1
|
Shi Y, Wei Z, Feng Y, Gan Y, Li G, Deng Y. The diagnosis and treatment of disorders of nucleic acid/nucleotide metabolism associated with epilepsy. ACTA EPILEPTOLOGICA 2025; 7:23. [PMID: 40217360 PMCID: PMC11959797 DOI: 10.1186/s42494-025-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/06/2025] [Indexed: 04/15/2025] Open
Abstract
Epilepsy is a prevalent paroxysmal disorder in the field of neurology. Among the six etiologies of epilepsy, metabolic causes are relatively uncommon in clinical practice. Metabolic disorders encompass amino acid metabolism disorders, organic acid metabolism disorders, and other related conditions. Seizures resulting from nucleic acid/nucleotide metabolism disorders are even more infrequent. This review provides an overview of several studies on nucleic acid/nucleotide metabolism disorders associated with epilepsy, including adenosine succinate lyase deficiency, Lesch-Nyhan syndrome, and aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) deficiency, among others. The potential pathogenesis, phenotypic features, diagnostic pathways, and therapeutic approaches of these diseases are discussed in this review. The goal is to help clinicians make an accurate diagnosis when encountering rare nucleic acid/nucleotide metabolism disorders with multi-system symptoms and manifestations of epilepsy.
Collapse
Affiliation(s)
- Yuqing Shi
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Zihan Wei
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Yan Feng
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Yajing Gan
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Guoyan Li
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Yanchun Deng
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China.
- Xijing Institute of Epileptic Encephalopathy, Shaanxi, Xi'an, 710065, People's Republic of China.
| |
Collapse
|
2
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
3
|
Lopez-Schenk R, Collins NL, Schenk NA, Beard DA. Integrated Functions of Cardiac Energetics, Mechanics, and Purine Nucleotide Metabolism. Compr Physiol 2023; 14:5345-5369. [PMID: 38158366 PMCID: PMC10956446 DOI: 10.1002/cphy.c230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Purine nucleotides play central roles in energy metabolism in the heart. Most fundamentally, the free energy of hydrolysis of the adenine nucleotide adenosine triphosphate (ATP) provides the thermodynamic driving force for numerous cellular processes including the actin-myosin crossbridge cycle. Perturbations to ATP supply and/or demand in the myocardium lead to changes in the homeostatic balance between purine nucleotide synthesis, degradation, and salvage, potentially affecting myocardial energetics and, consequently, myocardial mechanics. Indeed, both acute myocardial ischemia and decompensatory remodeling of the myocardium in heart failure are associated with depletion of myocardial adenine nucleotides and with impaired myocardial mechanical function. Yet there remain gaps in the understanding of mechanistic links between adenine nucleotide degradation and contractile dysfunction in heart disease. The scope of this article is to: (i) review current knowledge of the pathways of purine nucleotide depletion and salvage in acute ischemia and in chronic heart disease; (ii) review hypothesized mechanisms linking myocardial mechanics and energetics with myocardial adenine nucleotide regulation; and (iii) highlight potential targets for treating myocardial metabolic and mechanical dysfunction associated with these pathways. It is hypothesized that an imbalance in the degradation, salvage, and synthesis of adenine nucleotides leads to a net loss of adenine nucleotides in both acute ischemia and under chronic high-demand conditions associated with the development of heart failure. This reduction in adenine nucleotide levels results in reduced myocardial ATP and increased myocardial inorganic phosphate. Both of these changes have the potential to directly impact tension development and mechanical work at the cellular level. © 2024 American Physiological Society. Compr Physiol 14:5345-5369, 2024.
Collapse
Affiliation(s)
- Rachel Lopez-Schenk
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Collins
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah A Schenk
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel A Beard
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Fenton AR, Janowitz HN, Franklin LP, Young RG, Moro CA, DeGennaro MV, McReynolds MR, Wang W, Hanna-Rose W. A Caenorhabditis elegans model of adenylosuccinate lyase deficiency reveals neuromuscular and reproductive phenotypes of distinct etiology. Mol Genet Metab 2023; 140:107686. [PMID: 37607437 PMCID: PMC10840804 DOI: 10.1016/j.ymgme.2023.107686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Inborn errors of purine metabolism are rare syndromes with an array of complex phenotypes in humans. One such disorder, adenylosuccinate lyase deficiency (ASLD), is caused by a decrease in the activity of the bi-functional purine biosynthetic enzyme adenylosuccinate lyase (ADSL). Mutations in human ADSL cause epilepsy, muscle ataxia, and autistic-like symptoms. Although the genetic basis of ASLD is known, the molecular mechanisms driving phenotypic outcome are not. Here, we characterize neuromuscular and reproductive phenotypes associated with a deficiency of adsl-1 in Caenorhabditis elegans. We demonstrate that adsl-1 function contributes to regulation of spontaneous locomotion, that adsl-1 functions acutely for proper mobility, and that aspects of adsl-1-related dysfunction are reversible. Using pharmacological supplementation, we correlate phenotypes with distinct metabolic perturbations. The neuromuscular defect correlates with accumulation of a purine biosynthetic intermediate whereas reproductive deficiencies can be ameliorated by purine supplementation, indicating differing molecular mechanisms behind the phenotypes. Because purine metabolism is highly conserved in metazoans, we suggest that similar separable metabolic perturbations result in the varied symptoms in the human disorder and that a dual-approach therapeutic strategy may be beneficial.
Collapse
Affiliation(s)
- Adam R Fenton
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haley N Janowitz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Latisha P Franklin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Riley G Young
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Corinna A Moro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael V DeGennaro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wenqing Wang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Zhang YD, He TW, Chen YR, Xiong BD, Zhe Z, Liu P, Tang BQ. A Model for Predicting the Duration of Viral Shedding in Patients Who Had Been Hospitalized with Mild COVID-19: A Single-Center Retrospective Study. Infect Drug Resist 2023; 16:5799-5813. [PMID: 37692465 PMCID: PMC10492566 DOI: 10.2147/idr.s421938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Abstract
Background Clinical decision-making is enhanced by the development of a mathematical model for prognosis prediction. Screening criteria associated with viral shedding time and developing a prediction model facilitate clinical decision-making and are, thus, of great medical value. Methods This study comprised 631 patients who were hospitalized with mild COVID-19 from a single center and 30 independent variables included. The data set was randomly divided into the training set (80%) and the validation set (20%). The outcome variable included viral shedding time and whether the viral shedding time >14 days, LASSO was used to screen the influencing factors. Results There were 321 males and 310 females among the 631 cases, with an average age of 62.1 years; the median viral shedding time was 12 days, and 68.8% of patients experienced viral shedding within 14 days, with fever (50.9%) and cough (44.2%) being the most common clinical manifestations. Using LASSO with viral shedding time as the outcome variable, the model with lambda as 0.1592 (λ = 0.1592) and 13 variables (eg the time from diagnosis to admission, constipation, cough, hs-CRP, IL-8, IL-1β, etc.) was more accurate. Factors were screened by LASSO and multivariable logistic regression with whether the viral shedding time >14 days as the outcome variable, five variables, including the time from diagnosis to admission, CD4 cell count, Ct value of ORF1ab, constipation, and IL-8, were included, and a nomogram was drawn; after model validation, the consistency index was 0.888, the AUC was 0.847, the sensitivity was 0.744, and the specificity was 0.830. Conclusion A clinical model developed after LASSO regression was used to identify the factors that influence the viral shedding time. The predicted performance of the model was good, and it was useful for the allocation of medical resources.
Collapse
Affiliation(s)
- Ya-Da Zhang
- Department of Pneumology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Tai-Wen He
- Department of Ophthalmology, Shanghai Public Health Clinical Center, Shanghai, 201500, People’s Republic of China
| | - Yi-Ren Chen
- Department of Pneumology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Bi-Dan Xiong
- Department of Pneumology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Zhe Zhe
- Department of Pneumology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Ping Liu
- Department of Tuberculosis, Shanghai Public Health Clinical Center, Shanghai, 201500, People’s Republic of China
| | - Bin-Qing Tang
- Department of Pneumology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| |
Collapse
|
6
|
Dai S, Lin J, Hou Y, Luo X, Shen Y, Ou J. Purine signaling pathway dysfunction in autism spectrum disorders: Evidence from multiple omics data. Front Mol Neurosci 2023; 16:1089871. [PMID: 36818658 PMCID: PMC9935591 DOI: 10.3389/fnmol.2023.1089871] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Previous studies have suggested that the dysregulation of purine metabolism may be associated with autism spectrum disorder (ASD). Here, we adopted metabolomics and transcriptomics to verify and explore the underlying molecular mechanism of purine metabolism dysfunction in ASD and identify potential biomarkers within the purine metabolism pathway. Methods Ultra-high-performance liquid chromatography-mass spectrometry was used to obtain the plasma metabolic profiles of 12 patients with ASD and 12 typically developing (TD) children. RNA sequencing was used to screen differentially expressed genes related to the purine metabolic pathway and purine receptor-coding genes in 24 children with ASD and 21 healthy controls. Finally, serum uric acid levels were compared in 80 patients with ASD and 174 TD children to validate the omics results. Results A total of 66 identified metabolites showed significant between-group differences. Network analysis showed that purine metabolism was the most strongly enriched. Uric acid was one of the most highlighted nodes within the network. The transcriptomic study revealed significant differential expression of three purine metabolism-related genes (adenosine deaminase, adenylosuccinate lyase, and bifunctional enzyme neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase) (p < 0.01) and five purinergic receptor genes (P2X7, P2Y2, P2Y6, P2Y8, and P2Y10) (p < 0.05). In the validation sample, there was a significant difference in serum uric acid levels between the two groups (p < 0.001), and the area under the curve for uric acid was 0.812 (sensitivity, 82.5%; specificity, 63.8%). Discussion Patients with ASD had dysfunctional purine metabolic pathways, and blood uric acid may be a potential biomarker for ASD.
Collapse
|
7
|
Combined Targeted and Untargeted Profiling of HeLa Cells Deficient in Purine De Novo Synthesis. Metabolites 2022; 12:metabo12030241. [PMID: 35323684 PMCID: PMC8948957 DOI: 10.3390/metabo12030241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
Three genetically determined enzyme defects of purine de novo synthesis (PDNS) have been identified so far in humans: adenylosuccinate lyase (ADSL) deficiency, 5-amino-4-imidazole carboxamide-ribosiduria (AICA-ribosiduria), and deficiency in bifunctional enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS). Clinical signs of these defects are mainly neurological, such as seizures, psychomotor retardation, epilepsy, autistic features, etc. This work aims to describe the metabolic changes of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual steps of PDNS to better understand known and potential defects of the pathway in humans. High-performance liquid chromatography coupled with mass spectrometry was used for both targeted and untargeted metabolomic analyses. The statistically significant features from the untargeted study were identified by fragmentation analysis. Data from the targeted analysis were processed in Cytoscape software to visualize the most affected metabolic pathways. Statistical significance of PDNS intermediates preceding deficient enzymes was the highest (p-values 10 × 10−7–10 × 10−15) in comparison with the metabolites from other pathways (p-values of up to 10 × 10−7). Disturbed PDNS resulted in an altered pool of adenine and guanine nucleotides. However, the adenylate energy charge was not different from controls. Different profiles of acylcarnitines observed among deficient cell lines might be associated with a specific enzyme deficiency rather than global changes related to the PDNS pathway. Changes detected in one-carbon metabolism might reduce the methylation activity of the deficient cells, thus affecting the modification state of DNA, RNA, and proteins.
Collapse
|
8
|
Marsac R, Pinson B, Saint-Marc C, Olmedo M, Artal-Sanz M, Daignan-Fornier B, Gomes JE. Purine Homeostasis Is Necessary for Developmental Timing, Germline Maintenance and Muscle Integrity in Caenorhabditis elegans. Genetics 2019; 211:1297-1313. [PMID: 30700528 PMCID: PMC6456310 DOI: 10.1534/genetics.118.301062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
Purine homeostasis is ensured through a metabolic network widely conserved from prokaryotes to humans. Purines can either be synthesized de novo, reused, or produced by interconversion of extant metabolites using the so-called recycling pathway. Although thoroughly characterized in microorganisms, such as yeast or bacteria, little is known about regulation of the purine biosynthesis network in metazoans. In humans, several diseases are linked to purine metabolism through as yet poorly understood etiologies. Particularly, the deficiency in adenylosuccinate lyase (ADSL)-an enzyme involved both in the purine de novo and recycling pathways-causes severe muscular and neuronal symptoms. In order to address the mechanisms underlying this deficiency, we established Caenorhabditis elegans as a metazoan model organism to study purine metabolism, while focusing on ADSL. We show that the purine biosynthesis network is functionally conserved in C. elegans Moreover, adsl-1 (the gene encoding ADSL in C. elegans) is required for developmental timing, germline stem cell maintenance and muscle integrity. Importantly, these traits are not affected when solely the de novo pathway is abolished, and we present evidence that germline maintenance is linked specifically to ADSL activity in the recycling pathway. Hence, our results allow developmental and tissue specific phenotypes to be ascribed to separable steps of the purine metabolic network in an animal model.
Collapse
Affiliation(s)
- Roxane Marsac
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - Benoît Pinson
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - Christelle Saint-Marc
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - María Olmedo
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, 41013 Seville, Spain
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, 41013 Seville, Spain
| | - Bertrand Daignan-Fornier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - José-Eduardo Gomes
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| |
Collapse
|
9
|
Daignan-Fornier B, Pinson B. Yeast to Study Human Purine Metabolism Diseases. Cells 2019; 8:E67. [PMID: 30658520 PMCID: PMC6356901 DOI: 10.3390/cells8010067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/04/2023] Open
Abstract
Purine nucleotides are involved in a multitude of cellular processes, and the dysfunction of purine metabolism has drastic physiological and pathological consequences. Accordingly, several genetic disorders associated with defective purine metabolism have been reported. The etiology of these diseases is poorly understood and simple model organisms, such as yeast, have proved valuable to provide a more comprehensive view of the metabolic consequences caused by the identified mutations. In this review, we present results obtained with the yeast Saccharomyces cerevisiae to exemplify how a eukaryotic unicellular organism can offer highly relevant information for identifying the molecular basis of complex human diseases. Overall, purine metabolism illustrates a remarkable conservation of genes, functions and phenotypes between humans and yeast.
Collapse
Affiliation(s)
- Bertrand Daignan-Fornier
- Université de Bordeaux IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
- Centre National de la Recherche Scientifique IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
| | - Benoît Pinson
- Université de Bordeaux IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
- Centre National de la Recherche Scientifique IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
| |
Collapse
|
10
|
Krijt M, Souckova O, Baresova V, Skopova V, Zikanova M. Metabolic Tools for Identification of New Mutations of Enzymes Engaged in Purine Synthesis Leading to Neurological Impairment. Folia Biol (Praha) 2019; 65:152-157. [PMID: 31638562 DOI: 10.14712/fb2019065030152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The cellular pool of purines is maintained by de novo purine synthesis (DNPS), recycling and degradation. Mutations in genes encoding DNPS enzymes cause their substrates to accumulate, which has detrimental effects on cellular division and organism development, potentially leading to neurological impairments. Unspecified neurological symptoms observed in many patients could not be elucidated even by modern techniques. It is presumable that some of these problems are induced by dysfunctions in DNPS enzymes. Therefore, we determined the concentrations of dephosphorylated DNPS intermediates by LC-MS/MS as markers of yet unpublished mutations in PFAS and PAICS genes connected with dysfunctions of carboxylase/phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS) or phosphoribosylformylglycinamidine synthase (PFAS). We determined the criteria for normal values of metabolites and investigated 1,447 samples of urine and 365 dried blood spots of patients suffering from various forms of neurological impairment. We detected slightly elevated aminoimidazole riboside (AIr) concentrations in three urine samples and a highly elevated 5-formamidoimidazole-4-carboxamide riboside (FGAr) concentration in one urine sample. The accumulation of AIr or FGAr in body fluids can indicate PAICS or PFAS deficiency, respectively, which would be new disorders of DNPS caused by mutations in the appropriate genes. Measurement of DNPS intermediates in patients with neurological symptoms can uncover the cause of serious cellular and functional impairments that are otherwise inaccessible to detection. Further genetic and molecular analysis of these patients should establish the causal mutations for prenatal diagnosis, genetic consultation, and reinforce the DNPS pathway as a therapeutic target.
Collapse
Affiliation(s)
- M Krijt
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - O Souckova
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - V Baresova
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - V Skopova
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - M Zikanova
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
11
|
Galina L, Dalberto PF, Borges Martinelli LK, Roth CD, Michel Pinto AF, Villela AD, Bizarro CV, Machado P, Saraiva Macedo Timmers LF, Norberto de Souza O, Marcelino de Carvalho Filho E, Basso LA, Santos DS. Biochemical, thermodynamic and structural studies of recombinant homotetrameric adenylosuccinate lyase fromLeishmania braziliensis. RSC Adv 2017. [DOI: 10.1039/c7ra10526f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional and structural data suggested that His197and Ser322residues play a role inLbASL catalysis.
Collapse
|
12
|
Chen P, Wang D, Chen H, Zhou Z, He X. The nonessentiality of essential genes in yeast provides therapeutic insights into a human disease. Genome Res 2016; 26:1355-1362. [PMID: 27440870 PMCID: PMC5052060 DOI: 10.1101/gr.205955.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
Abstract
Essential genes refer to those whose null mutation leads to lethality or sterility. Theoretical reasoning and empirical data both suggest that the fatal effect of inactivating an essential gene can be attributed to either the loss of indispensable core cellular function (Type I), or the gain of fatal side effects after losing dispensable periphery function (Type II). In principle, inactivation of Type I essential genes can be rescued only by re-gain of the core functions, whereas inactivation of Type II essential genes could be rescued by a further loss of function of another gene to eliminate the otherwise fatal side effects. Because such loss-of-function rescuing mutations may occur spontaneously, Type II essential genes may become nonessential in a few individuals of a large population. Motivated by this reasoning, we here carried out a systematic screening for Type II essentiality in the yeast Saccharomyces cerevisiae Large-scale whole-genome sequencing of essentiality-reversing mutants reveals 14 cases whereby the inactivation of an essential gene is rescued by loss-of-function mutations on another gene. In particular, the essential gene encoding the enzyme adenylosuccinate lyase (ADSL) is shown to be Type II, suggesting a loss-of-function therapeutic strategy for the human disorder ADSL deficiency. A proof-of-principle test of this strategy in the nematode Caenorhabditis elegans shows promising results.
Collapse
Affiliation(s)
- Piaopiao Chen
- Key Laboratory of Gene Engineering of Ministry of Education, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Dandan Wang
- Key Laboratory of Gene Engineering of Ministry of Education, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Han Chen
- Key Laboratory of Gene Engineering of Ministry of Education, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenzhen Zhou
- Key Laboratory of Gene Engineering of Ministry of Education, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xionglei He
- Key Laboratory of Gene Engineering of Ministry of Education, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
13
|
Casanova EL, Sharp JL, Chakraborty H, Sumi NS, Casanova MF. Genes with high penetrance for syndromic and non-syndromic autism typically function within the nucleus and regulate gene expression. Mol Autism 2016; 7:18. [PMID: 26985359 PMCID: PMC4793536 DOI: 10.1186/s13229-016-0082-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Intellectual disability (ID), autism, and epilepsy share frequent yet variable comorbidities with one another. In order to better understand potential genetic divergence underlying this variable risk, we studied genes responsible for monogenic IDs, grouped according to their autism and epilepsy comorbidities. METHODS Utilizing 465 different forms of ID with known molecular origins, we accessed available genetic databases in conjunction with gene ontology (GO) to determine whether the genetics underlying ID diverge according to its comorbidities with autism and epilepsy and if genes highly penetrant for autism or epilepsy share distinctive features that set them apart from genes that confer comparatively variable or no apparent risk. RESULTS The genetics of ID with autism are relatively enriched in terms associated with nervous system-specific processes and structural morphogenesis. In contrast, we find that ID with highly comorbid epilepsy (HCE) is modestly associated with lipid metabolic processes while ID without autism or epilepsy comorbidity (ID only) is enriched at the Golgi membrane. Highly comorbid autism (HCA) genes, on the other hand, are strongly enriched within the nucleus, are typically involved in regulation of gene expression, and, along with IDs with more variable autism, share strong ties with a core protein-protein interaction (PPI) network integral to basic patterning of the CNS. CONCLUSIONS According to GO terminology, autism-related gene products are integral to neural development. While it is difficult to draw firm conclusions regarding IDs unassociated with autism, it is clear that the majority of HCA genes are tightly linked with general dysregulation of gene expression, suggesting that disturbances to the chronology of neural maturation and patterning may be key in conferring susceptibility to autism spectrum conditions.
Collapse
Affiliation(s)
- Emily L. Casanova
- />Department of Biomedical Sciences, University of South Carolina, South Carolina, USA
- />Department of Pediatrics, Greenville Health System, Patewood Medical Campus, 200A Patewood Dr, Greenville, SC 29615 USA
| | - Julia L. Sharp
- />Department of Mathematical Sciences, Clemson University, Clemson, USA
| | - Hrishikesh Chakraborty
- />Department of Biostatistics and Epidemiology, University of South Carolina, South Carolina, USA
| | - Nahid Sultana Sumi
- />Department of Biostatistics and Epidemiology, University of South Carolina, South Carolina, USA
| | - Manuel F. Casanova
- />Department of Biomedical Sciences, University of South Carolina, South Carolina, USA
- />Department of Pediatrics, Greenville Health System, Patewood Medical Campus, 200A Patewood Dr, Greenville, SC 29615 USA
| |
Collapse
|
14
|
Jurecka A, Zikanova M, Kmoch S, Tylki-Szymańska A. Adenylosuccinate lyase deficiency. J Inherit Metab Dis 2015; 38:231-42. [PMID: 25112391 PMCID: PMC4341013 DOI: 10.1007/s10545-014-9755-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 11/26/2022]
Abstract
Adenylosuccinate lyase ADSL) deficiency is a defect of purine metabolism affecting purinosome assembly and reducing metabolite fluxes through purine de novo synthesis and purine nucleotide recycling pathways. Biochemically this defect manifests by the presence in the biologic fluids of two dephosphorylated substrates of ADSL enzyme: succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado). More than 80 individuals with ADSL deficiency have been identified, but incidence of the disease remains unknown. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The fatal neonatal form has onset from birth and presents with fatal neonatal encephalopathy with a lack of spontaneous movement, respiratory failure, and intractable seizures resulting in early death within the first weeks of life. Patients with type I (severe form) present with a purely neurologic clinical picture characterized by severe psychomotor retardation, microcephaly, early onset of seizures, and autistic features. A more slowly progressing form has also been described (type II, moderate or mild form), as having later onset, usually within the first years of life, slight to moderate psychomotor retardation and transient contact disturbances. Diagnosis is facilitated by demonstration of SAICAr and S-Ado in extracellular fluids such as plasma, cerebrospinal fluid and/or followed by genomic and/or cDNA sequencing and characterization of mutant proteins. Over 50 ADSL mutations have been identified and their effects on protein biogenesis, structural stability and activity as well as on purinosome assembly were characterized. To date there is no specific and effective therapy for ADSL deficiency.
Collapse
Affiliation(s)
- Agnieszka Jurecka
- Department of Genetics, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland,
| | | | | | | |
Collapse
|
15
|
Zikanova M, Krijt J, Skopova V, Krijt M, Baresova V, Kmoch S. Screening for adenylosuccinate lyase deficiency using tandem mass spectrometry analysis of succinylpurines in neonatal dried blood spots. Clin Biochem 2014; 48:2-7. [PMID: 25445730 DOI: 10.1016/j.clinbiochem.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Stable isotope dilution coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the sensitive method for screening for various inherited metabolic disorders using dried blood spots (DBSs). We present a method for LC-MS/MS determination of succinyladenosine (SAdo) and succinylaminoimidazole carboxamide riboside (SAICAr), biomarkers for adenylosuccinate lyase deficiency (dADSL), in DBS. DESIGN AND METHODS SAICAr and SAdo were separated on a Symmetry-C18 column and detected using positive electrospray ionisation in selected reaction monitoring mode. The quantification was performed using the isotopically labelled internal standards SAdo-(13)C4 and SAICAr-(13)C4, which were prepared via ADSL-catalysed reactions of fumarate-(13)C4 with adenosine monophosphate and aminoimidazole carboxamide ribotide, respectively, and subsequent alkaline phosphatase-catalysed dephosphorylation of the resulting products. RESULTS The detection of SAICAr and SAdo in DBS was linear over the range of 0-25μmol/L. The respective intra-assay and inter-assay imprecision values were less than 10.7% and 15.2% for SAICAr and 4.7% and 5.7% for SAdo. The recoveries from DBS spiked with different concentrations of SAICAr and SAdo were between 94% and 117%. The concentrations of SAICAr and SAdo were higher in the archived DBS from dADSL patients (SAICAr, 0.03-4.7μmol/L; SAdo, 1.5-21.3μmol/L; n=5) compared to those of the control subjects (SAICAr, 0-0.026μmol/L; SAdo, 0.06-0.14μmol/L; n=31), even after DBSs from dADSL patients were stored for 2-23years. CONCLUSIONS We developed and validated a method of succinylpurine analysis in DBS that improves selective screening for dADSL in the paediatric population and may be used for retrospective diagnosis to aid the genetic counselling of affected families.
Collapse
Affiliation(s)
- Marie Zikanova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic.
| | - Jakub Krijt
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic.
| | - Vaclava Skopova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic.
| | - Matyas Krijt
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic.
| | - Veronika Baresova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic.
| | - Stanislav Kmoch
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic.
| |
Collapse
|
16
|
Balasubramaniam S, Duley JA, Christodoulou J. Inborn errors of purine metabolism: clinical update and therapies. J Inherit Metab Dis 2014; 37:669-86. [PMID: 24972650 DOI: 10.1007/s10545-014-9731-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/27/2014] [Accepted: 06/02/2014] [Indexed: 12/20/2022]
Abstract
Inborn errors of purine metabolism exhibit broad neurological, immunological, haematological and renal manifestations. Limited awareness of the phenotypic spectrum, the recent descriptions of newer disorders and considerable genetic heterogeneity, have contributed to long diagnostic odysseys for affected individuals. These enzymes are widely but not ubiquitously distributed in human tissues and are crucial for synthesis of essential nucleotides, such as ATP, which form the basis of DNA and RNA, oxidative phosphorylation, signal transduction and a range of molecular synthetic processes. Depletion of nucleotides or accumulation of toxic intermediates contributes to the pathogenesis of these disorders. Maintenance of cellular nucleotides depends on the three aspects of metabolism of purines (and related pyrimidines): de novo synthesis, catabolism and recycling of these metabolites. At present, treatments for the clinically significant defects of the purine pathway are restricted: purine 5'-nucleotidase deficiency with uridine; familial juvenile hyperuricaemic nephropathy (FJHN), adenine phosphoribosyl transferase (APRT) deficiency, hypoxanthine phosphoribosyl transferase (HPRT) deficiency and phosphoribosyl-pyrophosphate synthetase superactivity (PRPS) with allopurinol; adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies have been treated by bone marrow transplantation (BMT), and ADA deficiency with enzyme replacement with polyethylene glycol (PEG)-ADA, or erythrocyte-encapsulated ADA; myeloadenylate deaminase (MADA) and adenylosuccinate lyase (ADSL) deficiencies have had trials of oral ribose; PRPS, HPRT and adenosine kinase (ADK) deficiencies with S-adenosylmethionine; and molybdenum cofactor deficiency of complementation group A (MOCODA) with cyclic pyranopterin monophosphate (cPMP). In this review we describe the known inborn errors of purine metabolism, their phenotypic presentations, established diagnostic methodology and recognised treatment options.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Metabolic Unit, Princess Margaret Hospital, Roberts Road, Subiaco, Perth, WA, 6008, Australia
| | | | | |
Collapse
|
17
|
Banerjee S, Agrawal MJ, Mishra D, Sharan S, Balaram H, Savithri HS, Murthy MRN. Structural and kinetic studies on adenylosuccinate lyase from Mycobacterium smegmatis and Mycobacterium tuberculosis provide new insights on the catalytic residues of the enzyme. FEBS J 2014; 281:1642-58. [PMID: 24479855 DOI: 10.1111/febs.12730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/15/2014] [Accepted: 01/23/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED Adenylosuccinate lyase (ASL), an enzyme involved in purine biosynthesis, has been recognized as a drug target against microbial infections. In the present study, ASL from Mycobacterium smegmatis (MsASL) and Mycobacterium tuberculosis (MtbASL) were cloned, purified and crystallized. The X-ray crystal structure of MsASL was determined at a resolution of 2.16 Å. It is the first report of an apo-ASL structure with a partially ordered active site C3 loop. Diffracting crystals of MtbASL could not be obtained and a model for its structure was derived using MsASL as a template. These structures suggest that His149 and either Lys285 or Ser279 of MsASL are the residues most likely to function as the catalytic acid and base, respectively. Most of the active site residues were found to be conserved, with the exception of Ser148 and Gly319 of MsASL. Ser148 is structurally equivalent to a threonine in most other ASLs. Gly319 is replaced by an arginine residue in most ASLs. The two enzymes were catalytically much less active compared to ASLs from other organisms. Arg319Gly substitution and reduced flexibility of the C3 loop might account for the low catalytic activity of mycobacterial ASLs. The low activity is consistent with the slow growth rate of Mycobacteria and their high GC containing genomes, as well as their dependence on other salvage pathways for the supply of purine nucleotides. STRUCTURED DIGITAL ABSTRACT purB and purB bind by x-ray crystallography (View interaction).
Collapse
Affiliation(s)
- Sanchari Banerjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
18
|
Ray SP, Duval N, Wilkinson TG, Shaheen SE, Ghosh K, Patterson D. Inherent properties of adenylosuccinate lyase could explain S-Ado/SAICAr ratio due to homozygous R426H and R303C mutations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1545-53. [PMID: 23714113 DOI: 10.1016/j.bbapap.2013.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022]
Abstract
Adenylosuccinate lyase (ADSL) is a homotetrameric enzyme involved in the de novo purine biosynthesis pathway and purine nucleotide cycle. Missense mutations in the protein lead to ADSL deficiency, an inborn error of purine metabolism characterized by neurological and physiological symptoms. ADSL deficiency is biochemically diagnosed by elevated levels of succinylaminoimidazolecarboxamide riboside (SAICAr) and succinyladenosine (S-Ado), the dephosphorylated derivatives of the substrates. S-Ado/SAICAr ratios have been associated with three phenotypic groups. Different hypotheses to explain these ratios have been proposed. Recent studies have focused on measuring activity on the substrates independently. However, it is important to examine mixtures of the substrates to determine if mutations affect enzyme activity on both substrates similarly in these conditions. The two substrates may experience an indirect communication due to being acted upon by the same enzyme, altering their activities from the non-competitive case. In this study, we investigate this hidden coupling between the two substrates. We chose two mutations that represent extremes of the phenotype, R426H and R303C. We describe a novel electrochemical-detection method of measuring the kinetic activity of ADSL in solution with its two substrates at varying concentration ratios. Furthermore, we develop an enzyme kinetic model to predict substrate activity from a given ratio of substrate concentrations. Our findings indicate a non-linear dependence of the activities on the substrate ratios due to competitive binding, distinct differences in the behaviors of the different mutations, and S-Ado/SAICAr ratios in patients could be explained by inherent properties of the mutant enzyme.
Collapse
Affiliation(s)
- Stephen P Ray
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Zulfiqar M, Lin DDM, Van der Graaf M, Barker PB, Fahrner JA, Marie S, Morava E, De Boer L, Willemsen MAAP, Vining E, Horská A, Engelke U, Wevers RA, Maegawa GHB. Novel proton MR spectroscopy findings in adenylosuccinate lyase deficiency. J Magn Reson Imaging 2012; 37:974-80. [PMID: 23055421 DOI: 10.1002/jmri.23852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 09/04/2012] [Indexed: 11/08/2022] Open
Abstract
Adenylosuccinate lyase (ADSL) deficiency is a rare inborn error of metabolism resulting in accumulation of metabolites including succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado) in the brain and other tissues. Patients with ADSL have progressive psychomotor retardation, neonatal seizures, global developmental delay, hypotonia, and autistic features, although variable clinical manifestations may make the initial diagnosis challenging. Two cases of the severe form of the disease are reported here: an 18-month-old boy with global developmental delay, intractable neonatal seizures, progressive cerebral atrophy, and marked hypomyelination, and a 3-month-old girl presenting with microcephaly, neonatal seizures, and marked psychomotor retardation. In both patients in vivo proton magnetic resonance spectroscopy (MRS) showed the presence of S-Ado signal at 8.3 ppm, consistent with a prior report. Interestingly, SAICAr signal was also detectable at 7.5 ppm in affected white matter, which has not been reported in vivo before. A novel splice-site mutation, c.IVS12 + 1/G > C, in the ADSL gene was identified in the second patient. Our findings confirm the utility of in vivo proton MRS in suggesting a specific diagnosis of ADSL deficiency, and also demonstrate an additional in vivo resonance (7.5 ppm) of SAICAr in the cases of severe disease.
Collapse
Affiliation(s)
- Maria Zulfiqar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Duley JA, Christodoulou J, de Brouwer APM. The PRPP synthetase spectrum: what does it demonstrate about nucleotide syndromes? NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 30:1129-39. [PMID: 22132967 DOI: 10.1080/15257770.2011.591747] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Defects in X-linked phosphoribosylpyrophosphate synthetase 1 (PRPS1) manifest as follows: (1) PRS-I enzyme "superactivity" (gain-of-function mutations affecting allosteric regions); (2) PRS-I overexpression (which may be linked to miRNA mutation); (3) severe PRS-I deficiency/Arts syndrome (missense mutations producing loss-of-function); (4) moderate PRS-I deficiency/Charcot-Marie-Tooth disease-5 (less severe loss-of-function mutations); and (5) mild PRS-I deficiency/Deafness-2 (mutations producing slight destabilization). Similar to Lesch-Nyhan disease, PRPS1-related disorders arise from phosphoribosyl-pyrophosphate (PRPP)-dependent nucleotide "depletion" of purine nucleotides (e.g., ATP, GTP). S-adenosylmethionine (SAMe) appears to partially alleviate purine depletion via a PRPP-independent path. Synthesis of pyrimidine nucleotides is PRPP dependent, with uridine monophosphate synthase deficiency producing pyrimidine nucleotide depletion. But pyrimidine salvage from uridine does not require PRPP, and this nucleoside is transported freely to pyrimidine-depleted tissues. Regulation of nicotinamide nucleotides is less clear; synthesis from pyridine nucleobases is PRPP dependent. Nucleotide "depletion" contrasts with nucleotide "toxicity," exemplified by the purine disorders adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies or by pyrimidine nucleotidase deficiency. These are characterized by the accumulation of one or more abnormal nucleotides such as succinyl- or deoxy-nucleotides or their metabolites, which interrupt other nucleotide or related pathways or are toxic to specific cell types. Theoretically, purine toxicity disorders would not be ameliorated by SAMe therapy, and this was confirmed for one adenylosuccinate lyase-deficient child. Nucleotide defects may also be seen as an aspect of mitochondrial disease, with SAMe-based mitochondrial therapy perhaps meriting further investigation.
Collapse
Affiliation(s)
- John A Duley
- University of Queensland and Mater Medical Research Institute, Brisbane, Australia.
| | | | | |
Collapse
|
21
|
Bierau J, Pooters INA, Visser D, Bakker JA. An HPLC-based assay of adenylosuccinate lyase in erythrocytes. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 30:908-17. [PMID: 22060555 DOI: 10.1080/15257770.2011.621008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
ADSL deficiency is a disorder of purine metabolism with a broad clinical spectrum. A rapid and simple HPLC-based assay to measure ADSL activity in erythrocytes was developed. The suitability of DBSs was assessed. ADSL activity was measured in erythrocyte lysates and DBS using succinyl-AMP as the substrate. Detection and quantification were performed using isocratic ion-pairing reversed-phase HPLC with UV-detection. Reference values in erythrocyte lysates were established. The intra- and interassay variations were 2% and 8%, respectively. ADSL deficiency was easily recognized. ADSL activity in DBS was highly unstable, disqualifying DBS for diagnostic procedures.
Collapse
Affiliation(s)
- Jörgen Bierau
- Laboratory of Biochemical Genetics, Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Jurecka A, Jurkiewicz E, Tylki-Szymanska A. Magnetic resonance imaging of the brain in adenylosuccinate lyase deficiency: a report of seven cases and a review of the literature. Eur J Pediatr 2012; 171:131-8. [PMID: 21625931 DOI: 10.1007/s00431-011-1503-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/17/2011] [Indexed: 11/27/2022]
Abstract
Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive disorder of purine metabolism. Patients may present with a wide range of neurological symptoms. Head imaging abnormalities have been reported only rarely in the scientific literature and include atrophy of the cerebral cortex, corpus callosum, cerebellar vermis, lack of myelination, delayed myelination, anomalies of the white matter, and lissencephaly. The pathogenesis of abnormalities remains unknown. To further the understanding of the spectrum of brain abnormalities associated with ADSL deficiency, we examined the magnetic resonance findings in seven Polish patients with different clinical phenotypes and genotypes. Head MRI showed impaired white matter myelination with various degrees of global supra- and infratentorial white matter loss including widening of the lateral ventricles, enlargement of the subarachnoid spaces, atrophy of the cerebrum, hypoplasia of the cerebellar hemispheres and enlargement of the cisterna magna, and white matter abnormal hyperintense signal on T(2)-weighted sequences. We recommend performing a detailed analysis of urine and plasma purine metabolites in patients who have neurological findings, including developmental delay, microcephaly, autistic features, neonatal encephalopathy, and seizures especially if MRI findings such as delayed or lack of myelination, white matter abnormal signal, and atrophy of the cerebrum and/or cerebellum are also present. Greater awareness of adenylosuccinate lyase deficiency among general pediatricians, neonatologists, pediatric neurologists, and also radiologists is the key to identifying the disorder at an early stage.
Collapse
Affiliation(s)
- Agnieszka Jurecka
- The Children's Memorial Health Institute, Al. Dzieci Polskich 20, Warsaw, Poland.
| | | | | |
Collapse
|
23
|
Baresova V, Skopova V, Sikora J, Patterson D, Sovova J, Zikanova M, Kmoch S. Mutations of ATIC and ADSL affect purinosome assembly in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency. Hum Mol Genet 2011; 21:1534-43. [PMID: 22180458 DOI: 10.1093/hmg/ddr591] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The purinosome is a multienzyme complex composed by the enzymes active in de novo purine synthesis (DNPS) that cells transiently assemble in their cytosol upon depletion or increased demand of purines. The process of purinosome formation has thus far been demonstrated and studied only in human epithelial cervical cancer cells (HeLa) and human liver carcinoma cells (C3A) transiently expressing recombinant fluorescently labeled DNPS proteins. Using parallel immunolabeling of various DNPS enzymes and confocal fluorescent microscopy, we proved purinosome assembly in HeLa, human hepatocellular liver carcinoma cell line (HepG2), sarcoma osteogenic cells (Saos-2), human embryonic kidney cells (HEK293), human skin fibroblasts (SF) and primary human keratinocytes (KC) cultured in purine-depleted media. Using the identical approach, we proved in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency that various mutations of ATIC and ADSL destabilize to various degrees of purinosome assembly and found that the ability to form purinosomes correlates with clinical phenotypes of individual ADSL patients. Our results thus shown that the assembly of functional purinosomes is fully dependent on the presence of structurally unaffected ATIC and ADSL complexes and presumably also on the presence of all the other DNPS proteins. The results also corroborate the hypothesis that the phenotypic severity of ADSL deficiency is mainly determined by structural stability and residual catalytic capacity of the corresponding mutant ADSL protein complexes, as this is prerequisite for the formation and stability of the purinosome and at least partial channeling of succinylaminoimidazolecarboxamide riboside-ADSL enzyme substrates-through the DNPS pathway.
Collapse
Affiliation(s)
- Veronika Baresova
- Institute of Inherited Metabolic Disorders, Charles University in Prague and General University Hospital in Prague, 128 08 Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
24
|
De Zoysa Ariyananda L, Antonopoulos C, Currier J, Colman RF. In vitro hybridization and separation of hybrids of human adenylosuccinate lyase from wild-type and disease-associated mutant enzymes. Biochemistry 2011; 50:1336-46. [PMID: 21210713 PMCID: PMC3043148 DOI: 10.1021/bi101734q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human adenylosuccinate lyase (ASL) deficiency is an inherited metabolic disease in which the majority of the patients are compound heterozygotes for the mutations that occur in the ASL gene. Starting with purified wild-type (WT) and single-mutant human ASL, we generated in vitro hybrids that mimic compound heterozygote ASL. For this study, we used His-tagged WT/non-His-tagged WT, His-tagged WT/non-His-tagged R396C, His-tagged WT/non-His-tagged R396H, His-tagged R194C/non-His-tagged R396C, and His-tagged L311V/non-His-tagged R396H enzyme pairs. We generated various hybrids by denaturing pairs of enzymes in 1 M guanidinium chloride and renaturing them by removing the denaturant. The hybrids were separated on a nickel-nitrilotriacetic acid-agarose column based on the number of His tags present in the enzyme tetramer. Analytical ultracentrifuge data indicate that the hybrids have predominant amounts of heterotetramers. Analysis of the V(max) values of the hybrids indicates that most of the subunits behave independently; however, the hybrid tetramers retain weak positive cooperativity, indicating that there is some interaction between the different subunit types. The interactions between WT and mutant subunits may be advantageous to the parents of ASL deficient patients, while the interactions between some mutant subunits may assist heterozygote ASL deficient patients.
Collapse
Affiliation(s)
| | | | - Jenna Currier
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Roberta F. Colman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| |
Collapse
|
25
|
Vliet LK, Wilkinson TG, Duval N, Vacano G, Graham C, Zikánová M, Skopova V, Baresova V, Hnízda A, Kmoch S, Patterson D. Molecular characterization of the AdeI mutant of Chinese hamster ovary cells: a cellular model of adenylosuccinate lyase deficiency. Mol Genet Metab 2011; 102:61-8. [PMID: 20884265 PMCID: PMC3065963 DOI: 10.1016/j.ymgme.2010.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 08/30/2010] [Accepted: 08/30/2010] [Indexed: 11/19/2022]
Abstract
Adenylosuccinate lyase (ADSL, E. C. 4.3.2.2) carries out two non-sequential steps in de novo AMP synthesis, the conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) to aminoimidazolecarboxamide ribotide (AICAR) and the conversion of succinyl AMP (AMPS) to AMP. In humans, mutations in ADSL lead to an inborn error of metabolism originally characterized by developmental delay, often with autistic features. There is no effective treatment for ADSL deficiency. Hypotheses regarding the pathogenesis include toxicity of high levels of SAICAR, AMPS, or their metabolites, deficiency of the de novo purine biosynthetic pathway, or lack of a completely functional purine cycle in muscle and brain. One important approach to understand ADSL deficiency is to develop cell culture models that allow investigation of the properties of ADSL mutants and the consequences of ADSL deficiency at the cellular level. We previously reported the isolation and initial characterization of mutants of Chinese hamster ovary (CHO-K1) cells (AdeI) that lack detectable ADSL activity, accumulate SAICAR and AMPS, and require adenine for growth. Here we report the cDNA sequences of ADSL from CHO-K1 and AdeI cells and describe a mutation resulting in an alanine to valine amino acid substitution at position 291 (A291V) in AdeI ADSL. This substitution lies in the "signature sequence" of ADSL, inactivates the enzyme, and validates AdeI as a cellular model of ADSL deficiency.
Collapse
Affiliation(s)
- Lydia K. Vliet
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Avenue, Denver, CO, 80208
| | - Terry G. Wilkinson
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Avenue, Denver, CO, 80208
| | - Nathan Duval
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Avenue, Denver, CO, 80208
| | - Guido Vacano
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Avenue, Denver, CO, 80208
| | - Christine Graham
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Avenue, Denver, CO, 80208
| | - Marie Zikánová
- Center for Applied Genomics, Charles University in Prague, First Faculty of Medicine, Ke Karlovu 2, 128 00 Prague 2, Czech Republic
- Institute of Inherited Metabolic Disorders, Charles University in Prague, First Faculty of Medicine, Ke Karlovu 2, 128 00 Prague 2, Czech Republic
| | - Vaclava Skopova
- Center for Applied Genomics, Charles University in Prague, First Faculty of Medicine, Ke Karlovu 2, 128 00 Prague 2, Czech Republic
- Institute of Inherited Metabolic Disorders, Charles University in Prague, First Faculty of Medicine, Ke Karlovu 2, 128 00 Prague 2, Czech Republic
| | - Veronika Baresova
- Center for Applied Genomics, Charles University in Prague, First Faculty of Medicine, Ke Karlovu 2, 128 00 Prague 2, Czech Republic
- Institute of Inherited Metabolic Disorders, Charles University in Prague, First Faculty of Medicine, Ke Karlovu 2, 128 00 Prague 2, Czech Republic
| | - Aleš Hnízda
- Institute of Inherited Metabolic Disorders, Charles University in Prague, First Faculty of Medicine, Ke Karlovu 2, 128 00 Prague 2, Czech Republic
| | - Stanislav Kmoch
- Center for Applied Genomics, Charles University in Prague, First Faculty of Medicine, Ke Karlovu 2, 128 00 Prague 2, Czech Republic
- Institute of Inherited Metabolic Disorders, Charles University in Prague, First Faculty of Medicine, Ke Karlovu 2, 128 00 Prague 2, Czech Republic
| | - David Patterson
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Avenue, Denver, CO, 80208
| |
Collapse
|
26
|
Lundy CT, Jungbluth H, Pohl KRE, Siddiqui A, Marinaki AM, Mundy H, Champion MP. Adenylosuccinate lyase deficiency in the United Kingdom pediatric population: first three cases. Pediatr Neurol 2010; 43:351-4. [PMID: 20933180 DOI: 10.1016/j.pediatrneurol.2010.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 06/02/2010] [Indexed: 11/24/2022]
Abstract
Adenylosuccinate lyase deficiency is an autosomal recessive disorder of purine metabolism resulting from mutations in the ADSL gene on chromosome subband 22q13.1 and associated with a wide range of clinical manifestations. Although there is currently no effective treatment of ADSL deficiency, recognition of the condition is important, because prenatal genetic diagnosis can be offered to affected families. Reported here are the cases of the only three children diagnosed to date in the United Kingdom with adenylosuccinate lyase deficiency, to further delineate the clinical phenotype and to raise awareness of this disorder.
Collapse
Affiliation(s)
- Claire T Lundy
- Department of Paediatric Neurology, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Zikanova M, Skopova V, Hnizda A, Krijt J, Kmoch S. Biochemical and structural analysis of 14 mutant adsl enzyme complexes and correlation to phenotypic heterogeneity of adenylosuccinate lyase deficiency. Hum Mutat 2010; 31:445-55. [PMID: 20127976 DOI: 10.1002/humu.21212] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenylosuccinate lyase (ADSL) deficiency is neurometabolic disease characterized by accumulation of dephosphorylated enzyme substrates SAICA-riboside (SAICAr) and succinyladenosine (S-Ado) in body fluids of affected individuals. The phenotypic severity differs considerably among patients: neonatal fatal, severe childhood, and moderate phenotypic forms correlating with different values for the ratio between S-Ado and SAICAr concentrations in cerebrospinal fluid have been distinguished. To reveal the biochemical and structural basis for this phenotypic heterogeneity, we expressed and characterized 19 ADSL mutant proteins identified in 16 patients representing clinically distinct subgroups. Respecting compound heterozygosity and considering the homotetrameric structure of ADSL, we used intersubunit complementation and prepared and characterized genotype-specific heteromeric mutant ADSL complexes. We correlated clinical phenotypes with biochemical properties of the mutant proteins and predicted structural impacts of the mutations. We found that phenotypic severity in ADSL deficiency is correlated with residual enzymatic activity and structural stability of the corresponding mutant ADSL complexes and does not seem to result from genotype-specific disproportional catalytic activities toward one of the enzyme substrates. This suggests that the S-Ado/SAICAr ratio is probably not predictive of phenotype severity; rather, it may be secondary to the degree of the patient's development (i.e., to the age of the patient at the time of sample collection).
Collapse
Affiliation(s)
- Marie Zikanova
- Institute of Inherited Metabolic Disorders, Charles University in Prague, First Faculty of Medicine, Ke Karlovu 2, Prague 2, Czech Republic
| | | | | | | | | |
Collapse
|
28
|
Henneke M, Dreha-Kulaczewski S, Brockmann K, van der Graaf M, Willemsen MAAP, Engelke U, Dechent P, Heerschap A, Helms G, Wevers RA, Gärtner J. In vivo proton MR spectroscopy findings specific for adenylosuccinate lyase deficiency. NMR IN BIOMEDICINE 2010; 23:441-445. [PMID: 20175147 DOI: 10.1002/nbm.1480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Adenylosuccinate lyase (ADSL) deficiency is an inherited metabolic disorder affecting predominantly the central nervous system. The disease is characterized by the accumulation of succinylaminoimidazolecarboxamide riboside and succinyladenosine (S-Ado) in tissue and body fluids. Three children presented with muscular hypotonia, psychomotor delay, behavioral abnormalities, and white matter changes on brain MRI. Two of them were affected by seizures. Screening for inborn errors of metabolism including in vitro high resolution proton MRS revealed an ADSL deficiency that was confirmed genetically in all cases. All patients were studied by in vivo proton MRS. In vitro high resolution proton MRS of patient cerebrospinal fluid showed singlet resonances at 8.27 and 8.29 ppm that correspond to accumulated S-Ado. In vivo proton MRS measurements also revealed a prominent signal at 8.3 ppm in gray and white matter brain regions of all patients. The resonance was undetectable in healthy human brain. In vivo proton MRS provides a conclusive finding in ADSL deficiency and represents a reliable noninvasive diagnostic tool for this neurometabolic disorder.
Collapse
Affiliation(s)
- M Henneke
- Department of Pediatrics and Pediatric Neurology, Georg August University, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee J, Jeon S, Oh J, Park K, Choi K, Jeon G, Lee H, Kong H. Identification of Novel Single Nucleotide Polymorphisms on ADSL Gene Using Economic Traits in Korean Native Chicken. ACTA ACUST UNITED AC 2009. [DOI: 10.5536/kjps.2009.36.3.207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
De Zoysa Ariyananda L, Lee P, Antonopoulos C, Colman RF. Biochemical and biophysical analysis of five disease-associated human adenylosuccinate lyase mutants. Biochemistry 2009; 48:5291-302. [PMID: 19405474 PMCID: PMC2745324 DOI: 10.1021/bi802321m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenylosuccinate lyase (ASL), a catalyst of key reactions in purine biosynthesis, is normally a homotetramer in which three subunits contribute to each of four active sites. Human ASL deficiency is an inherited metabolic disease associated with autism and mental retardation. We have characterized five disease-associated ASL mutants: R194C and K246E are located at subunit interfaces, L311V is in the central helical region away from the active site, and R396C and R396H are at the entrance to the active site. The V(max) (at 25 degrees C) for R194C is comparable to that of WT, while those of L311V, R396C, R396H, and K246E are considerably reduced and affinity for adenylosuccinate is retained. The mutant enzymes have decreased positive cooperativity as compared to WT. K246E exists mainly as dimer or monomer, accounting for its negligible activity, whereas the other mutant enzymes are similar to WT in the predominance of tetramer. At 37 degrees C, the specific activity of WT and these mutant enzymes slowly decreases 30-40% with time and reaches a limiting specific activity without changing significantly the amount of tetramer. Mutant R194C is unique in being rapidly inactivated at the harsher temperature of 60 degrees C, indicating that it is the least stable enzyme in vitro. Conformational changes in the mutant enzymes are evident from protein fluorescence intensity at 25 degrees C and after incubation at 37 degrees C, which correlates with the loss of enzymatic activity. Thus, these disease-associated single mutations can yield enzyme with reduced activity either by affecting the active site or by perturbing the enzyme's structure and/or native conformation which are required for catalytic function.
Collapse
Affiliation(s)
| | - Peychii Lee
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | | | - Roberta F. Colman
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| |
Collapse
|
31
|
Zecavati N, Spence SJ. Neurometabolic disorders and dysfunction in autism spectrum disorders. Curr Neurol Neurosci Rep 2009; 9:129-36. [PMID: 19268036 DOI: 10.1007/s11910-009-0021-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The cause of autism remains largely unknown because it is likely multifactorial, arising from the interaction of biologic, genetic, and environmental factors. The specific role of metabolic abnormalities also is largely unknown, but current research may provide insight into the pathophysiologic underpinnings of autism, at least in some patients. We review a number of known neurometabolic disorders identified as having an autistic phenotype. We also discuss the possible involvement of mitochondrial disorders and dysfunction as well as a theory regarding an increased vulnerability to oxidative stress, by which various environmental toxins produce metabolic alterations that impair normal cellular function. Finally, we review various strategies for metabolic work-up and treatment. Accurate diagnosis of neurometabolic disorders and a broader understanding of underlying metabolic disturbance even in the absence of known disease have important implications both for individual patients and for research into the etiology of autism.
Collapse
Affiliation(s)
- Nassim Zecavati
- Pediatrics and Developmental Neuropsychiatry Branch, National Institute of Mental Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
32
|
Jurecka A, Tylki-Szymanska A, Zikanova M, Krijt J, Kmoch S. D-ribose therapy in four Polish patients with adenylosuccinate lyase deficiency: absence of positive effect. J Inherit Metab Dis 2008; 31 Suppl 2:S329-32. [PMID: 18649008 DOI: 10.1007/s10545-008-0904-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/09/2008] [Accepted: 04/17/2008] [Indexed: 10/21/2022]
Abstract
Deficiency of adenylosuccinate lyase (ADSL) (OMIM 103050) is an autosomal recessive disorder of the purine de novo synthesis pathway and purine nucleotide cycle, diagnosed so far in approximately 50 patients. The clinical presentation is characterized by severe neurological involvement including hypotonia, seizures, developmental delay and autistic features. Epilepsy in ADSL deficiency is frequent and occurs in approximately two-thirds of patients, beginning either early in the neonatal period or after the first year of life. At present there is no treatment of proven clinical efficacy. Despite of the increasing number of ADSL-deficient patients reported, there are only a few communications of therapeutic considerations or efforts. Among them only two showed some beneficial effects in ADSL-deficient patients. D-ribose, a simple and relatively cheap therapy, has been associated with improvement of behaviour and progressive reduction of the seizure frequency in one 13-year-old patient with ADSL deficiency. In this study we have re-examined D-ribose treatment in four ADSL-deficient patients. Assessments consisted of biochemical markers and neurological outcome. The 12-month trial of D-ribose failed to show any clinical benefit in ADSL patients with both milder and severe phenotype. D-ribose administration was accompanied by neither reduction in seizure frequency nor growth enhancement. Additionally, patients with milder type II presented the first seizure after 4 and 8 months of the D-ribose treatment. Therefore, we could not confirm a positive effect of D-ribose as previously reported.
Collapse
Affiliation(s)
- A Jurecka
- Department of Metabolic Diseases, Endocrinology and Diabetology, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Adenylosuccinate lyase deficiency is a rare autosomal disorder of de novo purine synthesis, which results in the accumulation of succinylpurines in body fluids. Patients with adenylosuccinate lyase deficiency show a variable combination of mental retardation, epilepsy and autistic features and are usually discovered during screens for unexplained encephalopathy using the Bratton-Marshall assay that reveals the excretion of the succinylaminoimidazolecarboxamide riboside (SAICAr). Here, we report on two sisters aged 11 and 12 years presented with global developmental delay, motor apraxia, severe speech deficits, seizures and behavioural features, which combined excessive laughter, a very happy disposition, hyperactivity, a short attention span, the mouthing of objects, tantrums and stereotyped movements that gave a behavioural profile mimicking Angelman syndrome. Both patients had an increased succinyladenosine/SAICAr ratio of 1.6, and exhibited a novel homozygous missense mutation (c.674T>C; p.Met225Thr) in the exon 6 of the ADSL gene. We suggest that these clinical features might be a new presentation of adenylosuccinate lyase deficiency. On the basis of this observation, although adenylosuccinate lyase deficiency is a rare disorder, this diagnosis should be considered in patients with mental retardation and a behavioural profile suggestive of Angelman syndrome.
Collapse
|
34
|
Inherited metabolic diseases in neurodevelopmental and neurobehavioral disorders. Semin Pediatr Neurol 2008; 15:127-31. [PMID: 18708003 DOI: 10.1016/j.spen.2008.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past few years, there has been a veritable explosion in the discovery of "new" inborn errors of metabolism. These new conditions are involved in complex pathways of intermediary metabolism affecting processes heretofore unknown. The phenotypes of these new conditions are in many ways milder than the classically described metabolic disorders. Several of these conditions present as nonsyndromic neurodevelopmental and/or neurobehavioral disorders. As such, these conditions should be considered in the differential diagnosis of conditions such as mental retardation, autism spectrum disorders, movement disorders, and cerebral palsy. This article reviews several of these recently described conditions including the clinical presentation, the biochemical profile, the diagnostic approach, and therapeutic options.
Collapse
|
35
|
Jurecka A, Zikanova M, Tylki-Szymanska A, Krijt J, Bogdanska A, Gradowska W, Mullerova K, Sykut-Cegielska J, Kmoch S, Pronicka E. Clinical, biochemical and molecular findings in seven Polish patients with adenylosuccinate lyase deficiency. Mol Genet Metab 2008; 94:435-442. [PMID: 18524658 DOI: 10.1016/j.ymgme.2008.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 11/24/2022]
Abstract
Adenylosuccinate lyase (ADSL) catalyzes two steps in purine nucleotide metabolism-the 8th step in the de novo pathway: conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) to aminoimidazole carboxamide ribotide (AICAR), and conversion of adenylosuccinate (S-AMP) to adenylate (AMP) in the purine nucleotide cycle. To date, over 50 patients have been reported suffering from ADSL deficiency. We report all seven so far diagnosed Polish patients with this defect. Most of our patients shared intractable seizures and psychomotor retardation since the neonatal period and had biochemical evidence of severe (type I) deficiency. Two patients with type II suffered only from mild/moderate psychomotor retardation and showed a transientvisual contact disturbance. One patient had a fatal neonatal form of ADSL deficiency with lack of spontaneous movement, respiratory failure, severe encephalopathy and intractable seizures. Analysis of the ADSL gene showed that four apparently unrelated patients carried a R426H mutation (two homozygous and two compound heterozygous). With the exception of the latter mutation, a Y114H mutation that had been reported previously, and a novel mutation T242I, all other mutations (including D268H and three novel S23R, D215H and I351T mutations) were found only in single families in single alleles. A search for this disorder should be included in the screening program of all infants with unexplained neonatal seizures, severe infantile epileptic encephalopathy, developmental delay, hypotonia, and/or autistic features.
Collapse
Affiliation(s)
- Agnieszka Jurecka
- Department of Metabolic Diseases, Endocrinology and Diabetology, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Marie Zikanova
- Institute for Inherited Metabolic Disorders, Ke Karlovu 2, Prague, Czech Republic
| | - Anna Tylki-Szymanska
- Department of Metabolic Diseases, Endocrinology and Diabetology, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Jakub Krijt
- Institute for Inherited Metabolic Disorders, Ke Karlovu 2, Prague, Czech Republic
| | - Anna Bogdanska
- Department of Laboratory Diagnostics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Wanda Gradowska
- Department of Laboratory Diagnostics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Karolina Mullerova
- Institute for Inherited Metabolic Disorders, Ke Karlovu 2, Prague, Czech Republic
| | - Jolanta Sykut-Cegielska
- Department of Metabolic Diseases, Endocrinology and Diabetology, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Stanislav Kmoch
- Institute for Inherited Metabolic Disorders, Ke Karlovu 2, Prague, Czech Republic
| | - Ewa Pronicka
- Department of Metabolic Diseases, Endocrinology and Diabetology, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| |
Collapse
|
36
|
Sivendran S, Colman RF. Effect of a new non-cleavable substrate analog on wild-type and serine mutants in the signature sequence of adenylosuccinate lyase of Bacillus subtilis and Homo sapiens. Protein Sci 2008; 17:1162-74. [PMID: 18469177 DOI: 10.1110/ps.034777.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Adenylosuccinate lyase (ASL) catalyzes two beta-elimination reactions in purine biosynthesis, leading to the question of whether the two substrates occupy the same or different active sites. Kinetic studies of Bacillus subtilis and human ASL with a new substrate analog, adenosine phosphonobutyric acid, 2'(3'), 5'-diphosphate (APBADP), show that it acts as a competitive inhibitor with respect to either substrate (K(I) approximately 0.1 microM), indicating that the two substrates occupy the same active site. Binding studies show that both the B. subtilis and human ASLs bind up to 4 mol of APBADP per mole of enzyme tetramer and that both enzymes exhibit cooperativity: negative for B. subtilis ASL and positive for human ASL. Mutant B. subtilis ASLs, with replacements for residues previously identified as critical for catalysis, bind the substrate analog similarly to wild-type ASL. Two serines in a flexible loop of ASL have been proposed to play roles in catalysis because they are close to the substrate in the crystal structure of Escherichia coli ASL. We have now mutated the corresponding serines to alanines in B. subtilis and human ASL to evaluate their involvement in enzyme function. Kinetic data reveal that human Ser(289) and B. subtilis Ser(262) and Ser(263) are essential for catalysis, while the ability of these Ser mutants to bind APBADP suggests that they do not contribute to substrate affinity. Although these serines are not visible in the crystal structure of human adenylosuccinate lyase complexed with substrate or products (PDB #2VD6), they may be interacting with the active sites.
Collapse
Affiliation(s)
- Sharmila Sivendran
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
37
|
Abstract
Autism is an etiologic heterogeneous entity caused by many different diseases occurring in the central nervous system at an early stage in life. Several metabolic defects have been associated with autistic symptoms with a rate higher than that found in the general population. Inborn errors of metabolism can probably account for less than 5% of individuals. Selective metabolic testing should be done in the presence of suggestive clinical findings, including lethargy, cyclic vomiting, early seizures, dysmorphic features, and mental retardation. In some patients, early diagnosis of the metabolic disorders and proper therapeutic interventions may significantly improve the long-term cognitive and behavioral outcome.
Collapse
Affiliation(s)
- Barbara Manzi
- Department of Neurosciences, Pediatric Neurology Unit, Tor Vergata University of Rome, Via di Tor Vergata 135, Rome, Italy
| | | | | | | |
Collapse
|
38
|
Jurkiewicz E, Mierzewska H, Kuśmierska K. Adenylosuccinate lyase deficiency: the first identified polish patient. Brain Dev 2007; 29:600-2. [PMID: 17485188 DOI: 10.1016/j.braindev.2007.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 03/19/2007] [Accepted: 03/23/2007] [Indexed: 11/18/2022]
Abstract
Adenylosuccinate lyase (ADSL) deficiency is a rare disease of de novo purine synthesis. The main symptoms are psychomotor retardation, epilepsy, autistic features, occasionally associated with muscular hypotonia. Diagnosis is made by detection of abnormal purine metabolites (succinyladenosine - S-Ado and succinylaminoimidazole carboxamide riboside - SAICAr) in body fluids. The severity of the clinical features correlates with low S-Ado/SAICAr ratio. We report clinical, biochemical and brain MRI findings of a female infant with severe early epilepsy and hypotonia, who died at the age of 10 weeks.
Collapse
Affiliation(s)
- Elzbieta Jurkiewicz
- The Children's Memorial Health Institute, MR Unit, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland.
| | | | | |
Collapse
|
39
|
Segall ML, Cashman MA, Colman RF. Important roles of hydroxylic amino acid residues in the function of Bacillus subtilis adenylosuccinate lyase. Protein Sci 2007; 16:441-8. [PMID: 17322529 PMCID: PMC2203318 DOI: 10.1110/ps.062650007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
Thr(93), Ser(94), Thr(140), and Ser(306) are conserved in all adenylosuccinate lyases (ASL) and are close to other amino acids previously identified by mutagenesis as being in the active site. To test their involvement in the enzyme's function, each of these amino acids was replaced by alanine. All the mutants exhibit circular dichroism spectra which are similar to that of wild-type enzyme, indicating there is no appreciable change in secondary structure. T93A exhibits 0.5% of the V(max) of wild-type ASL with a 10-fold increase in K(m) for adenylosuccinate. S94A has 65% of the V(max) of wild-type ASL with little change in K(m). T140A exhibits 0.03% of the activity of wild-type enzyme with an 11-fold increase in K(m). S306A has 0.4% of the V(max) of wild-type ASL with a sevenfold increase in K(m). Measurements of the pH-V(max) profile reveal a pK(2) value for S94A of 7.83 and S306A of 7.65, in contrast to 8.24 for the wild-type enzyme and 8.42 for T93A. Thr(93) may orient adenylosuccinate optimally for catalysis, while Ser(94) stabilizes protonated His(89), a determinant of pK(2). Thr(140) may, through hydrogen bonding, interact with Asn(270), an amino acid essential for catalysis. Ser(306) may be involved in a hydrogen bond network that ultimately stabilizes protonated His(68), which is probably the general acid in the reaction of enzyme with substrate. The results of this paper demonstrate the importance in the catalytic function of ASL of hydrogen bonds and hydrogen bonding networks involving serine and threonine.
Collapse
Affiliation(s)
- Mark L Segall
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
40
|
Mouchegh K, Zikánová M, Hoffmann GF, Kretzschmar B, Kühn T, Mildenberger E, Stoltenburg-Didinger G, Krijt J, Dvoráková L, Honzík T, Zeman J, Kmoch S, Rossi R. Lethal fetal and early neonatal presentation of adenylosuccinate lyase deficiency: observation of 6 patients in 4 families. J Pediatr 2007; 150:57-61.e2. [PMID: 17188615 DOI: 10.1016/j.jpeds.2006.09.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 07/10/2006] [Accepted: 09/08/2006] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To characterize a new lethal fetal and early postnatal variant of adenylosuccinate lyase (ADSL) deficiency. STUDY DESIGN This was a retrospective analysis of 6 patients with very early presentation of ADSL deficiency. RESULTS Most of the 6 patients had impaired intrauterine growth, microcephaly, fetal hypokinesia, and a lack of fetal heart rate variability. Postnatally, they shared severe muscular hypotonia necessitating mechanical ventilation, intractable seizures, and early death. All 6 patients had biochemical evidence of severe (type 1) disease and low residual ADSL activities. All were compound heterozygous for mutations that, based on expression studies, have a pronounced effect on ADSL activity and/or stability. CONCLUSIONS ADSL deficiency may present with prenatal growth restriction, fetal and neonatal hypokinesia, and rapidly fatal neonatal encephalopathy. This clinical presentation is associated with genotypes resulting in very low residual enzyme activity.
Collapse
|
41
|
Hornik P, Vyskocilová P, Friedecký D, Janostáková A, Adamová K, Adam T. Analysis of aminoimidazole ribosides by capillary electrophoresis--diagnosing defects in second part of purine biosynthetic pathway. Clin Chim Acta 2006; 376:184-9. [PMID: 17010959 DOI: 10.1016/j.cca.2006.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 08/14/2006] [Accepted: 08/16/2006] [Indexed: 11/16/2022]
Abstract
BACKGROUND Only three inherited metabolic defects have been identified in purine de novo synthesis (PDNS). We present here CE methods for diagnosing defects in the second half of PDNS (from sixth to tenth enzymatic conversion) based on analysis of aminoimidazole ribosides - dephosphorylated intermediates - in urine. METHODS Assays were performed in an uncoated fused-silica capillary using two electrophoretic separation systems: 60 mmol/l borate - 2-amino-2-methyl-1-propanol-80 mmol/l sodium dodecylsulfate (pH 9.6) and 200 mmol/l phosphate - sodium (pH 1.8). RESULTS The reported conditions allowed separation of all metabolites from major urinary constituents with analysis time less than 10 min and separation efficiency of 220 and 350 thousands theoretical plates per meter for borate and phosphate system, respectively. The intra- and interday imprecisions were less than 4.4% and 9.9% CV. Potential usefulness of the methods was demonstrated on samples from a patient with adenylosuccinate lyase deficiency and Chinese hamster ovary cell lines defective in PDNS. CONCLUSIONS CE is a useful and effective tool in the analysis of aminoimidazole ribosides which enables diagnosis of known as well as not so far identified inherited defects of PDNS pathway.
Collapse
Affiliation(s)
- Petr Hornik
- Department of Clinical Biochemistry, Laboratory for Inherited Metabolic Disorders, University Hospital and Palacký University, I. P. Pavlova 6, 77520 Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
42
|
Schmitt L, Caperelli CA. CARBOCYCLIC SUBSTRATES AND INHIBITORS FOR THE BIFUNCTIONAL LYASE OF PURINE NUCLEOTIDE BIOSYNTHESIS. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319608002741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Hahn A, Neubauer BA. Autismus und Stoffwechselerkrankungen - was ist gesichert? ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2005; 33:259-71. [PMID: 16294704 DOI: 10.1024/1422-4917.33.4.259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zusammenfassung: Die Ursachen für Autismus sind heterogen und ganz überwiegend genetischer Natur. Eine exakte benennbare Ätiologie wird in weniger als 10% der Fälle gefunden. Die Enttäuschung über den geringen Erfolg bei der Ursachenfindung und zahlreiche Berichte über die Assoziation von Autismus mit Stoffwechselerkrankungen sowie über «Wunderheilungen» bei unterschiedlichsten medikamentösen oder diätetischen Therapien haben bei vielen Ärzten und Eltern zu einer zunehmenden Unsicherheit über die sinnvolle Diagnostik und Behandlung geführt. Diese Arbeit gibt einen Überblick über seltene angeborene Stoffwechselerkrankungen («inborn errors of metabolism»), die nachweislich (z.B. Phenylketonurie, Smith-Lemli-Opitz Syndrom) oder wahrscheinlich (z.B. Succinat-Semialdehyd-Dehydrogenase-Mangel) mit Autismus-spezifischen Symptomen vergesellschaftet sind. In aller Regel weisen betroffene Patienten zusätzliche neurologische Symptome auf. Es werden die zur Diagnostik dieser angeborenen Stoffwechselerkrankungen notwendigen Untersuchungen und mögliche therapeutische Maßnahmen dargestellt. Neben diesen gut definierten Stoffwechselerkrankungen mit der Möglichkeit einer rationalen Therapie wird auch auf Hypothesen über die Entstehung von Autismus durch «Stoffwechselveränderungen» eingegangen, die entweder nicht bewiesen oder nachweislich falsch sind.
Collapse
Affiliation(s)
- Andreas Hahn
- Abteilung Neuropädiatrie und Sozialpädiatrie, Zentrum Kinderheilkunde, Justus-Liebig-Universität, Giessen.
| | | |
Collapse
|
44
|
Lejeune J. Pathogenesis of mental deficiency in trisomy 21. AMERICAN JOURNAL OF MEDICAL GENETICS. SUPPLEMENT 2005; 7:20-30. [PMID: 2149947 DOI: 10.1002/ajmg.1320370705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In trisomy 21, pathogenesis of mental retardation is still poorly understood although the knowledge of the genic content of chromosome 21 is steadily increasing. Short of discovering how to silence selectively one of the 3 chromosomes 21, no rational medication can be envisaged before pathogenesis has been unraveled, at least partially. A biochemical scheme of impairment of mental efficiency is presented. Secondarily, the possible deleterious effects of a given gene overdose are discussed. Cu/Zn SOD, cystathionine beta synthase, S 100 beta protein, phosphofructokinase, purine synthesis and adenosine pharmacology, thyroid disturbance, and elevated TSH with low rT3 as well as biopterine metabolism interferences are reviewed. It is observed that the metabolic paths controlled by these genes, although unrelated at first glance, are in fact tightly related by their effects, just as if synteny was in some way related to biochemical cooperation or mutually controlled regulation. Experiments in vitro have demonstrated a peculiar sensitivity of trisomic 21 lymphocytes to methotrexate. From this starting point, systematic research of special sensitivities has begun. Clinical observations and relevant statistical methods allow study of the speed of mental development under various medications. The interest of regulating thyroid metabolism, when needed, is exemplified. Reequilibration of monocarbon metabolism is discussed and the seemingly favourable effect of folinic acid medication in pseudo-Alzheimer complication is presented.
Collapse
Affiliation(s)
- J Lejeune
- Centre de Recherches Claude Bernard, Génétique Humaine et Maladies de l'Intelligence, Institut de Progenèse, Paris, France
| |
Collapse
|
45
|
Crifò C, Siems W, Soro S, Salerno C. Inhibition of defective adenylosuccinate lyase by HNE: a neurological disease that may be affected by oxidative stress. Biofactors 2005; 24:131-6. [PMID: 16403972 DOI: 10.1002/biof.5520240115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adenylosuccinate lyase is an enzyme of fumarase superfamily that participates in the purine biosynthetic pathway, catalysing the nonhydrolytic cleavage of succinyl groups from SAICA ribotide and adenylosuccinate. Enzyme defects are associated with a human inherited disease, which arises from single point mutations to the gene and results in mild to severe psychomotor retardation, epilepsy, muscle wasting, and autistic features. Adenylosuccinate lyase activity is lost to a different extent in the patients. Diminished levels of enzyme have been attributed to loss of catalytic activity, protein instability, or environmental factors. P100A/D422Y mutation represents a feasible model for studying the effect of cell milieu on the activity of the impaired enzyme. The defective enzyme is inhibited by micromolar concentrations of trans-4-hydroxy-2-nonenal (HNE), a major product of membrane peroxidation that has been found to accumulate in brain tissues of patients with neurodegenerative disorders. It is suggested that inactivation of defective adenylosuccinate lyase by HNE and other membrane peroxidation products may account, at least in part, for the impairment of neurological functions and recurrent worsening of the symptoms.
Collapse
Affiliation(s)
- C Crifò
- Department of Biochemical Sciences and Laboratory of Clinical Biochemistry, University of Rome La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
46
|
Sivendran S, Patterson D, Spiegel E, McGown I, Cowley D, Colman RF. Two novel mutant human adenylosuccinate lyases (ASLs) associated with autism and characterization of the equivalent mutant Bacillus subtilis ASL. J Biol Chem 2004; 279:53789-97. [PMID: 15471876 DOI: 10.1074/jbc.m409974200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An Australian patient with autism was found to be heterozygous for two mutations in the gene encoding adenylosuccinate lyase (ASL), resulting in the protein mutations E80D and D87E. The patient's mother carried only the E80D mutation. The equivalent positions are 62 and 69 in Bacillus subtilis ASL. Although both human and B. subtilis enzymes normally have Asp at position 87 (or 69), the B. subtilis ASL has Ile and Asp at 62 and 65, respectively, whereas human ASL has Glu and Arg at the equivalent positions. We have constructed, expressed, and purified the double mutant I62E/D65R as a "humanized" normal B. subtilis enzyme to compare with enzymes with a single mutation at position 62 (I62D/D65R), at position 69 (I62E/D65R/D69E), or at both positions (I62D/D65R/D69E). V(max) for conversion of adenylosuccinate to AMP and fumarate is 0.57 micromol/min/mg for I62E/D65R, 0.064 micromol/min/mg for I62D/D65R, 0.27 micromol/min/mg for I62E/D65R/D69E, and 0.069 micromol/min/mg for I62D/D65R/D69E. The K(m) for adenylosuccinate is elevated in the X62D mutants, and I62D/D65R is the least stable of these ASLs at 37 degrees C. The CD spectra of mutant and wild type enzymes are similar; thus, there are no appreciable structural changes. Clearly the Asp(62) causes the most drastic effect on ASL function, whereas the Glu(69) mutation produces only modest change. These results emphasize the importance of expanding tests for ASL deficiency to individuals with developmental delay of any severity, including individuals with autistic spectrum disorder. This study further demonstrates the usefulness of the B. subtilis ASL as a model to mimic the defective enzyme in ASL deficiency.
Collapse
Affiliation(s)
- Sharmila Sivendran
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | |
Collapse
|
47
|
Palenchar JB, Crocco JM, Colman RF. The characterization of mutant Bacillus subtilis adenylosuccinate lyases corresponding to severe human adenylosuccinate lyase deficiencies. Protein Sci 2003; 12:1694-705. [PMID: 12876319 PMCID: PMC2323956 DOI: 10.1110/ps.0303903] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Adenylosuccinate lyase is a homotetramer that catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide (SAICAR). Several point mutations in the gene encoding the enzyme have been implicated in human disease. Bacillus subtilis adenylosuccinate lyase was used as a model system in which mutations were constructed corresponding to those mutations associated with severe human adenylosuccinate lyase deficiency. Site-directed mutagenesis was utilized to construct amino acid substitutions in B. subtilis adenylosuccinate lyase; Met(10), Ile(123), and Thr(367) were replaced by Leu, Trp, and Arg, respectively, and the altered enzymes were expressed in Escherichia coli. These purified enzymes containing amino acid substitutions were found to have substantial catalytic activity and exhibit relatively small changes in their kinetic parameters. The major deviations from the wild-type-like behavior were observed upon biophysical characterization. All of these enzymes with amino acid replacements are associated with marked thermal instability. I123W adenylosuccinate lyase exhibits notable changes in the circular dichroism spectra, and a native gel electrophoresis pattern indicative of some protein aggregation. T367R also exhibits alterations at the quarternary level, as reflected in native gel electrophoresis. Experimental results, combined with homology modeling, suggest that the altered enzymes are primarily structurally impaired. The enzyme instability was found to be lessened by subunit complementation with the wild-type enzyme, under mild conditions; these studies may have implications for the in vivo behavior of adenylosuccinate lyase in heterozygous patients. Residues Met(10), Ile(123), and Thr(367) appear to be located in regions of the enzyme important for maintaining the structural integrity required for a stable, functional enzyme.
Collapse
|
48
|
Edery P, Chabrier S, Ceballos-Picot I, Marie S, Vincent MF, Tardieu M. Intrafamilial variability in the phenotypic expression of adenylosuccinate lyase deficiency: a report on three patients. Am J Med Genet A 2003; 120A:185-90. [PMID: 12833398 DOI: 10.1002/ajmg.a.20176] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We report on the striking variable expression of adenylosuccinate lyase (ADSL) deficiency in three patients belonging to a family which originates from Portugal. ADSL deficiency is a rare autosomal recessive disorder of the de novo purine synthesis which results in accumulation of succinylpurines in body fluids. As a result, patients may have variable combinations of psychomotor retardation and/or regression, seizures, autistic features and cerebellar vermis hypoplasia. However, intrafamilial variable expression of the phenotype has not been documented to date in this disease and is not commonly observed in metabolic disorders. Here, while the proband had marked psychomotor regression and progressive cerebellar vermis atrophy, the other two affected patients presented mainly autistic features. Mutation analysis of the ADSL gene revealed the presence of a homozygous R426H mutation in this family. Finally, although ADSL deficiency is a rare disorder, this diagnosis should be considered and assessed using a simple urinary screening method for the presence of succinylpurines in any patient with mental retardation of unexplained origin.
Collapse
Affiliation(s)
- Patrick Edery
- Département de Pédiatrie, Service de Neurologie, C.H.U. de Bicêtre, 94275 Le Kremlin Bicêtre Cédex, France
| | | | | | | | | | | |
Collapse
|
49
|
Marie S, Race V, Vincent MF, Van den Berghe G. Adenylosuccinate lyase deficiency: from the clinics to molecular biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 486:79-82. [PMID: 11783532 DOI: 10.1007/0-306-46843-3_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- S Marie
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology, and Université Catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
50
|
Friedecký D, Adam T, Barták P. Capillary electrophoresis for detection of inherited disorders of purine and pyrimidine metabolism: a selective approach. Electrophoresis 2002; 23:565-71. [PMID: 11870766 DOI: 10.1002/1522-2683(200202)23:4<565::aid-elps565>3.0.co;2-s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We developed a capillary electrophoresis method as a diagnostic tool for purine and pyrimidine metabolic disorders. Optimal conditions allowed the separation of the major diagnostic metabolites in urine samples within an analysis time of 10 min and with a separation efficiency of about 350,000 theoretical plates/m. The diagnostically important metabolites (adenine, adenosine, 2-deoxyadenosine, 2-deoxyguanosine, 2,8-dihydroxyadenine, guanosine, hypoxanthine, orotidine, orotic acid, and creatinine) were detectable at concentrations of 1.0-5.7 micromol/L. The method gives a linear calibration curve for tested purine and pyrimidine derivatives within the range of 5-500 micromol/L (r > 0.996) The coefficients of variation for the within- and between-day imprecisions were less than 3.2 and 5.8%, respectively. Characteristic abnormalities were detected in the electropherograms of urine samples from patients with purine and pyrimidine enzyme deficiencies. We provide electrophoretic and spectral characteristics of intermediates in purine and pyrimidine metabolism and possible artifacts from medication and their UV-absorbing compounds. Our method allows the detection of the majority of inborn errors of purine and pyrimidine metabolism.
Collapse
Affiliation(s)
- David Friedecký
- Department of Analytical Chemistry, Palacký University, Olomouc, Czech Republic
| | | | | |
Collapse
|