visuo-behavioural factors that affect the ability of monkeys to detect currents in V1; (2) the methods used to ascertain what monkeys see when electrical stimulation is delivered to V1; (3) a corticofugal mechanism for the induction of visual percepts; and (4) the quantity of information transferred to V1 by electrical stimulation. Experiments are proposed that should advance our understanding of how electrical stimulation affects macaque and human V1. This work contributes to the development of a cortical visual prosthesis for the blind. We dedicate this work to the late Robert W. Doty.
Collapse
|
6
|
Tehovnik EJ, Slocum WM, Smirnakis SM, Tolias AS. Microstimulation of visual cortex to restore vision. PROGRESS IN BRAIN RESEARCH 2009; 175:347-75. [PMID: 19660667 DOI: 10.1016/s0079-6123(09)17524-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review argues that one reason why a functional visuo-cortical prosthetic device has not been developed to restore even minimal vision to blind individuals is because there is no animal model to guide the design and development of such a device. Over the past 8 years we have been conducting electrical microstimulation experiments on alert behaving monkeys with the aim of better understanding how electrical stimulation of the striate cortex (area V1) affects oculo- and skeleto-motor behaviors. Based on this work and upon review of the literature, we arrive at several conclusions: (1) As with the development of the cochlear implant, the development of a visuo-cortical prosthesis can be accelerated by using animals to test the perceptual effects of microstimulating V1 in intact and blind monkeys. (2) Although a saccade-based paradigm is very convenient for studying the effectiveness of delivering stimulation to V1 to elicit saccadic eye movements, it is less ideal for probing the volitional state of monkeys, as they perceive electrically induced phosphenes. (3) Electrical stimulation of V1 can delay visually guided saccades generated to a punctate target positioned in the receptive field of the stimulated neurons. We call the region of visual space affected by the stimulation a delay field. The study of delay fields has proven to be an efficient way to study the size and shape of phosphenes generated by stimulation of macaque V1. (4) An alternative approach to ascertain what monkeys see during electrical stimulation of V1 is to have them signal the detection of current with a lever press. Monkeys can readily detect currents of 1-2 microA delivered to V1. In order to evoke featured phosphenes currents of under 5 microA will be necessary. (5) Partially lesioning the retinae of monkeys is superior to completely lesioning the retinae when determining how blindness affects phosphene induction. We finish by proposing a future experimental paradigm designed to determine what monkeys see when stimulation is delivered to V1, by assessing how electrical fields generated through multiple electrodes interact for the production of phosphenes, and by depicting a V1 circuit that could mediate electrically induced phosphenes.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|
7
|
Antal A, Paulus W. Transcranial Direct Current Stimulation and Visual Perception. Perception 2008; 37:367-74. [DOI: 10.1068/p5872] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Membrane potentials and spike sequences represent the basic modes of cerebral information processing. Both can be externally modulated in humans by quite specific techniques: transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS). These methods induce reversible circumscribed cortical excitability changes, either excitatory or inhibitory, outlasting stimulation in time. Experimental pharmacological interventions may selectively enhance the duration of the aftereffects. Whereas rTMS induces externally triggered changes in the neuronal spiking pattern and interrupts or excites neuronal firing in a spatially and temporally restricted fashion, tDCS modulates the spontaneous firing rates of neurons by changing resting-membrane potential. The easiest and most common way of evaluating the cortical excitability changes is by applying TMS to the motor cortex, since it allows reproducible quantification through the motor-evoked potential. Threshold determinations at the visual cortex or psychophysical methods usually require repeated and longer measurements and thus more time for each data set. Here, results derived from the use of tDCS in visual perception, including contrast as well as motion detection and visuo – motor coordination and learning, are summarised. It is demonstrated that visual functions can be transiently altered by tDCS, as has been shown for the motor cortex previously. Up- and down-regulation of different cortical areas by tDCS is likely to open a new branch in the field of visual psychophysics.
Collapse
Affiliation(s)
- Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, D 37075 Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, D 37075 Göttingen, Germany
| |
Collapse
|
8
|
Abstract
It is well known that electrical activation of striate cortex (area V1) can disrupt visual behavior. Based on this knowledge, we discovered that electrical microstimulation of V1 in macaque monkeys delays saccadic eye movements when made to visual targets located in the receptive field of the stimulated neurons. This review discusses the following issues. First, the parameters that affect the delay of saccades by microstimulation of V1 are reviewed. Second, the excitability properties of the V1 elements mediating the delay are discussed. Third, the properties that determine the size and shape of the region of visual space affected by stimulation of V1 are described. This region is called a delay field. Fourth, whether the delay effect is mainly due to a disruption of the visual signal transmitted through V1 or whether it is a disturbance of the motor signal transmitted between V1 and the brain stem saccade generator is investigated. Fifth, the properties of delay fields are used to estimate the number of elements activated directly by electrical microstimulation of macaque V1. Sixth, these properties are used to make inferences about the characteristics of visual percepts induced by such stimulation. Seventh, the disruptive effects of V1 stimulation in monkeys and humans are compared. Eighth, a cortical mechanism to account for the disruptive effects of V1 stimulation is proposed. Finally, these effects are related to normal vision.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Dept. of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Bldg. 46-6041, Cambridge, MA 02139, USA.
| | | |
Collapse
|
9
|
Chadaide Z, Arlt S, Antal A, Nitsche MA, Lang N, Paulus W. Transcranial direct current stimulation reveals inhibitory deficiency in migraine. Cephalalgia 2007; 27:833-9. [PMID: 17498207 DOI: 10.1111/j.1468-2982.2007.01337.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The issue of interictal excitability of cortical neurons in migraine patients is controversial: some studies have reported hypo-, others hyperexcitability. The aim of the present study was to observe the dynamics of this basic interictal state by further modulating the excitability level of the visual cortex using transcranial direct current stimulation (tDCS) in migraineurs with and without aura. In healthy subjects anodal tDCS decreases, cathodal stimulation increases transcranial magnetic stimulation (TMS)-elicited phosphene thresholds (PT), which is suggested as a representative value of visual cortex excitability. Compared with healthy controls, migraine patients tended to show lower baseline PT values, but this decrease failed to reach statistical significance. Anodal stimulation decreased phosphene threshold in migraineurs similarly to controls, having a larger effect in migraineurs with aura. Cathodal stimulation had no significant effect in the patient groups. This result strengthens the notion of deficient inhibitory processes in the cortex of migraineurs, which is selectively revealed by activity-modulating cortical input.
Collapse
Affiliation(s)
- Z Chadaide
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Antal A, Nitsche MA, Paulus W. Transcranial direct current stimulation and the visual cortex. Brain Res Bull 2006; 68:459-63. [PMID: 16459203 DOI: 10.1016/j.brainresbull.2005.10.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/30/2005] [Accepted: 10/07/2005] [Indexed: 11/28/2022]
Abstract
Neuroplastic changes are defined as enduring changes in the organization of the central nervous system, such as the strength of connections, representational patterns, or neuronal properties, either morphological or functional. In recent years, new tools have emerged to induce and manipulate ongoing neuroplastic changes by external stimulation, either by modification of synchronized neuronal activity or modulation of the spontaneous firing rate. The first is performed by transcranial magnetic stimulation (TMS), the latter by direct current stimulation (tDCS). tDCS as a tool aims to induce prolonged neuronal excitability and activity alterations in the human brain via alterations of the neuronal membrane potential and results in prolonged synaptic efficacy changes. Apart from its impressive persistent excitability effects, it is a non-invasive method and can be applied painlessly. Most likely that up- or downregulation of different cortical areas by tDCS will open a new branch in the area of visual psychophysics.
Collapse
Affiliation(s)
- Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University of Göttingen, 37075 Göttingen, Germany.
| | | | | |
Collapse
|
11
|
Tehovnik EJ, Slocum WM, Carvey CE, Schiller PH. Phosphene Induction and the Generation of Saccadic Eye Movements by Striate Cortex. J Neurophysiol 2005; 93:1-19. [PMID: 15371496 DOI: 10.1152/jn.00736.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this review is to critically examine phosphene induction and saccadic eye movement generation by electrical microstimulation of striate cortex (area V1) in humans and monkeys. The following issues are addressed: 1) Properties of electrical stimulation as they pertain to the activation of V1 elements; 2) the induction of phosphenes in sighted and blind human subjects elicited by electrical stimulation using various stimulation parameters and electrode types; 3) the induction of phosphenes with electrical microstimulation of V1 in monkeys; 4) the generation of saccadic eye movements with electrical microstimulation of V1 in monkeys; and 5) the tasks involved for the development of a cortical visual prosthesis for the blind. In this review it is concluded that electrical microstimulation of area V1 in trained monkeys can be used to accelerate the development of an effective prosthetic device for the blind.
Collapse
Affiliation(s)
- E J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts, Institute of Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|
12
|
Antal A, Nitsche MA, Kruse W, Kincses TZ, Hoffmann KP, Paulus W. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci 2004; 16:521-7. [PMID: 15165345 DOI: 10.1162/089892904323057263] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The primary aim of this study was to determine the extent to which human MT+/V5, an extrastriate visual area known to mediate motion processing, is involved in visuomotor coordination. To pursue this we increased or decreased the excitability of MT+/V5, primary motor, and primary visual cortex by the application of 7 min of anodal and cathodal transcranial direct current stimulation (tDCS) in healthy human subjects while they were performing a visuomotor tracking task involving hand movements. The percentage of correct tracking movements increased specifically during and immediately after cathodal stimulation, which decreases cortical excitability, only when V5 was stimulated. None of the other stimulation conditions affected visuomotor performance. We propose that the improvement in performance caused by cathodal tDCS of V5 is due to a focusing effect on to the complex motion perception conditions involved in this task. This hypothesis was proven by additional experiments: Testing simple and complex motion perception in dot kinetograms, we found that a diminution in excitability induced by cathodal stimulation improved the subject's perception of the direction of the coherent motion only if this was presented among random dots (complex motion perception), and worsened it if only one motion direction was presented (simple movement perception). Our data suggest that area V5 is critically involved in complex motion perception and identification processes important for visuomotor coordination. The results also raise the possibility of the usefulness of tDCS in rehabilitation strategies for neurological patients with visuomotor disorders.
Collapse
Affiliation(s)
- Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University of Göttingen, Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Antal A, Nitsche MA, Kincses TZ, Kruse W, Hoffmann KP, Paulus W. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J Neurosci 2004; 19:2888-92. [PMID: 15147322 DOI: 10.1111/j.1460-9568.2004.03367.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Performance of visuo-motor tasks requires the transfer of visual data to motor performance and depends highly on visual perception and cognitive processing, mainly during the learning phase. The primary aim of this study was to determine if the human middle temporal (MT)+/V5, an extrastriate visual area that is known to mediate motion processing, and the primary motor cortex are involved in learning of visuo-motor coordination tasks. To pursue this, we increased or decreased MT+/V5, primary contralateral motor (M1) and primary visual cortex excitability by 10 min of anodal or cathodal transcranial direct current stimulation in healthy human subjects during the learning phase of a visually guided tracking task. The percentage of correct tracking movements increased significantly in the early learning phase during anodal stimulation, but only when the left V5 or M1 was stimulated. Cathodal stimulation had no significant effect. Also, stimulation of the primary visual cortex was not effective for this kind of task. Our data suggest that the areas V5 and M1 are involved in the early phase of learning of visuo-motor coordination.
Collapse
Affiliation(s)
- Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University of Göttingen, 37075 Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W. Modulation of cortical excitability by weak direct current stimulation--technical, safety and functional aspects. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2004; 56:255-76. [PMID: 14677403 DOI: 10.1016/s1567-424x(09)70230-2] [Citation(s) in RCA: 421] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Michael A Nitsche
- Department of Clinical Neurophysiology, University of Göttingen, Robert Koch Strasse 40, D-37075 Götingen, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Antal A, Nitsche MA, Paulus W. Transcranial magnetic and direct current stimulation of the visual cortex. ACTA ACUST UNITED AC 2004; 56:291-304. [PMID: 14677406 DOI: 10.1016/s1567-424x(09)70233-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University, Robert Koch Strasse 40, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
16
|
Kincses TZ, Antal A, Nitsche MA, Bártfai O, Paulus W. Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia 2004; 42:113-7. [PMID: 14615081 DOI: 10.1016/s0028-3932(03)00124-6] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of our study was to test if the electrical stimulation of the prefrontal cortex (PFC) could modify probabilistic classification learning (PCL). Transcranial direct current stimulation (tDCS) was administered to the left prefrontal and to the primary visual cortex of 22 healthy subjects while they performed a PCL task. In this task subjects learned which of two outcomes would occur on each trial after presentation of a particular combination of cues. Ten minutes of anodal, but not cathodal, stimulation improved implicit learning only when the left PFC was stimulated. Our results show that implicit PLC can be modified by weak anodal tDCS, which probably increases neural excitability, as has been shown in the motor and visual cortices previously. Our results suggest that further studies on the facilitation of learning and memory processes by tDCS are warranted.
Collapse
Affiliation(s)
- Tamás Z Kincses
- Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|
17
|
Antal A, Kincses TZ, Nitsche MA, Paulus W. Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Exp Brain Res 2003; 150:375-8. [PMID: 12698316 DOI: 10.1007/s00221-003-1459-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Accepted: 02/26/2003] [Indexed: 10/20/2022]
Abstract
Transcranial direct current stimulation (tDCS) can modulate the excitability of the human motor cortex, as revealed by the amplitude of the motor-evoked potentials (MEP). The aim of our study has been to produce localized changes of cerebral excitability of the visual cortex in the intact human by weak anodal and cathodal stimulation. For quantification of current-induced excitability changes, we measured phosphene threshold (PT) using short trains of 5-Hz transcranial magnetic stimulation (TMS) pulses in nine healthy subjects before, immediately after, 10 min, and 20 min after the end of tDCS. PTs are suggested as representative values of visual cortex excitability changes. Reduced PT was detected immediately and 10 min after the end of anodal stimulation, while cathodal stimulation resulted in an opposite effect. Our results show that tDCS elicits a transient, reversible excitability alteration of the visual cortex, thus representing a promising tool for neuroplasticity research.
Collapse
Affiliation(s)
- Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37070 Göttingen, Germany.
| | | | | | | |
Collapse
|
18
|
Abstract
Static and dynamic contrast sensitivities (sCS and dCS) were evaluated before, during, immediately after and 10 min after anodal and cathodal transcranial direct current stimulation (tDCS) applied to the occipital cortex of 15 healthy subjects. Using 4 c/d spatial and 4 Hz temporal frequencies significant sCS and dCS loss was found during and immediately after 7 min cathodal stimulation while anodal stimulation had no effect. Ten minutes after the end of the stimulation the sCS and dCS values had reached the baseline levels. Our results show that primary visual functions, such as contrast detection can be transiently altered by transcranial weak direct current stimulation, most probably modulating neural excitability, as has been shown in the motor cortex previously. The present study also support the view that this method using weak current can be a non-invasive promising tool to induce reversible focal changes in the nervous system.
Collapse
Affiliation(s)
- A Antal
- Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Str. 40, 37070 Göttingen, Germany
| | | | | |
Collapse
|
19
|
Frommer GP, Campos-Domingo MP. Disruption of tactile discrimination in rats by bilateral stimulation of midbrain lemniscal pathways. Physiol Behav 1985; 34:205-11. [PMID: 4001183 DOI: 10.1016/0031-9384(85)90107-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bilateral stimulation in the midbrain medial lemniscus disrupted tactile discrimination in four of nine rats. Single conditioning shocks in the midbrain of these animals attenuated by more than 80% the somatosensory cortical evoked responses elicited by test shocks to the contralateral forepaw. Midbrain stimulation did not selectively disrupt discrimination in the remaining five rats, and midbrain conditioning shocks attenuated the cortical test response by less than 80% on at least one side. The four rats that showed disrupted discrimination and bilaterally strong attenuation of cortical responses also had both midbrain electrodes in or next to the medial lemniscus. The five rats that did not show these effects had at least one midbrain electrode away from that structure.
Collapse
|
20
|
|
21
|
Rosen SC, Stamm JS. Transcortical polarization: facilitation of delayed response performance by monkeys. Exp Neurol 1972; 35:282-9. [PMID: 4624141 DOI: 10.1016/0014-4886(72)90154-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|