1
|
Zhuang X, Li R, Jiang L. A century journey of organelles research in the plant endomembrane system. THE PLANT CELL 2024; 36:1312-1333. [PMID: 38226685 PMCID: PMC11062446 DOI: 10.1093/plcell/koae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
We are entering an exciting century in the study of the plant organelles in the endomembrane system. Over the past century, especially within the past 50 years, tremendous advancements have been made in the complex plant cell to generate a much clearer and informative picture of plant organelles, including the molecular/morphological features, dynamic/spatial behavior, and physiological functions. Importantly, all these discoveries and achievements in the identification and characterization of organelles in the endomembrane system would not have been possible without: (1) the innovations and timely applications of various state-of-art cell biology tools and technologies for organelle biology research; (2) the continuous efforts in developing and characterizing new organelle markers by the plant biology community; and (3) the landmark studies on the identification and characterization of the elusive organelles. While molecular aspects and results for individual organelles have been extensively reviewed, the development of the techniques for organelle research in plant cell biology is less appreciated. As one of the ASPB Centennial Reviews on "organelle biology," here we aim to take a journey across a century of organelle biology research in plants by highlighting the important tools (or landmark technologies) and key scientists that contributed to visualize organelles. We then highlight the landmark studies leading to the identification and characterization of individual organelles in the plant endomembrane systems.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Zheng P, Zheng C, Otegui MS, Li F. Endomembrane mediated-trafficking of seed storage proteins: from Arabidopsis to cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1312-1326. [PMID: 34849750 DOI: 10.1093/jxb/erab519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/31/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Seed storage proteins (SSPs) are of great importance in plant science and agriculture, particularly in cereal crops, due to their nutritional value and their impact on food properties. During seed maturation, massive amounts of SSPs are synthesized and deposited either within protein bodies derived from the endoplasmic reticulum, or into specialized protein storage vacuoles (PSVs). The processing and trafficking of SSPs vary among plant species, tissues, and even developmental stages, as well as being influenced by SSP composition. The different trafficking routes, which affect the amount of SSPs that seeds accumulate and their composition and modifications, rely on a highly dynamic and functionally specialized endomembrane system. Although the general steps in SSP trafficking have been studied in various plants, including cereals, the detailed underlying molecular and regulatory mechanisms are still elusive. In this review, we discuss the main endomembrane routes involved in SSP trafficking to the PSV in Arabidopsis and other eudicots, and compare and contrast the SSP trafficking pathways in major cereal crops, particularly in rice and maize. In addition, we explore the challenges and strategies for analyzing the endomembrane system in cereal crops.
Collapse
Affiliation(s)
- Ping Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- School of Life Science, Huizhou University, Huizhou, China
| | - Chunyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Marisa S Otegui
- Department of Botany, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WIUSA
| | - Faqiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Arcalis E, Mainieri D, Vitale A, Stöger E, Pedrazzini E. Progressive Aggregation of 16 kDa Gamma-Zein during Seed Maturation in Transgenic Arabidopsis thaliana. Int J Mol Sci 2021; 22:12671. [PMID: 34884476 PMCID: PMC8658034 DOI: 10.3390/ijms222312671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
Prolamins constitute a unique class of seed storage proteins, present only in grasses. In the lumen of the endoplasmic reticulum (ER), prolamins form large, insoluble heteropolymers termed protein bodies (PB). In transgenic Arabidopsis (Arabidopsis thaliana) leaves, the major maize (Zea mays) prolamin, 27 kDa γ-zein (27γz), assembles into insoluble disulfide-linked polymers, as in maize endosperm, forming homotypic PB. The 16 kDa γ-zein (16γz), evolved from 27γz, instead forms disulfide-bonded dispersed electron-dense threads that enlarge the ER lumen without assembling into PB. We have investigated whether the peculiar features of 16γz are also maintained during transgenic seed development. We show that 16γz progressively changes its electron microscopy appearance during transgenic Arabidopsis embryo maturation, from dispersed threads to PB-like, compact structures. In mature seeds, 16γz and 27γz PBs appear very similar. However, when mature embryos are treated with a reducing agent, 27γz is fully solubilized, as expected, whereas 16γz remains largely insoluble also in reducing conditions and drives insolubilization of the ER chaperone BiP. These results indicate that 16γz expressed in the absence of the other zein partners forms aggregates in a storage tissue, strongly supporting the view that 16γz behaves as the unassembled subunit of a large heteropolymer, the PB, and could have evolved successfully only following the emergence of the much more structurally self-sufficient 27γz.
Collapse
Affiliation(s)
- Elsa Arcalis
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, 1190 Wien, Austria
| | - Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, CNR, 20133 Milano, Italy
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, CNR, 20133 Milano, Italy
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, 1190 Wien, Austria
| | | |
Collapse
|
4
|
Zhang X, Li H, Lu H, Hwang I. The trafficking machinery of lytic and protein storage vacuoles: how much is shared and how much is distinct? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3504-3512. [PMID: 33587748 DOI: 10.1093/jxb/erab067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 05/10/2023]
Abstract
Plant cells contain two types of vacuoles, the lytic vacuole (LV) and protein storage vacuole (PSV). LVs are present in vegetative cells, whereas PSVs are found in seed cells. The physiological functions of the two types of vacuole differ. Newly synthesized proteins must be transported to these vacuoles via protein trafficking through the endomembrane system for them to function. Recently, significant advances have been made in elucidating the molecular mechanisms of protein trafficking to these organelles. Despite these advances, the relationship between the trafficking mechanisms to the LV and PSV remains unclear. Some aspects of the trafficking mechanisms are common to both types of vacuole, but certain aspects are specific to trafficking to either the LV or PSV. In this review, we summarize recent findings on the components involved in protein trafficking to both the LV and PSV and compare them to examine the extent of overlap in the trafficking mechanisms. In addition, we discuss the interconnection between the LV and PSV provided by the protein trafficking machinery and the implications for the identity of these organelles.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Inhwan Hwang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Department of Life Sciences, Pohang University of Science and Technology, 37673 Pohang, South Korea
| |
Collapse
|
5
|
Fukuda M, Kawagoe Y, Murakami T, Washida H, Sugino A, Nagamine A, Okita TW, Ogawa M, Kumamaru T. The Dual Roles of the Golgi Transport 1 (GOT1B): RNA Localization to the Cortical Endoplasmic Reticulum and the Export of Proglutelin and α-Globulin from the Cortical ER to the Golgi. PLANT & CELL PHYSIOLOGY 2016; 57:2380-2391. [PMID: 27565205 DOI: 10.1093/pcp/pcw154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/08/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The rice glup2 lines are characterized by their abnormally high levels of endosperm 57 kDa proglutelins and of the luminal chaperone binding protein (BiP), features characteristic of a defect within the endoplasmic reticulum (ER). To elucidate the underlying genetic basis, the glup2 locus was identified by map based cloning. DNA sequencing of the genomes of three glup2 alleles and wild type demonstrated that the underlying genetic basis was mutations in the Golgi transport 1 (GOT1B) coding sequence. This conclusion was further validated by restoration of normal proglutelin levels in a glup2 line complemented by a GOT1B gene. Microscopic analyses indicated the presence of proglutelin-α-globulin-containing intracisternal granules surrounded by prolamine inclusions within the ER lumen. As assessed by in situ reverse transcriptase polymerase chain reaction (RT-PCR) analysis of developing endosperm sections, prolamine and α-globulin RNAs were found to be mis-targeted from their usual sites on the protein body ER to the cisternal ER, the normal sites of proglutelin synthesis. Our results indicate that GLUP2/GOT1B has a dual role during rice endosperm development. It is required for localization of prolamine and α-globulin RNAs to the protein body ER and for efficient export of proglutelin and α-globulin proteins from the ER to the Golgi apparatus.
Collapse
Affiliation(s)
- Masako Fukuda
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yasushi Kawagoe
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Deceased
| | | | - Haruhiko Washida
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
- Present address: U-TEC Corporation, 648-1 Matsukasa, Yamatokoriyama, Nara 639-1124, Japan
| | - Aya Sugino
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | - Ai Nagamine
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | - Masahiro Ogawa
- Department of General Education, Yamaguchi Prefectural University, Yamaguchi 753-8502, Japan
| | | |
Collapse
|
6
|
AtNHX5 and AtNHX6 Are Required for the Subcellular Localization of the SNARE Complex That Mediates the Trafficking of Seed Storage Proteins in Arabidopsis. PLoS One 2016; 11:e0151658. [PMID: 26986836 PMCID: PMC4795774 DOI: 10.1371/journal.pone.0151658] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2015] [Accepted: 03/02/2016] [Indexed: 12/02/2022] Open
Abstract
The SNARE complex composed of VAMP727, SYP22, VTI11 and SYP51 is critical for protein trafficking and PSV biogenesis in Arabidopsis. This SNARE complex directs the fusion between the prevacuolar compartment (PVC) and the vacuole, and thus mediates protein trafficking to the vacuole. In this study, we examined the role of AtNHX5 and AtNHX6 in regulating this SNARE complex and its function in protein trafficking. We found that AtNHX5 and AtNHX6 were required for seed production, protein trafficking and PSV biogenesis. We further found that the nhx5 nhx6 syp22 triple mutant showed severe defects in seedling growth and seed development. The triple mutant had short siliques and reduced seed sets, but larger seeds. In addition, the triple mutant had numerous smaller protein storage vacuoles (PSVs) and accumulated precursors of the seed storage proteins in seeds. The PVC localization of SYP22 and VAMP727 was repressed in nhx5 nhx6, while a significant amount of SYP22 and VAMP727 was trapped in the Golgi or TGN in nhx5 nhx6. AtNHX5 and AtNHX6 were co-localized with SYP22 and VAMP727. Three conserved acidic residues, D164, E188, and D193 in AtNHX5 and D165, E189, and D194 in AtNHX6, were essential for the transport of the storage proteins, indicating the importance of exchange activity in protein transport. AtNHX5 or AtNHX6 did not interact physically with the SNARE complex. Taken together, AtNHX5 and AtNHX6 are required for the PVC localization of the SNARE complex and hence its function in protein transport. AtNHX5 and AtNHX6 may regulate the subcellular localization of the SNARE complex by their transport activity.
Collapse
|
7
|
Hegedus DD, Coutu C, Harrington M, Hope B, Gerbrandt K, Nikolov I. Multiple internal sorting determinants can contribute to the trafficking of cruciferin to protein storage vacuoles. PLANT MOLECULAR BIOLOGY 2015; 88:3-20. [PMID: 25702284 DOI: 10.1007/s11103-015-0297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/27/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Trafficking of seed storage proteins to protein storage vacuoles is mediated by carboxy terminal and internal sorting determinants (ISDs). Protein modelling was used to identify candidate ISDs residing near surface-exposed regions in Arabidopsis thaliana cruciferin A (AtCruA). These were verified by AtCruA fusion to yellow fluorescent protein (YFP) and expression in developing embryos of A. thaliana. As the presence of endogenous cruciferin was found to mask the effects of weaker ISDs, experiments were conducted in a line that was devoid of cruciferin. In total, nine ISDs were discovered and a core determinant defined using a series of alanine scanning and deletion mutant variants. Coupling of functional data from AtCruA ISD-YFP fusions with statistical analysis of the physiochemical properties of analogous regions from several 11/12S globulins revealed that cruciferin ISDs likely adhere to the following rules: (1) ISDs are adjacent to or within hydrophilic, surface-exposed regions that serve to present them on the protein's surface; (2) ISDs generally have a hydrophobic character; (3) ISDs tend to have Leu or Ile residues at their core; (4) ISDs are approximately eight amino acids long with the physiochemical consensus [hydrophobic][preferably charged][small or hydrophobic, but not tiny][IL][polar, preferably charged][small, but not charged][hydrophobic, not charged, preferably not polar][hydrophobic, not tiny, preferably not polar]. Microscopic evidence is also presented for the presence of an interconnected protein storage vacuolar network in embryo cells, rather than discreet, individual vacuoles.
Collapse
Affiliation(s)
- Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada,
| | | | | | | | | | | |
Collapse
|
8
|
Li L, Shimada T, Takahashi H, Koumoto Y, Shirakawa M, Takagi J, Zhao X, Tu B, Jin H, Shen Z, Han B, Jia M, Kondo M, Nishimura M, Hara-Nishimura I. MAG2 and three MAG2-INTERACTING PROTEINs form an ER-localized complex to facilitate storage protein transport in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:781-91. [PMID: 24118572 DOI: 10.1111/tpj.12347] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/11/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 05/20/2023]
Abstract
In Arabidopsis thaliana, MAIGO 2 (MAG2) is involved in protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus via its association with the ER-localized t-SNARE components SYP81/AtUfe1 and SEC20. To characterize the molecular machinery of MAG2-mediated protein transport, we explored MAG2-interacting proteins using transgenic A. thaliana plants expressing TAP-tagged MAG2. We identified three proteins, which were designated as MAG2-INTERACTING PROTEIN 1-3 [MIP1 (At2g32900), MIP2 (At5g24350) and MIP3 (At2g42700)]. Both MIP1 and MAG2 localized to the ER membrane. All of the mag2, mip1, mip2 and mip3 mutants exhibited a defect in storage protein maturation, and developed abnormal storage protein body (MAG body) structures in the ER of seed cells. These observations suggest that MIPs are closely associated with MAG2 and function in protein transport between the ER and Golgi apparatus. MIP1 and MIP2 contain a Zeste-White 10 (ZW10) domain and a Sec39 domain, respectively, but have low sequence identities (21% and 23%) with respective human orthologs. These results suggest that the plant MAG2-MIP1-MIP2 complex is a counterpart of the triple-subunit tethering complexes in yeast (Tip20p-Dsl1p-Sec39p) and humans (RINT1-ZW10-NAG). Surprisingly, the plant complex also contained a fourth member (MIP3) with a Sec1 domain. There have been no previous reports showing that a Sec1-containing protein is a subunit of ER-localized tethering complexes. Our results suggest that MAG2 and the three MIP proteins form a unique complex on the ER that is responsible for efficient transport of seed storage proteins.
Collapse
Affiliation(s)
- Lixin Li
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fukuda M, Wen L, Satoh-Cruz M, Kawagoe Y, Nagamura Y, Okita TW, Washida H, Sugino A, Ishino S, Ishino Y, Ogawa M, Sunada M, Ueda T, Kumamaru T. A guanine nucleotide exchange factor for Rab5 proteins is essential for intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm. PLANT PHYSIOLOGY 2013; 162:663-74. [PMID: 23580596 PMCID: PMC3668061 DOI: 10.1104/pp.113.217869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/02/2023]
Abstract
Rice (Oryza sativa) glutelins are synthesized on the endoplasmic reticulum as a precursor, which are then transported via the Golgi to protein storage vacuoles (PSVs), where they are proteolytically processed into acidic and basic subunits. The glutelin precursor mutant6 (glup6) accumulates abnormally large amounts of proglutelin. Map-base cloning studies showed that glup6 was a loss-of-function mutant of guanine nucleotide exchange factor (GEF), which activates Rab GTPase, a key regulator of membrane trafficking. Immunofluorescence studies showed that the transport of proglutelins and α-globulins to PSV was disrupted in glup6 endosperm. Secreted granules of glutelin and α-globulin were readily observed in young glup6 endosperm, followed by the formation of large dilated paramural bodies (PMBs) containing both proteins as the endosperm matures. The PMBs also contained membrane biomarkers for the Golgi and prevacuolar compartment as well as the cell wall component, β-glucan. Direct evidence was gathered showing that GLUP6/GEF activated in vitro GLUP4/Rab5 as well as several Arabidopsis (Arabidopsis thaliana) Rab5 isoforms to the GTP-bound form. Therefore, loss-of-function mutations in GEF or Rab5 disrupt the normal transport of proglutelin from the Golgi to PSVs, resulting in the initial extracellular secretion of these proteins followed, in turn, by the formation of PMBs. Overall, our results indicate that GLUP6/GEF is the activator of Rab5 GTPase and that the cycling of GTP- and GDP-bound forms of this regulatory protein is essential for the intracellular transport of proglutelin and α-globulin from the Golgi to PSVs and in the maintenance of the general structural organization of the endomembrane system in rice seeds.
Collapse
|
10
|
Xiang L, Etxeberria E, den Ende W. Vacuolar protein sorting mechanisms in plants. FEBS J 2013; 280:979-93. [DOI: 10.1111/febs.12092] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2012] [Revised: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Li Xiang
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| | - Ed Etxeberria
- Horticulture Department Citrus Research and Education Center University of Florida Lake Alfred FL USA
| | - Wim den Ende
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| |
Collapse
|
11
|
Fukuda M, Satoh-Cruz M, Wen L, Crofts AJ, Sugino A, Washida H, Okita TW, Ogawa M, Kawagoe Y, Maeshima M, Kumamaru T. The small GTPase Rab5a is essential for intracellular transport of proglutelin from the Golgi apparatus to the protein storage vacuole and endosomal membrane organization in developing rice endosperm. PLANT PHYSIOLOGY 2011; 157:632-44. [PMID: 21825104 PMCID: PMC3192576 DOI: 10.1104/pp.111.180505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/01/2011] [Accepted: 08/03/2011] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa) glutelins are synthesized on the endoplasmic reticulum as larger precursors, which are then transported via the Golgi to the protein storage vacuole (PSV), where they are processed into acidic and basic subunits. Three independent glutelin precursor mutant4 (glup4) rice lines, which accumulated elevated levels of proglutelin over the wild type, were identified as loss-of-function mutants of Rab5a, the small GTPase involved in vesicular membrane transport. In addition to the plasma membrane, Rab5a colocalizes with glutelins on the Golgi apparatus, Golgi-derived dense vesicles, and the PSV, suggesting that Rab5a participates in the transport of the proglutelin from the Golgi to the PSV. This spatial distribution pattern was dramatically altered in the glup4 mutants. Numerous smaller protein bodies containing glutelin and α-globulin were evident, and the proteins were secreted extracellularly. Moreover, all three independent glup4 allelic lines displayed the novel appearance of a large dilated, structurally complex paramural body containing proglutelins, α-globulins, membrane biomarkers for the Golgi apparatus, prevacuolar compartment, PSV, and the endoplasmic reticulum luminal chaperones BiP and protein disulfide isomerase as well as β-glucan. These results indicate that the formation of the paramural bodies in glup4 endosperm was due to a significant disruption of endocytosis and membrane vesicular transport by Rab5a loss of function. Overall, Rab5a is required not only for the intracellular transport of proglutelins from the Golgi to the PSV in rice endosperm but also in the maintenance of the general structural organization of the endomembrane system in developing rice seeds.
Collapse
|
12
|
Bottanelli F, Foresti O, Hanton S, Denecke J. Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. THE PLANT CELL 2011; 23:3007-25. [PMID: 21856792 PMCID: PMC3180807 DOI: 10.1105/tpc.111.085480] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/22/2011] [Revised: 06/17/2011] [Accepted: 07/14/2011] [Indexed: 05/15/2023]
Abstract
We tested if different classes of vacuolar cargo reach the vacuole via distinct mechanisms by interference at multiple steps along the transport route. We show that nucleotide-free mutants of low molecular weight GTPases, including Rab11, the Rab5 members Rha1 and Ara6, and the tonoplast-resident Rab7, caused induced secretion of both lytic and storage vacuolar cargo. In situ analysis in leaf epidermis cells indicates a sequential action of Rab11, Rab5, and Rab7 GTPases. Compared with Rab5 members, mutant Rab11 mediates an early transport defect interfering with the arrival of cargo at prevacuoles, while mutant Rab7 inhibits the final delivery to the vacuole and increases cargo levels in prevacuoles. In contrast with soluble cargo, membrane cargo may follow different routes. Tonoplast targeting of an α-TIP chimera was impaired by nucleotide-free Rha1, Ara6, and Rab7 similar to soluble cargo. By contrast, the tail-anchored tonoplast SNARE Vam3 shares only the Rab7-mediated vacuolar deposition step. The most marked difference was observed for the calcineurin binding protein CBL6, which was insensitive to all Rab mutants tested. Unlike soluble cargo, α-TIP and Vam3, CBL6 transport to the vacuole was COPII independent. The results indicate that soluble vacuolar proteins follow a single route to vacuoles, while membrane spanning proteins may use at least three different transport mechanisms.
Collapse
Affiliation(s)
| | | | | | - Jürgen Denecke
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
13
|
Conley AJ, Joensuu JJ, Richman A, Menassa R. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:419-33. [PMID: 21338467 DOI: 10.1111/j.1467-7652.2011.00596.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/08/2023]
Abstract
For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification.
Collapse
Affiliation(s)
- Andrew J Conley
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | | | | |
Collapse
|
14
|
Pompa A, De Marchis F, Vitale A, Arcioni S, Bellucci M. An engineered C-terminal disulfide bond can partially replace the phaseolin vacuolar sorting signal. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:782-91. [PMID: 20030752 DOI: 10.1111/j.1365-313x.2009.04113.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/11/2023]
Abstract
Seed storage proteins accumulate either in the endoplasmic reticulum (ER) or in vacuoles, and it would appear that polymerization events play a fundamental role in regulating the choice between the two destinies of these proteins. We previously showed that a fusion between the Phaseolus vulgaris vacuolar storage protein phaseolin and the N-terminal half of the Zea mays prolamin gamma-zein forms interchain disulfide bonds that facilitate the formation of ER-located protein bodies. Wild-type phaseolin does not contain cysteine residues, and assembles into soluble trimers that transiently polymerize before sorting to the vacuole. These transient interactions are abolished when the C-terminal vacuolar sorting signal AFVY is deleted, indicating that they play a role in vacuolar sorting. We reasoned that if the phaseolin interactions directly involve the C terminus of the polypeptide, a cysteine residue introduced into this region could stabilize these transient interactions. Biochemical studies of two mutated phaseolin proteins in which a single cysteine residue was inserted at the C terminus, in the presence (PHSL*) or absence (Delta 418*) of the vacuolar signal AFVY, revealed that these mutated proteins form disulphide bonds. PHSL* had reduced protein solubility and a vacuolar trafficking delay with respect to wild-type protein. Moreover, Delta 418* was in part redirected to the vacuole. Our experiments strongly support the idea that vacuolar delivery of phaseolin is promoted very early in the sorting process, when polypeptides are still contained within the ER, by homotypic interactions.
Collapse
Affiliation(s)
- Andrea Pompa
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche, via della Madonna Alta 130, 06128 Perugia, Italy
| | | | | | | | | |
Collapse
|
15
|
Mora-Montes HM, Bader O, López-Romero E, Zinker S, Ponce-Noyola P, Hube B, Gow NAR, Flores-Carreón A. Kex2 protease converts the endoplasmic reticulum alpha1,2-mannosidase of Candida albicans into a soluble cytosolic form. MICROBIOLOGY-SGM 2009; 154:3782-3794. [PMID: 19047746 PMCID: PMC2885623 DOI: 10.1099/mic.0.2008/019315-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
Cytosolic α-mannosidases are glycosyl hydrolases that participate in the catabolism of cytosolic free N-oligosaccharides. Two soluble α-mannosidases (E-I and E-II) belonging to glycosyl hydrolases family 47 have been described in Candida albicans. We demonstrate that addition of pepstatin A during the preparation of cell homogenates enriched α-mannosidase E-I at the expense of E-II, indicating that the latter is generated by proteolysis during cell disruption. E-I corresponded to a polypeptide of 52 kDa that was associated with mannosidase activity and was recognized by an anti-α1,2-mannosidase antibody. The N-mannan core trimming properties of the purified enzyme E-I were consistent with its classification as a family 47 α1,2-mannosidase. Differential density-gradient centrifugation of homogenates revealed that α1,2-mannosidase E-I was localized to the cytosolic fraction and Golgi-derived vesicles, and that a 65 kDa membrane-bound α1,2-mannosidase was present in endoplasmic reticulum and Golgi-derived vesicles. Distribution of α-mannosidase activity in a kex2Δ null mutant or in wild-type protoplasts treated with monensin demonstrated that the membrane-bound α1,2-mannosidase is processed by Kex2 protease into E-I, recognizing an atypical cleavage site of the precursor. Analysis of cytosolic free N-oligosaccharides revealed that cytosolic α1,2-mannosidase E-I trims free Man8GlcNAc2 isomer B into Man7GlcNAc2 isomer B. This is believed to be the first report demonstrating the presence of soluble α1,2-mannosidase from the glycosyl hydrolases family 47 in a cytosolic compartment of the cell.
Collapse
Affiliation(s)
- Héctor M Mora-Montes
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| | - Oliver Bader
- Robert Koch-Institut, FG16, Nordufer 20, D-13353 Berlin, Germany
| | - Everardo López-Romero
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| | - Samuel Zinker
- Departamento de Genética y Biología Molecular, CINVESTAV del IPN, Apartado Postal 14-740, México DF 07000, Mexico
| | - Patricia Ponce-Noyola
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| | - Bernhard Hube
- Robert Koch-Institut, FG16, Nordufer 20, D-13353 Berlin, Germany
| | - Neil A R Gow
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Arturo Flores-Carreón
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| |
Collapse
|
16
|
Krishnan HB. Preparative procedures markedly influence the appearance and structural integrity of protein storage vacuoles in soybean seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2907-12. [PMID: 18410116 DOI: 10.1021/jf0735228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/26/2023]
Abstract
In legumes, vacuoles serve as the final depository for storage proteins. The protein storage vacuoles (PSVs) of soybean contain electron-transparent globoid regions in which phytic acid ( myo-inositol-1,2,3,4,5,6-hexakisphosphate) is sequestered. This paper reports the effect of preparative procedures on the appearance and ultrastructural integrity of PSVs in soybeans. Electron microscopy examination of both developing and mature soybean seeds that were postfixed with osmium tetroxide revealed PSVs that had a homogeneous appearance with very few globoid crystals dispersed in them. Numerous electron-dense lipid bodies were readily seen in these cells. Omission of osmium tetroxide strikingly altered the appearance of PSVs and aided the visualization of the location of the globoids in the PSVs. In contrast to the osmicated tissue, lipid bodies appeared as electron-transparent spheres. The choice of dehydration reagent or staining procedure had little influence on the appearance of the PSVs. The results of this study demonstrate the profound effect of osmium tetroxide on the appearance and structural integrity of PSVs in soybean.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, and Plant Science Division, University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
17
|
Fuji K, Shimada T, Takahashi H, Tamura K, Koumoto Y, Utsumi S, Nishizawa K, Maruyama N, Hara-Nishimura I. Arabidopsis vacuolar sorting mutants (green fluorescent seed) can be identified efficiently by secretion of vacuole-targeted green fluorescent protein in their seeds. THE PLANT CELL 2007; 19:597-609. [PMID: 17293568 PMCID: PMC1867321 DOI: 10.1105/tpc.106.045997] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/13/2023]
Abstract
Two Arabidopsis thaliana genes have been shown to function in vacuolar sorting of seed storage proteins: a vacuolar sorting receptor, VSR1/ATELP1, and a retromer component, MAIGO1 (MAG1)/VPS29. Here, we show an efficient and simple method for isolating vacuolar sorting mutants of Arabidopsis. The method was based on two findings in this study. First, VSR1 functioned as a sorting receptor for beta-conglycinin by recognizing the vacuolar targeting signal. Second, when green fluorescent protein (GFP) fusion with the signal (GFP-CT24) was expressed in vsr1, mag1/vps29, and wild-type seeds, both vsr1and mag1/vps29 gave strongly fluorescent seeds but the wild type did not, suggesting that a defect in vacuolar sorting provided fluorescent seeds by the secretion of GFP-CT24 out of the cells. We mutagenized transformant seeds expressing GFP-CT24. From approximately 3,000,000 lines of M2 seeds, we obtained >100 fluorescent seeds and designated them green fluorescent seed (gfs) mutants. We report 10 gfs mutants, all of which caused missorting of storage proteins. We mapped gfs1 to VSR1, gfs2 to KAM2/GRV2, gfs10 to the At4g35870 gene encoding a novel membrane protein, and the others to different loci. This method should provide valuable insights into the complex molecular mechanisms underlying vacuolar sorting of storage proteins.
Collapse
Affiliation(s)
- Kentaro Fuji
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Park M, Lee D, Lee GJ, Hwang I. AtRMR1 functions as a cargo receptor for protein trafficking to the protein storage vacuole. ACTA ACUST UNITED AC 2005; 170:757-67. [PMID: 16115960 PMCID: PMC2171354 DOI: 10.1083/jcb.200504112] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Organellar proteins are sorted by cargo receptors on the way to their final destination. However, receptors for proteins that are destined for the protein storage vacuole (PSV) are largely unknown. In this study, we investigated the biological role that Arabidopsis thaliana receptor homology region transmembrane domain ring H2 motif protein (AtRMR) 1 plays in protein trafficking to the PSV. AtRMR1 mainly colocalized to the prevacuolar compartment of the PSV, but a minor portion also localized to the Golgi complex. The coexpression of AtRMR1 mutants that were localized to the Golgi complex strongly inhibited the trafficking of phaseolin to the PSV and caused accumulation of phaseolin in the Golgi complex or its secretion. Coimmunoprecipitation and in vitro binding assays revealed that the lumenal domain of AtRMR1 interacts with the COOH-terminal sorting signal of phaseolin at acidic pH. Furthermore, phaseolin colocalized with AtRMR1 on its way to the PSV. Based on these results, we propose that AtRMR1 functions as the sorting receptor of phaseolin for its trafficking to the PSV.
Collapse
Affiliation(s)
- Misoon Park
- Division of Molecular and Life Sciences, Center for Plant Intracellular Trafficking, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
19
|
Vitale A, Hinz G. Sorting of proteins to storage vacuoles: how many mechanisms? TRENDS IN PLANT SCIENCE 2005; 10:316-23. [PMID: 15950520 DOI: 10.1016/j.tplants.2005.05.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/27/2005] [Revised: 03/24/2005] [Accepted: 05/24/2005] [Indexed: 05/02/2023]
Abstract
Vacuoles receive their proteins through the secretory pathway, this requires protein sorting signals and molecular machineries that, until recently, have been believed to be markedly distinct for lytic and storage vacuoles. However, new biochemical, morphological and genetic data indicate that the only known class of vacuolar sorting receptors, believed to be specific for lytic vacuoles, might also be involved in the sorting of certain storage proteins. Furthermore, storage vacuoles can have a complex multimembrane structure that is difficult to explain based on a single trafficking mechanism. A new array of possible molecular interactions is thus emerging that no longer supports a clear-cut distinction between the two types of vacuoles based on sorting signals and putative receptors.
Collapse
Affiliation(s)
- Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, CNR, 20133 Milano, Italy.
| | | |
Collapse
|
20
|
Takahashi H, Saito Y, Kitagawa T, Morita S, Masumura T, Tanaka K. A Novel Vesicle Derived Directly from Endoplasmic Reticulum is Involved in the Transport of Vacuolar Storage Proteins in Rice Endosperm. ACTA ACUST UNITED AC 2005; 46:245-9. [PMID: 15659439 DOI: 10.1093/pcp/pci019] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
We found novel vesicles derived from rough endoplasmic reticulum (ER) in rice endosperm. The novel vesicles had characteristic structures different from that of the ER-derived protein body type I and the Golgi-derived dense vesicles. Immunocytochemical analysis revealed that the novel vesicles are derived directly from the aggregates of vacuolar storage proteins in the rough ER. In addition, BiP, an ER-resident molecular chaperone, was localized in the novel vesicles, but also in protein storage vacuoles (PSVs). These results suggest that the novel vesicles mediate transport of vacuolar storage proteins directly from the ER to PSVs in rice endosperm.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Laboratory of Genetic Engineering, Graduate School of Agriculture, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522 Japan
| | | | | | | | | | | |
Collapse
|
21
|
Mainieri D, Rossi M, Archinti M, Bellucci M, De Marchis F, Vavassori S, Pompa A, Arcioni S, Vitale A. Zeolin. A new recombinant storage protein constructed using maize gamma-zein and bean phaseolin. PLANT PHYSIOLOGY 2004; 136:3447-56. [PMID: 15502013 PMCID: PMC527144 DOI: 10.1104/pp.104.046409] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/13/2004] [Revised: 06/29/2004] [Accepted: 07/01/2004] [Indexed: 05/19/2023]
Abstract
The major seed storage proteins of maize (Zea mays) and bean (Phaseolus vulgaris), zein and phaseolin, accumulate in the endoplasmic reticulum (ER) and in storage vacuoles, respectively. We show here that a chimeric protein composed of phaseolin and 89 amino acids of gamma-zein, including the repeated and the Pro-rich domains, maintains the main characteristics of wild-type gamma-zein: It is insoluble unless its disulfide bonds are reduced and forms ER-located protein bodies. Unlike wild-type phaseolin, the protein, which we called zeolin, accumulates to very high amounts in leaves of transgenic tobacco (Nicotiana tabacum). A relevant proportion of the ER chaperone BiP is associated with zeolin protein bodies in an ATP-sensitive fashion. Pulse-chase labeling confirms the high affinity of BiP to insoluble zeolin but indicates that, unlike structurally defective proteins that also extensively interact with BiP, zeolin is highly stable. We conclude that the gamma-zein portion is sufficient to induce the formation of protein bodies also when fused to another protein. Because the storage proteins of cereals and legumes nutritionally complement each other, zeolin can be used as a starting point to produce nutritionally balanced and highly stable chimeric storage proteins.
Collapse
Affiliation(s)
- Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Park M, Kim SJ, Vitale A, Hwang I. Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species. PLANT PHYSIOLOGY 2004; 134:625-39. [PMID: 14730078 PMCID: PMC344539 DOI: 10.1104/pp.103.030635] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/22/2003] [Revised: 10/08/2003] [Accepted: 11/04/2003] [Indexed: 05/17/2023]
Abstract
Protein storage vacuoles (PSVs) are specialized vacuoles devoted to the accumulation of large amounts of protein in the storage tissues of plants. In this study, we investigated the presence of the storage vacuole and protein trafficking to the compartment in cells of tobacco (Nicotiana tabacum), common bean (Phaseolus vulgaris), and Arabidopsis leaf tissue. When we expressed phaseolin, the major storage protein of common bean, or an epitope-tagged version of alpha-tonoplast intrinsic protein (alpha-TIP, a tonoplast aquaporin of PSV), in protoplasts derived from leaf tissues, these proteins were targeted to a compartment ranging in size from 2 to 5 microm in all three plant species. Most Arabidopsis leaf cells have one of these organelles. In contrast, from one to five these organelles occurred in bean and tobacco leaf cells. Also, endogenous alpha-TIP is localized in a similar compartment in untransformed leaf cells of common bean and is colocalized with transiently expressed epitope-tagged alpha-TIP. In Arabidopsis, phaseolin contained N-glycans modified by Golgi enzymes and its traffic was sensitive to brefeldin A. However, trafficking of alpha-TIP was insensitive to brefeldin A treatment and was not affected by the dominant-negative mutant of AtRab1. In addition, a modified alpha-TIP with an insertion of an N-glycosylation site has the endoplasmic reticulum-type glycans. Finally, the early step of phaseolin traffic, from the endoplasmic reticulum to the Golgi complex, required the activity of the small GTPase Sar1p, a key component of coat protein complex II-coated vesicles, independent of the presence of the vacuolar sorting signal in phaseolin. Based on these results, we propose that the proteins we analyzed are targeted to the PSV or equivalent organelle in leaf cells and that proteins can be transported to the PSV by two different pathways, the Golgi-dependent and Golgi-independent pathways, depending on the individual cargo proteins.
Collapse
Affiliation(s)
- Misoon Park
- Center for Plant Intracellular Trafficking, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | | | | |
Collapse
|
23
|
Nishizawa K, Maruyama N, Satoh R, Fuchikami Y, Higasa T, Utsumi S. A C-terminal sequence of soybean beta-conglycinin alpha' subunit acts as a vacuolar sorting determinant in seed cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:647-59. [PMID: 12787246 DOI: 10.1046/j.1365-313x.2003.01754.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/24/2023]
Abstract
In maturing seed cells, many newly synthesized proteins are transported to the protein storage vacuoles (PSVs) via vesicles unique to seed cells. Vacuolar sorting determinants (VSDs) in most of these proteins have been determined using leaf, root or suspension-cultured cells apart from seed cells. In this study, we examined the VSD of the alpha' subunit of beta-conglycinin (7S globulin), one of the major seed storage proteins of soybean, using Arabidopsis and soybean seeds. The wild-type alpha' was transported to the matrix of the PSVs in seed cells of transgenic Arabidopsis, and it formed crystalloid-like structures. Some of the wild-type alpha' was also transported to the translucent compartments (TLCs) in the PSV presumed to be the globoid compartments. However, a derivative lacking the C-terminal 10 amino acids was not transported to the PSV matrix, and was secreted out of the cells, although a portion was also transported to the TLCs. The C-terminal region of alpha' was sufficient to transport a green fluorescent protein (GFP) to the PSV matrix. These indicate that alpha' contains two VSDs: one is present in the C-terminal 10 amino acids and is for the PSV matrix; and the other is for the TLC (the globoid compartment). We further verified that the C-terminal 10 amino acids were sufficient to transport GFP to the PSV matrix in soybean seed cells by using a transient expression system.
Collapse
Affiliation(s)
- Keito Nishizawa
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Shimada T, Watanabe E, Tamura K, Hayashi Y, Nishimura M, Hara-Nishimura I. A vacuolar sorting receptor PV72 on the membrane of vesicles that accumulate precursors of seed storage proteins (PAC vesicles). PLANT & CELL PHYSIOLOGY 2002; 43:1086-95. [PMID: 12407187 DOI: 10.1093/pcp/pcf152] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022]
Abstract
A novel vesicle, referred to as a precursor-accumulating (PAC) vesicle, mediates the transport of storage protein precursors to protein storage vacuoles in maturing pumpkin seeds. PV72, a type I integral membrane protein with three repeats of epidermal growth factor, was found on the membrane of the PAC vesicles. PV72 had an ability to bind to pro2S albumin, a storage protein precursor, in a Ca(2+)-dependent manner, via the C-terminal region of pro2S albumin, which was found to function as a vacuolar targeting signal. This implies that PV72 is a vacuolar sorting receptor of the storage protein. PV72 was specifically and transiently accumulated at the middle stage of seed maturation in association with the synthesis of storage proteins. Subcellular fractionation showed that PV72 was also accumulated in the microsomal fraction. A fusion protein consisting of GFP and the transmembrane domain and the cytosolic tail of PV72 was localized in Golgi complex. PV72 in the isolated PAC vesicles had a complex type of oligosaccharide, indicating that PV72 passed though the Golgi complex. These results suggest that PV72 is recycled between PAC vesicles and Golgi complex/post-Golgi compartments. PV72 appears to be responsible for recruiting pro2S albumin molecules from the Golgi complex to the PAC vesicles.
Collapse
Affiliation(s)
- Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Effect of monensin on intracellular transport and posttranslational processing of 11 S globulin precursors in developing pumpkin cotyledons. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80255-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
|
27
|
Abstract
The mechanism for vacuolar sorting of seed storage proteins is as yet poorly understood and no receptor has been identified to date. The homotrimeric glycoprotein phaseolin, which is the major storage protein of the common bean, requires a transient tetrapeptide at the C-terminus for its vacuolar sorting. A mutated construct without the tetrapeptide is secreted. We show here that coexpression of wild-type phaseolin and the mutated, secreted form in transgenic tobacco results in the formation of mixed trimers and partial vacuolar delivery of the mutated polypeptides and partial secretion of wild-type polypeptides. This indicates that the sorting signal has a cumulative effect within a phaseolin trimer. The result is discussed in the light of the hypothesized mechanisms for vacuolar sorting of seed storage proteins.
Collapse
Affiliation(s)
- H Holkeri
- Istituto Biosintesi Vegetali, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milan, Italy
| | | |
Collapse
|
28
|
Affiliation(s)
- A Vitale
- Istituto Biosintesi Vegetali, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milano, Italy.
| | | |
Collapse
|
29
|
Sparvoli F, Faoro F, Daminati MG, Ceriotti A, Bollini R. Misfolding and aggregation of vacuolar glycoproteins in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:825-836. [PMID: 11135116 DOI: 10.1046/j.1365-313x.2000.00933.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/23/2023]
Abstract
Phaseolin and lectin-related polypeptides, the abundant oligomeric glycoproteins of bean seeds, are synthesized on the endoplasmic reticulum (ER) and then transported to the storage vacuole via the Golgi apparatus. Glycosylation and folding are among the major modifications these proteins undergo in the ER. Although a recurrent role of N-glycosylation is on protein folding, in previous studies on common bean (Phaseolus vulgaris) seeds we demonstrated that the oligosaccharide side-chains are not required for folding, intracellular transport and activity of storage glycoproteins. We show here that in lima bean (Phaseolus lunatus), incubation of the developing cotyledon with tunicamycin to prevent glycosylation has a dramatic effect on the intracellular transport of the storage glycoproteins. When lacking their glycans, phaseolin and lectin-related polypeptides misfold and are retained in the ER as mixed aggregates to which the chaperone BiP irreversibly associates. The lumen of the ER becomes enlarged to accommodate the aggregated polypeptides. Intracellular transport of legumin, a naturally unglycosylated storage protein, is mostly unaffected by the inhibitor, indicating that the observed phenomenon specifically occurs on glycoproteins. Furthermore, recombinant lima bean phaseolin synthesized in tobacco protoplasts is also correctly folded and matured in the presence of tunicamycin. To our knowledge, this is the first report that describes in detail the block of intracellular transport of vacuolar glycoproteins in plant cells due to aggregation following glycosylation inhibition.
Collapse
Affiliation(s)
- F Sparvoli
- Istituto Biosintesi Vegetali, CNR, Via Bassini 15, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
30
|
Cascardo JC, Almeida RS, Buzeli RA, Carolino SM, Otoni WC, Fontes EP. The phosphorylation state and expression of soybean BiP isoforms are differentially regulated following abiotic stresses. J Biol Chem 2000; 275:14494-500. [PMID: 10799532 DOI: 10.1074/jbc.275.19.14494] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian BiP is regulated by phosphorylation, and it is generally accepted that its unmodified form constitutes the biologically active species. In fact, the glycosylation inhibitor tunicamycin induces dephosphorylation of mammalian BiP. The stress-induced phosphorylation state of plant BiP has not been examined. Here, we demonstrated that soybean BiP exists in interconvertible phosphorylated and nonphosphorylated forms, and the equilibrium can be shift to either direction in response to different stimuli. In contrast to tunicamycin treatment, water stress condition stimulated phosphorylation of BiP species in soybean cultured cells and stressed leaves. Despite their phosphorylation state, we demonstrated that BiP isoforms from water-stressed leaves exhibit protein binding activity, suggesting that plant BiP functional regulation may differ from other eukaryotic BiPs. We also compared the induction of the soybean BiP gene family, which consists of at least four members designated soyBiPA, soyBiPB, soyBiPC, and soyBiPD, by tunicamycin and osmotic stress. Although all soybean BiP genes were induced by tunicamycin, just the soyBiPA RNA was up-regulated by osmotic stress. In addition, these stresses promoted BiP induction with different kinetics and acted synergistically to increase BiP accumulation. These results suggest that the soybean BiP gene family is differentially regulated by abiotic stresses through distinct signaling pathways.
Collapse
Affiliation(s)
- J C Cascardo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571.000 Viçosa Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Vacuolar proteins begin their life in the endoplasmic reticulum (ER) where they enter the secretory pathway. The information necessary for the correct delivery of soluble proteins to vacuoles has been found in propeptides that might be located at the N-terminus or the C-terminus of the protein, or might be internal. Without these propeptides, vacuolar proteins are secreted. For membrane proteins, both the transmembrane domains and the cytosolic tails are important for sorting to the tonoplast. Available information suggests that soluble proteins destined for the lytic vacuoles are transported through the Golgi complex and then sorted by a receptor that delivers them to a prevacuolar compartment. Proteins destined for the storage vacuoles might or might not travel through the Golgi complex and are packed into large, dense vesicles before being delivered to the storage vacuoles. Sorting of storage proteins occurs along the Golgi complex or in the ER itself and appears to involve self-aggregation.
Collapse
Affiliation(s)
- A Vitale
- Istituto Biosintesi Vegetali, Consiglio Nazionale delle Ricerche, Via Bassini 15, 20133 Milan, Italy
| | | |
Collapse
|
32
|
Abstract
An individual plant cell may contain at least two functionally and structurally distinct types of vacuoles: protein storage vacuoles and lytic vacuoles. Presumably a cell that stores proteins in vacuoles must maintain these separate compartments to prevent exposure of the storage proteins to an acidified environment with active hydrolytic enzymes where they would be degraded. Thus, the organization of the secretory pathway in plant cells, which includes the vacuoles, has a fascinating complexity not anticipated from the extensive genetic and biochemical studies of the secretory pathway in yeast. Plant cells must generate the membranes to form two separate types of tonoplast, maintain them as separate organelles, and direct soluble proteins from the secretory flow specifically to one or the other via separate vesicular pathways. Individual soluble and membrane proteins must be recognized and sorted into one or the other pathway by distinct, specific mechanisms. Here we review the emerging picture of how separate plant vacuoles are organized structurally and how proteins are recognized and sorted to each type.
Collapse
Affiliation(s)
- J M Neuhaus
- Laboratoire de Biochimie, Institut de Botanique, Université de Neuchâtel, Switzerland
| | | |
Collapse
|
33
|
Romero A, Alamillo JM, García-Olmedo F. Processing of thionin precursors in barley leaves by a vacuolar proteinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:202-8. [PMID: 9030740 DOI: 10.1111/j.1432-1033.1997.0202a.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
Abstract
Thionins are synthesized as precursors with a signal peptide and a long C-terminal acidic peptide that is post-translationally processed. A fusion protein including the maltose-binding protein from Escherichia coli (MalE), thionin DG3 from barley leaves, and its acidic C-terminal peptide has been used to obtain antibodies that recognize both domains of the precursor. In barley leaf sections, mature thionins accumulated in the vacuolar content, while the acidic peptide was not detected in any cell fraction. Brefeldin A and monensin inhibited processing of the precursor but its export from the microsomal fraction was not inhibited. Both purified vacuoles and an acid (pH 5.5) extract from leaves processed the fusion protein into a MalE-thionin and an acidic peptide fragment. A 70-kDa proteinase that effected this cleavage was purified from the acid extract. Processing of the fusion protein by both lysed vacuoles and the purified proteinase was inhibited by Zn2+ and by Cu2+, but not by inhibitors of the previously described vacuolar processing thiol or aspartic proteinases. In vivo processing of the thionin precursor in leaf sections was also inhibited by Zn2+ and Cu2+. Variants of the fusion protein with altered processing sites that represented those of thionin precursors from different taxa were readily processed by the proteinase, whereas changing the polarity of either the C-terminal or N-terminal residues of the processing site prevented cleavage by the proteinase.
Collapse
Affiliation(s)
- A Romero
- Department of Biotechnology - UPM E. T. S. Ingenieros Agrónomos, Madrid, Spain
| | | | | |
Collapse
|
34
|
Abstract
Seed storage proteins provide a source of amino acids and reduced N necessary for germination and early growth of the seedling. Because the long term aim of much of the current research in this area is to modify the composition of the storage protein fraction, it is of interest to ask w hat kinds of changes might be tolerated by the developing seed without affecting this physiological role. For example, glycosylation and many of the post-translational modifications seen in some legume storage proteins may not be essential and major alterations in the relative amounts of the component proteins in the storage protein fraction are also tolerated. Some nutrient deficiencies result in very extensive changes in this latter category and nutrient deficient plants provide a useful tool for the study of some of the cellular mechanisms that regulate the composition of the storage protein fraction. Sulphur deficiency and potassium deficiency have contrasting effects on the relative proportions of legumin and vicilin in pea seeds. These changes are mainly the result of altered levels of their respective mRNAs together with a change in the pattern of synthesis and accumulation of these two proteins during seed development.
Collapse
|
35
|
Biosynthesis, processing and transport of storage proteins and lectins in cotyledons of developing legume seeds. ACTA ACUST UNITED AC 1997. [DOI: 10.1098/rstb.1984.0026] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
The storage proteins and lectins that accumulate in the protein bodies of developing legume cotyledons undergo a number of processing steps along the transport pathway from their site of synthesis to their site of deposition. The polypeptides are synthesized on polysomes attached to the endoplasmic reticulum. Synthesis of the polypeptides is always accompanied by the co-translational removal of a signal peptide. Those proteins that are glycoproteins in their mature form are co-translationally glycosylated with high-mannose oligosaccharide side chains. Co-translational sequestration into the lumen of the endoplasmic reticulum is followed by the formation of oligomers. Transport of these oligomers to the Golgi complex may occur via tubular connections between the endoplasmic reticulum and the Golgi. In the Golgi complex some of the high-mannose side chains are modified by the removal of five to six mannosyl residues, and the addition of fucosyl and terminal A-acetylglucosaminyl residues. This phenomenon has so far been observed only for phytohaemagglutinin, the lectin of
Phaseolus vulgaris
. From the Golgi complex the storage proteins and lectins are transported to the protein bodies. This transport is mediated by small electron-dense vesicles. In the protein bodies two types of processing occur: proteolytic processing resulting in the formation of smaller polypeptides, and glycolytic processing resulting in the removal of the terminal
N
-acetylglucosaminyl residues from the modified carbohydrate side chains. All storage proteins and lectins undergo some of these processing steps, and specific examples are discussed in this paper.
Collapse
|
36
|
Hohl I, Robinson DG, Chrispeels MJ, Hinz G. Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci 1996; 109 ( Pt 10):2539-50. [PMID: 8923215 DOI: 10.1242/jcs.109.10.2539] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Storage parenchyma cells of developing legume cotyledons actively transport large amounts of storage proteins to protein storage vacuoles (PSV). These proteins are synthesized on the endoplasmic reticulum and pass through the Golgi apparatus. Clathrin coated vesicles (CCV) and small electron dense vesicles found near the trans-Golgi network (TGN) have both been implicated in the Golgi-to-vacuole transport step. Recent findings that protein storage cells contain more than one type of vacuole have necessitated a re-examination of the role of both types of vesicles in vacuolar protein transport. Immunoblots of highly purified CCV preparations and immunogold labelling with antibodies to the storage proteins vicilin and legumin, indicate that the dense vesicles, but not the CCV, are involved in storage protein transport in pea cotyledons. This result is supported by the finding that alpha-TIP, a protein characteristic of the PSV membrane, is absent from CCV. In addition, complex glycoproteins appear to be carried by CCV but are not detectable in the PSV. We suggest on the basis of these data that storage proteins and other vacuolar proteins such as acid hydrolases are not sorted by the same mechanism and are transported by different types of vesicles to different types of vacuoles.
Collapse
Affiliation(s)
- I Hohl
- Pflanzenphysiologisches Institut, Universität Göttingen, Germany
| | | | | | | |
Collapse
|
37
|
|
38
|
Schröder G, Beck M, Eichel J, Vetter HP, Schröder J. HSP90 homologue from Madagascar periwinkle (Catharanthus roseus): cDNA sequence, regulation of protein expression and location in the endoplasmic reticulum. PLANT MOLECULAR BIOLOGY 1993; 23:583-594. [PMID: 8106014 DOI: 10.1007/bf00019305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2023]
Abstract
We describe cDNAs for a HSP90 homologue from Catharanthus roseus and studies on the regulation of expression. The largest cDNA (2670 bp) coded for a protein of 817 amino acids with a calculated size of 93,491 Da and a pI of 4.61. It contained a eucaryotic secretory signal, the endoplasmic reticulum (ER) targeting and retention signal (Lys-Asp-Glu-Leu), and the HSP90 protein family signature with one conservative exchange (Asn-Lys-Asp-Ile-Phe-Leu instead of Asn-Lys-Glu-Ile-Phe-Leu). RNA blots revealed a transcript of 2.8-2.9 kb, and genomic DNA blots suggested a single gene. The expression was analysed with antiserum against a fusion protein expressed in Escherichia coli. Immunoblots revealed a protein of 93 +/- 1.5 kDa (often a doublet) only in the membrane fraction, and sucrose density gradients suggested association with the ER. The protein was constitutively expressed in C. roseus cell cultures grown at 25 degrees C, and expression was apparently unaffected by various stress conditions, such as heat, high sucrose, elicitor from Phytophthora megasperma or yeast extract. It was not detectable in young C. roseus plants at room temperature, and heat shock for several hours at 37 degrees C was necessary to obtain detectable expression. In maize (Zea mays), a cross-reacting protein was detectable in cell cultures, but not in young plants. The results suggested that the cloned protein is not a major component in the heat shock response. We propose a chaperone role in the assembly and processing of cell wall components and other secreted proteins, i.e. functions that are very active in cells with a high rate of growth and division.
Collapse
Affiliation(s)
- G Schröder
- Institut für Biologie II, Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Zhang GF, Driouich A, Staehelin LA. Effect of monensin on plant Golgi: re-examination of the monensin-induced changes in cisternal architecture and functional activities of the Golgi apparatus of sycamore suspension-cultured cells. J Cell Sci 1993; 104 ( Pt 3):819-31. [PMID: 8314876 DOI: 10.1242/jcs.104.3.819] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
We have re-examined the effects of the ionophore monensin on the Golgi apparatus of sycamore maple suspension-cultured cells using a combination of high pressure freezing, immunocytochemical and biochemical techniques. Exposure of the cells to 10 microM monensin, which reduces protein secretion by approximately 90%, resulted first in the swelling of the trans-Golgi network, then of the trans-most trans-cisterna, the remaining trans-cisternae, and finally of the cis and medial cisternae. We postulate that these different rates of swelling reflect an underlying hierarchy of compartmental acidification with the trans-Golgi network being the most acidic compartment. Recovery occurred in the reverse sequence. Previous studies have suggested that the large swollen vesicles that accumulate in the cytoplasm of monensin-treated cells arise from the swelling and detachment of entire trans-cisternae. However, based on the many membrane blebbing configurations seen in association with the trans-Golgi network and the trans-Golgi cisternae of monensin-treated cells, and the fact that the surface area of the trans-Golgi cisternae is about five times greater than the surface area of the swollen vesicles, it appears that the swollen vesicles are produced by a budding mechanism. After 35–40 min of monensin treatment, cells with smaller, non-swollen, compact Golgi stacks began to appear and rapidly increased in number, contributing > 60% of the cell population after 60 min and > 80% after 100 min. In contrast, large numbers of swollen vesicles persisted in the cytoplasm of all cells for over 100 min. Since azide treatment of monensin-treated cells can prematurely induce the unswelling response and cellular ATP levels drop substantially after 45 min of monensin treatment, we propose that un-swelling of the Golgi stacks is due to a monensin-induced decline in ATP levels in the cells. Immunocytochemical labeling of the high pressure frozen cells with anti-xyloglucan antibodies demonstrated that the concentration of xyloglucan, a hemicellulose, in the swollen vesicles increased with time. This increase in vesicle contents may explain why these swollen vesicles do not contract in parallel with the Golgi stacks. In vivo labeling experiments with [3H]fucose, [3H]UDP-glucose and [3H]leucine demonstrated that monensin-treatment not only inhibited protein secretion, but also cellulose synthesis. Protein synthesis, on the other hand, was reduced only slightly during the first 30 min of treatment, but quite strongly between 30 and 60 min, consistent with the observed drop in ATP levels after > 40 min of exposure to monensin.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G F Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | |
Collapse
|
40
|
Sticher L, Hinz U, Meyer AD, Meins F. Intracellular transport and processing of a tobacco vacuolar β-1,3-glucanase. PLANTA 1992; 188:559-65. [PMID: 24178389 DOI: 10.1007/bf00197049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/18/1992] [Accepted: 06/16/1992] [Indexed: 05/21/2023]
Abstract
The class I β-1,3-glucanases are basic, vacuolar enzymes implicated in the defense of plants against pathogen infection. The tobacco (Nicotiana tabacum L.) enzyme is synthesized as a preproprotein with an N-terminal signal peptide for targeting to the lumen of the endoplasmic reticulum and an N-glycosylated C-terminal extension which is lost during protein maturation. The transport and processing of β-1,3-glucanase in cellsuspension cultures of the tobacco cultivar Havana 425 was investigated by pulse-chase labelling and cell fractionation. We verified that mature β-1,3-glucanase is localized in the vacuole of the suspension-cultured cells. Comparison of the time course of processing in homogenates, the soluble fraction, and membrane fractions indicates that proglucanase is transported from the endoplasmic reticulum via the Golgi compartment to the vacuole. Processing to the mature form occurs in the vacuole. Treatment of cells with tunicamycin, which inhibits N-glycosylation, and digestion of the (35)S-labelled processing intermediates with endoglycosidase H indicate that β-1,3-glucanase has a single N-glycan attached to the C-terminal extension. Glycosylation is not required for proteolytic processing or correct targeting to the vacuole.
Collapse
Affiliation(s)
- L Sticher
- Friedrich Miescher-Institut, Postfach 2543, CH-4002, Basel, Switzerland
| | | | | | | |
Collapse
|
41
|
Sturm A, Bergwerff AA, Vliegenthart JF. 1H-NMR structural determination of the N-linked carbohydrate chains on glycopeptides obtained from the bean lectin phytohemagglutinin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:313-6. [PMID: 1740144 DOI: 10.1111/j.1432-1033.1992.tb16639.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
Phytohemagglutinin, the lectin of the common bean Phaseolus vulgaris, is a N-linked glycoprotein with one high-mannose-type and one xylose-containing oligosaccharide side chain per polypeptide. The high-mannose-type glycan is attached to Asn12 and the complex-type glycan to Asn60 [Sturm, A. & Chrispeels, M. J. (1986) Plant Physiol. 81, 320-322]. The structures of the oligosaccharides were elucidated from two glycopeptides obtained from the lectin by Pronase digestion, affinity chromatography on concanavalin-A--Sepharose and gel-filtration chromatography on a column of BioGel P-4. The N-linked glycan structures were investigated by 500-MHz 1H-NMR spectroscopy and were established to be: [formula; see text]
Collapse
Affiliation(s)
- A Sturm
- Friedrich Miescher-Institute, Basel, Switzerland
| | | | | |
Collapse
|
42
|
Chrispeels MJ, von Schaewen A. Sorting of proteins in the secretory system of plant cells. Antonie Van Leeuwenhoek 1992; 61:161-5. [PMID: 1580618 DOI: 10.1007/bf00580624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Affiliation(s)
- M J Chrispeels
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|
43
|
Tezuka K, Hayashi M, Ishihara H, Akazawa T, Takahashi N. Studies on synthetic pathway of xylose-containing N-linked oligosaccharides deduced from substrate specificities of the processing enzymes in sycamore cells (Acer pseudoplatanus L.). EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 203:401-13. [PMID: 1531192 DOI: 10.1111/j.1432-1033.1992.tb16564.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
We measured the activities of alpha-1,3-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase, alpha-1,6-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase, beta-1,4-mannosyl-glycoprotein beta-1,2-xylosyltransferase and glycoprotein 3-alpha-L-fucosyltransferase in the Golgi fraction of suspension-cultured cells of sycamore (Acer pseudoplatanus L.) using fluorescence-labelled oligosaccharides as acceptor substrates for these transferase reactions. The structures of the pyridylaminated oligosaccharides produced by these reactions were analyzed by two-dimensional sugar mapping using high-performance liquid chromatography. We demonstrated that (formula; see text) was processed to produce by these in vitro reactions. On the basis of these results, we discuss a biosynthetic pathway for xylose containing N-linked oligosaccharides in plant glycoproteins.
Collapse
Affiliation(s)
- K Tezuka
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | | | | | |
Collapse
|
44
|
Griffing LR. Comparisons of Golgi structure and dynamics in plant and animal cells. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1991; 17:179-99. [PMID: 2013820 DOI: 10.1002/jemt.1060170206] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
The Golgi apparatus of both higher plant and animal cells sorts and packages macromolecules which are in transit to and from the cell surface and to the lysosome (vacuole). It is also the site of oligosaccharide and polysaccharide synthesis and modification. The underlying similarity of function of plant and animal Golgi is reflected in similar morphological features, such as cisternal stacking. There are, however, several fundamental differences between the Golgi of plant and animal cells, reflecting, in large part, the fact that the extracellular matrices and lysosomal systems differ between these kingdoms. These include 1) the form and replication of the Golgi during cell division; 2) the disposition of the Golgi in the interphase cell; 3) the nature of "anchoring" the Golgi in the cytoplasm; 4) the genesis, extent, and nature of membranes at the trans side of the stack; 5) targeting signals to the lysosome (vacuole); and 6) physiological regulation of secretion events (constitutive vs. regulated secretion). The degree of participation of the Golgi in endocytosis and membrane recycling is becoming clear for animal cells, but has yet to be explored in detail for plant cells.
Collapse
Affiliation(s)
- L R Griffing
- Department of Biology, Texas A&M University, College Station 77843
| |
Collapse
|
45
|
Protein Sorting in the Secretory System of Plant Cells. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0074-7696(08)61215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/10/2023]
|
46
|
Mollenhauer HH, Morré DJ, Rowe LD. Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1031:225-46. [PMID: 2160275 PMCID: PMC7148783 DOI: 10.1016/0304-4157(90)90008-z] [Citation(s) in RCA: 456] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Received: 10/24/1989] [Indexed: 12/30/2022]
Abstract
Monensin, a monovalent ion-selective ionophore, facilitates the transmembrane exchange of principally sodium ions for protons. The outer surface of the ionophore-ion complex is composed largely of nonpolar hydrocarbon, which imparts a high solubility to the complexes in nonpolar solvents. In biological systems, these complexes are freely soluble in the lipid components of membranes and, presumably, diffuse or shuttle through the membranes from one aqueous membrane interface to the other. The net effect for monensin is a trans-membrane exchange of sodium ions for protons. However, the interaction of an ionophore with biological membranes, and its ionophoric expression, is highly dependent on the biochemical configuration of the membrane itself. One apparent consequence of this exchange is the neutralization of acidic intracellular compartments such as the trans Golgi apparatus cisternae and associated elements, lysosomes, and certain endosomes. This is accompanied by a disruption of trans Golgi apparatus cisternae and of lysosome and acidic endosome function. At the same time, Golgi apparatus cisternae appear to swell, presumably due to osmotic uptake of water resulting from the inward movement of ions. Monensin effects on Golgi apparatus are observed in cells from a wide range of plant and animal species. The action of monensin is most often exerted on the trans half of the stacked cisternae, often near the point of exit of secretory vesicles at the trans face of the stacked cisternae, or, especially at low monensin concentrations or short exposure times, near the middle of the stacked cisternae. The effects of monensin are quite rapid in both animal and plant cells; i.e., changes in Golgi apparatus may be observed after only 2-5 min of exposure. It is implicit in these observations that the uptake of osmotically active cations is accompanied by a concomitant efflux of H+ and that a net influx of protons would be required to sustain the ionic exchange long enough to account for the swelling of cisternae observed in electron micrographs. In the Golgi apparatus, late processing events such as terminal glycosylation and proteolytic cleavages are most susceptible to inhibition by monensin. Yet, many incompletely processed molecules may still be secreted via yet poorly understood mechanisms that appear to bypass the Golgi apparatus. In endocytosis, monensin does not prevent internalization. However, intracellular degradation of internalized ligands may be prevented.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H H Mollenhauer
- Veterinary Toxicology and Entomology Research Laboratory, United States Department of Agriculture, College Station, Texas 77840
| | | | | |
Collapse
|
47
|
Tanchak MA, Chrispeels MJ. Crosslinking of microsomal proteins identifies P-9000, a protein that is co-transported with phaseolin and phytohemagglutinin in bean cotyledons. PLANTA 1989; 179:495-505. [PMID: 24201773 DOI: 10.1007/bf00397589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/10/1989] [Accepted: 07/21/1989] [Indexed: 06/02/2023]
Abstract
Developing cotyledons of the common bean, Phaseolus vulgaris L., transport within their secretory system (endoplasmic reticulum and Golgi apparatus) the abundant vacuolar proteins, phaseolin and phytohemagglutinin. To identify proteins that may play a role in vacuolar targeting, we treated cotyledon microsomal fractions with a bifunctional crosslinking reagent, dithiobis(succinimidyl propionate), isolated protein complexes with antibodies to phaseolin and phytohemagglutinin, and analysed the polypeptides by sodium dodecylsulfate polyacrylamide gel electrophoresis. This allowed us to identify a protein of Mr=9000 (P-9000) that was crosslinked to both phaseolin and phytohemagglutinin. P-900 is abundantly present in the endoplasmic reticulum. The aminoterminus of P-9000 shows extensive sequence identity with the amino-terminus of PA1 (Mr=11 000), a cysteine-rich albumin whose processing products accumulate in the vacuoles of pea (Pisum sativum L.) cotyledons. Like PA1, P-9000 is synthesized as a pre-proprotein that is posttranslationally processed into smaller polypeptides. The possible functions of P-9000 are discussed.
Collapse
Affiliation(s)
- M A Tanchak
- Department of Biology, University of California/San Diego, 92093-0116, La Jolla, CA, USA
| | | |
Collapse
|
48
|
Kandasamy MK, Paolillo DJ, Faraday CD, Nasrallah JB, Nasrallah ME. The S-locus specific glycoproteins of Brassica accumulate in the cell wall of developing stigma papillae. Dev Biol 1989; 134:462-72. [PMID: 2472986 DOI: 10.1016/0012-1606(89)90119-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Self-incompatibility in Brassica oleracea is now viewed as a cellular interaction between pollen and the papillar cells of the stigma surface. In this species, the inhibition of self-pollen occurs at the stigma surface under the influence of S-locus specific glycoproteins (SLSG). We used antibodies specific for a protein epitope of SLSG to study the subcellular distribution of these molecules in the stigmatic papillae. The antibodies have uncovered an interesting epitope polymorphism in SLSG encoded by subsets of S-alleles, thus providing us with useful genetic controls to directly verify the specificity of the immunolocalization data. Examination of thin sections of Brassica stigmas following indirect immunogold labeling showed that SLSG accumulate in the papillar cell wall, at the site where inhibition of self-pollen tube development has been shown to occur. In addition, the absence of gold particles over the papillar cell walls in the immature stigmas of very young buds, and the intense labeling of these walls in the stigmas of mature buds and open flowers, correlates well with the acquisition of the self-incompatibility response by the developing stigma.
Collapse
Affiliation(s)
- M K Kandasamy
- Section of Plant Biology, Cornell University, Ithaca, New York 14853
| | | | | | | | | |
Collapse
|
49
|
Hoffman LM, Donaldson DD, Herman EM. A modified storage protein is synthesized, processed, and degraded in the seeds of transgenic plants. PLANT MOLECULAR BIOLOGY 1988; 11:717-29. [PMID: 24272623 DOI: 10.1007/bf00019513] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/11/1988] [Accepted: 05/19/1988] [Indexed: 05/12/2023]
Abstract
In vitro mutagenesis was used to supplement the sulfur amino acid codon content of a gene encoding β-phaseolin, a Phaseolus vulgaris storage protein. The number of methionine codons in the phaseolin gene was increased from three to nine by insertion of a 45 base pair (bp) synthetic duplex. Either modified or normal phaseolin genes were integrated into the genome of tobacco plants through Agrobacterium tumefaciens-mediated transformation. Although similar levels of phaseolin RNA are detected in seeds of plants transformed with either the normal or modified (himet) gene, the quantity of himet protein is consistently much lower than normal β-phaseolin. Himet phaseolin is expressed in a temporal- and organ-specific fashion, and is N-glycosylated and assembled into trimers in the manner of normal phaseolin. After germination, both types of phaseolin are hydrolyzed, but the himet protein is more quickly degraded. Electron microscopic immunocytochemical observations of developing seeds indicate that the himet protein is primarily localized in the endoplasmic reticulum (ER) and in Golgi apparatus secretion vesicles. Himet phaseolin is absent from protein storage vacuoles, termed protein bodies, where normal phaseolin is deposited in transgenic tobacco. We interpret the immunocytochemical data to indicate that himet phasolin is transported through the ER and Golgi apparatus and is then degraded in Golgi secretion vesicles or the protein bodies.
Collapse
Affiliation(s)
- L M Hoffman
- Agrigenetics Advanced Science Company, 5649 East Buckeye Road, 53716, Madison, WI, USA
| | | | | |
Collapse
|
50
|
Gogarten-Boekels M, Gogarten JP, Bentrup FW. Sugar nucleotides dissipate ATP-generated transmembrane pH gradient in Golgi vesicles from suspension-cell protoplasts ofChenopodium rubrum L. PLANTA 1988; 174:349-357. [PMID: 24221516 DOI: 10.1007/bf00959520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/26/1987] [Accepted: 12/08/1987] [Indexed: 06/02/2023]
Abstract
A microsomal vesicle fraction (GV) markedly enriched by the Golgi marker enzyme latent inosine diphosphatase (IDPase) has been isolated from photoautotrophic suspension-cell protoplasts ofChenopodium rubrum L. Addition of ATP creates a substantial pH gradient across the GV membrane as measured by accumulation of acridine orange. The GV showed a density of 1.14 g·cm(-3) by equilibrium density centrifugation on sucrose gradients. Coincidence of acridine-orange accumulation and IDPase activity was confirmed on Percoll gradients. Formation of the pH gradient half-saturates at 0.3 mM MgATP, peaks at pH 7, and is competitively inhibited by ADP (k i≤0.1 mM), but not by Pi; it is hardly inhibited by orthovanadate, quickly dissipated by monensink 2=18 nM), nigericin (k 1/2=25 nM), and sluggishly by N-ethylmaleimide (k 1/2≈35 μM). Inhibition by KNO3 (k 1/2≈6.7 mM) is incomplete (60%). Uridine 5'-diphosphate (UDP)-glucose, UDP-galactose, but not UDP-mannose and the pertinent sugars, dissipate the ATP-generated pH gradient (k 1/2≈10-20 mM UDP-glucose; optimum pH at 7.8). This UDP-glucose activity is accompanied by release of Pi, but not of glucose or sucrose. UDP-glucoseinduced Pi release from the GV saturates (k 1/2=1 mM UDP-glucose; optimum pH at 7) and is completely inhibited by the anion-channel blocker 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS;k 1/2=140 μM). The GV incorporates UDP-[U-(14)C]glucose into an acid-labile, alkaline-stable macromolecular compound; this process is like-wise inhibited by DIDS. We propose a model including, inter alia, a UDP-glucose/uridine-5'-monophosphate translocator and a phosphate-permeable anion channel to operate in Golgi vesicles ofChenopodium rubrum.
Collapse
Affiliation(s)
- M Gogarten-Boekels
- Botanisches Institut I der Justus-Liebig-Universität, Senckenbergstraße 17-21, D-6300, Giessen, Federal Republic of Germany
| | | | | |
Collapse
|