1
|
Rinotas V, Gkikopoulou E, Tzortzis E, Kritikos K, Siatra P, Papadopoulos A, Perivolidi VI, Douni E. Interplay between bone marrow adiposity and bone resorption in RANKL-mediated modelled osteoporosis. J Cell Physiol 2024; 239:e31434. [PMID: 39279218 DOI: 10.1002/jcp.31434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
Bone marrow adipose tissue (BMAT) accrues in osteoporosis, whereas its contribution to the progression of bone resorption remains insufficiently understood. To understand the mechanisms that promote BMAT expansion in osteoporosis, in the present study, we performed extensive analysis of the spatiotemporal pattern of BMAT expansion during the progression of bone resorption in TgRANKL transgenic mouse models of osteoporosis expressing human RANKL (receptor activator of nuclear factor-κB ligand). Our results showed that TgRANKL mice of both sexes developed dramatically increased BMAT expansion compared to wild-type (WT) littermates, that was analogous to the levels of RANKL expression and the severity of the bone loss phenotype. BMAT was formed at close proximity to areas undergoing active bone remodelling and bone resorption, whereas bone resorption preceded BMAT development. Expression analysis in bone fractions demonstrated that BMAT constitutes a major source for RANKL production. Ex vivo analysis of isolated bone marrow stromal cells from TgRANKL mice showed an increased adipogenic differentiation capacity compared to WT, while osteoclast supernatants further exaggerated adipogenesis, supporting a critical role of the osteoclast-derived secretome in the differentiation of bone marrow adipocytes. Furthermore, the effectiveness of an antiosteoporosis treatment in BMAT development was investigated upon treatment of TgRANKL models with the bisphosphonate alendronate. Notably, alendronate effectively improved bone mass and attenuated BMAT expansion, indicating a possible involvement of osteoclasts and bone resorption in BMAT development. On the contrary, inhibition of BMAT with PPARγ antagonists (GW9662 or BADGE) effectively ameliorated BMAT expansion but failed to reverse the osteoporotic phenotype of TgRANKL mice. Overall, our data demonstrate that TgRANKL mice constitute unique genetic mouse models for investigating the pathogenic mechanisms that regulate the development and expansion of BMAT in osteolytic diseases.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Evi Gkikopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Efthymiοs Tzortzis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Kritikos
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Panagiota Siatra
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Apostolos Papadopoulos
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Vasiliki-Iris Perivolidi
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
2
|
Beekman KM, Duque G, Corsi A, Tencerova M, Bisschop PH, Paccou J. Osteoporosis and Bone Marrow Adipose Tissue. Curr Osteoporos Rep 2023; 21:45-55. [PMID: 36534306 DOI: 10.1007/s11914-022-00768-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the recent findings regarding bone marrow adipose tissue (BMAT) concerning bone health. We summarize the variations in BMAT in relation to age, sex, and skeletal sites, and provide an update on noninvasive imaging techniques to quantify human BMAT. Next, we discuss the role of BMAT in patients with osteoporosis and interventions that affect BMAT. RECENT FINDINGS There are wide individual variations with region-specific fluctuation and age- and gender-specific differences in BMAT content and composition. The Bone Marrow Adiposity Society (BMAS) recommendations aim to standardize imaging protocols to increase comparability across studies and sites. Water-fat imaging (WFI) seems an accurate and efficient alternative for spectroscopy (1H-MRS). Most studies indicate that greater BMAT is associated with lower bone mineral density (BMD) and a higher prevalence of vertebral fractures. The proton density fat fraction (PDFF) and changes in lipid composition have been associated with an increased risk of fractures independently of BMD. Therefore, PDFF and lipid composition could potentially be future imaging biomarkers for assessing fracture risk. Evidence of the inhibitory effect of osteoporosis treatments on BMAT is still limited to a few randomized controlled trials. Moreover, results from the FRAME biopsy sub-study highlight contradictory findings on the effect of the sclerostin antibody romosozumab on BMAT. Further understanding of the role(s) of BMAT will provide insight into the pathogenesis of osteoporosis and may lead to targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Kerensa M Beekman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gustavo Duque
- Department of Medicine and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Michaela Tencerova
- Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter H Bisschop
- Department of Endocrinology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Julien Paccou
- Department of Rheumatology, MABLaB ULR 4490, CHU Lille, University Lille, Lille, France.
| |
Collapse
|
3
|
Nguyen-Khac V, Bonnet-Lebrun A, Skalli W, Adamsbaum C, Linglart A, Wicart P. Changes in adipose bone marrow and bone morphology in X-linked hypophosphatemic rickets. Orthop Traumatol Surg Res 2022; 109:103529. [PMID: 36565743 DOI: 10.1016/j.otsr.2022.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/03/2022] [Revised: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION X-linked hypophosphatemic (XLH) rickets causes significant bone deformities in the lower limbs resulting from a bone mineralization defect. According to Frost's Mechanostat theory, compensatory modeling of the bones takes place during increased mechanical loads. In addition, mechanical stimuli modulate the differentiation of mesenchymal stem cells; common precursors to bone marrow adipocytes and osteoblasts. HYPOTHESIS Bone deformities of the lower limbs lead to increased femoral bone mass and decreased fatty infiltration of the bone marrow (FIBM) in children with XLH rickets compared to a control group. PATIENTS AND METHODS Eleven children (10.3years [6-17]) with XLH rickets and 22 healthy children (10.2years [5-15.5]) underwent lower limb Magnetic Resonance Imaging. A calculation of FIBM was performed at the mid-femur, as well as a calculation of the total bone cross-sectional area (CSA), the cortical CSA, the anteroposterior and mediolateral axes of the femur, bone marrow and the thickness of the femoral cortices. RESULTS Total bone CSA, total cortical CSA and bone marrow CSA were higher in the XLH group than in the control group (p<0.05). The mid-lateral diameters of the femur and bone marrow were more elongated than those of the control group (p<0.001). Only the anterior cortex was thinned in the XLH group (p=0.001), while there was no difference with the control group for the posterior, medial and lateral cortices. The total percentage of FIBM was 72.81% [±3.95] and 77.4% [±5.52] for the XLH and control groups respectively (p<0.001). DISCUSSION The increase in bone mass in the XLH population reflects an adaptation of bone tissue to the bone deformities present in this pathology. The decrease in FIBM indicates a lower risk of osteoporosis in the XLH population and may constitute a new monitoring parameter in this pathology. LEVEL OF STUDY III; Case-control study.
Collapse
Affiliation(s)
| | - Aurore Bonnet-Lebrun
- ENSAM, Institut de Biomécanique Humaine G.-Charpark, 151, Boulevard de l'Hôpital, 75013 Paris, France
| | - Wafa Skalli
- ENSAM, Institut de Biomécanique Humaine G.-Charpark, 151, Boulevard de l'Hôpital, 75013 Paris, France
| | - Catherine Adamsbaum
- Hôpital Bicêtre, AP-HP, 78, rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Agnès Linglart
- Hôpital Bicêtre, AP-HP, 78, rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Philippe Wicart
- Hospital Necker-Enfants-Malades, AP-HP, 149, rue de Sèvre, 75015 Paris, France
| |
Collapse
|
4
|
Carballido-Gamio J, Posadzy M, Wu PH, Kenny K, Saeed I, Link TM, Tien PC, Krug R, Kazakia GJ. People living with HIV have low trabecular bone mineral density, high bone marrow adiposity, and poor trabecular bone microarchitecture at the proximal femur. Osteoporos Int 2022; 33:1739-1753. [PMID: 35478045 PMCID: PMC9509414 DOI: 10.1007/s00198-022-06405-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/09/2021] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
UNLABELLED People living with HIV (PLWH) have increased risk of osteoporosis and fractures. We assessed the proximal femur of PLWH and age-matched seronegative controls using quantitative computed tomography and magnetic resonance imaging. Results suggest that the trabecular compartment is compromised at fracture-prone regions in the proximal femur of PLWH. INTRODUCTION People living with HIV (PLWH) have increased risk of osteoporosis and fractures. However, studies assessing the main determinants of bone strength in the proximal femur exclude this vulnerable population. We assessed the proximal femur of 40 PLWH and 26 age-matched seronegative controls using quantitative computed tomography and magnetic resonance imaging. METHODS We examined cortical volumetric bone mineral density (Ct.vBMD), trabecular vBMD (Tb.vBMD), cortical thickness (Ct.Th), bone marrow adiposity (BMA), and trabecular number, separation, and bone volume fraction. Parametric comparisons between the two groups were made for the femoral head, femoral neck, trochanter, and total hip using linear regression adjusting for several covariates, including metrics of body composition. In addition, we investigated the associations of BMA with Tb.vBMD and trabecular microarchitecture with Spearman's rank partial correlations. RESULTS PLWH had lower Tb.vBMD and deteriorated trabecular microarchitecture in the femoral neck, trochanter and total hip, and elevated BMA in the femoral head, femoral neck, and total hip. Ct.vBMD and Ct.Th were not significantly different between the two groups. BMA was significantly associated with lower Tb.vBMD and deteriorated trabecular microarchitecture in both groups albeit at different femoral regions. CONCLUSIONS Our findings suggest that the trabecular, and not the cortical, compartment is compromised in the proximal femur of PLWH. The observed impairments in fracture-prone regions in PLWH indicate lower femoral strength and suggest higher fracture risk. The inverse associations of BMA with trabecular bone density and microarchitecture quality agree with findings at other anatomic sites and in other populations, suggesting that excess BMA possibly due to a switch from the osteoblast to the adipocyte lineage may be implicated in the pathogenesis of bone fragility at the femur in PLWH.
Collapse
Affiliation(s)
- J Carballido-Gamio
- Department of Radiology, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave, Mail Stop C278, Room 1208, Aurora, CO, 80045, USA.
| | - M Posadzy
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - P-H Wu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - K Kenny
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - I Saeed
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - T M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - P C Tien
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - R Krug
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - G J Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Wells GA, Hsieh SC, Zheng C, Peterson J, Tugwell P, Liu W. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev 2022; 5:CD004523. [PMID: 35502787 PMCID: PMC9062986 DOI: 10.1002/14651858.cd004523.pub4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Osteoporosis is an abnormal reduction in bone mass and bone deterioration leading to increased fracture risk. Risedronate belongs to the bisphosphonate class of drugs which act to inhibit bone resorption by interfering with the activity of osteoclasts. This is an update of a Cochrane Review that was originally published in 2003. OBJECTIVES We assessed the benefits and harms of risedronate in the primary and secondary prevention of osteoporotic fractures for postmenopausal women at lower and higher risk for fractures, respectively. SEARCH METHODS With broader and updated strategies, we searched the Cochrane Central Register of Control Trials (CENTRAL), MEDLINE and Embase. A grey literature search, including the online databases ClinicalTrials.gov, International Clinical Trials Registry Platform (ICTRP), and drug approval agencies, as well as bibliography checks of relevant systematic reviews was also performed. Eligible trials published between 1966 to 24 March 2021 were identified. SELECTION CRITERIA We included randomised controlled trials that assessed the benefits and harms of risedronate in the prevention of fractures for postmenopausal women. Participants must have received at least one year of risedronate, placebo or other anti-osteoporotic drugs, with or without concurrent calcium/vitamin D. Major outcomes were clinical vertebral, non-vertebral, hip and wrist fractures, withdrawals due to adverse events, and serious adverse events. In the interest of clinical relevance and applicability, we classified a study as secondary prevention if its population fulfilled more than one of the following hierarchical criteria: a diagnosis of osteoporosis, a history of vertebral fractures, low bone mineral density (BMD)T score ≤ -2.5, and age ≥ 75 years old. If none of these criteria was met, the study was considered to be primary prevention. DATA COLLECTION AND ANALYSIS We used standard methodology expected by Cochrane. We pooled the relative risk (RR) of fractures using a fixed-effect model based on the expectation that the clinical and methodological characteristics of the respective primary and secondary prevention studies would be homogeneous, and the experience from the previous review suggesting that there would be a small number of studies. The base case included the data available for the longest treatment period in each placebo-controlled trial and a >15% relative change was considered clinically important. The main findings of the review were presented in summary of findings tables, using the GRADE approach. In addition, we looked at benefit and harm comparisons between different dosage regimens for risedronate and between risedronate and other anti-osteoporotic drugs. MAIN RESULTS Forty-three trials fulfilled the eligibility criteria, among which 33 studies (27,348 participants) reported data that could be extracted and quantitatively synthesized. We had concerns about particular domains of risk of bias in each trial. Selection bias was the most frequent concern, with only 24% of the studies describing appropriate methods for both sequence generation and allocation concealment. Fifty per cent and 39% of the studies reporting benefit and harm outcomes, respectively, were subject to high risk. None of the studies included in the quantitative syntheses were judged to be at low risk of bias in all seven domains. The results described below pertain to the comparisons for daily risedronate 5 mg versus placebo which reported major outcomes. Other comparisons are described in the full text. For primary prevention, low- to very low-certainty evidence was collected from four studies (one to two years in length) including 989 postmenopausal women at lower risk of fractures. Risedronate 5 mg/day may make little or no difference to wrist fractures [RR 0.48 ( 95% CI 0.03 to 7.50; two studies, 243 participants); absolute risk reduction (ARR) 0.6% fewer (95% CI 1% fewer to 7% more)] and withdrawals due to adverse events [RR 0.67 (95% CI 0.38 to 1.18; three studies, 748 participants); ARR 2% fewer (95% CI 5% fewer to 1% more)], based on low-certainty evidence. However, its preventive effects on non-vertebral fractures and serious adverse events are not known due to the very low-certainty evidence. There were zero clinical vertebral and hip fractures reported therefore the effects of risedronate for these outcomes are not estimable. For secondary prevention, nine studies (one to three years in length) including 14,354 postmenopausal women at higher risk of fractures provided evidence. Risedronate 5 mg/day probably prevents non-vertebral fractures [RR 0.80 (95% CI 0.72 to 0.90; six studies, 12,173 participants); RRR 20% (95% CI 10% to 28%) and ARR 2% fewer (95% CI 1% fewer to 3% fewer), moderate certainty], and may reduce hip fractures [RR 0.73 (95% CI 0.56 to 0.94); RRR 27% (95% CI 6% to 44%) and ARR 1% fewer (95% CI 0.2% fewer to 1% fewer), low certainty]. Both of these effects are probably clinically important. However, risedronate's effects are not known for wrist fractures [RR 0.64 (95% CI 0.33 to 1.24); three studies,1746 participants); ARR 1% fewer (95% CI 2% fewer to 1% more), very-low certainty] and not estimable for clinical vertebral fractures due to zero events reported (low certainty). Risedronate results in little to no difference in withdrawals due to adverse events [RR 0.98 (95% CI 0.90 to 1.07; eight studies, 9529 participants); ARR 0.3% fewer (95% CI 2% fewer to 1% more); 16.9% in risedronate versus 17.2% in control, high certainty] and probably results in little to no difference in serious adverse events [RR 1.00 (95% CI 0.94 to 1.07; six studies, 9435 participants); ARR 0% fewer (95% CI 2% fewer to 2% more; 29.2% in both groups, moderate certainty). AUTHORS' CONCLUSIONS This update recaps the key findings from our previous review that, for secondary prevention, risedronate 5 mg/day probably prevents non-vertebral fracture, and may reduce the risk of hip fractures. We are uncertain on whether risedronate 5mg/day reduces clinical vertebral and wrist fractures. Compared to placebo, risedronate probably does not increase the risk of serious adverse events. For primary prevention, the benefit and harms of risedronate were supported by limited evidence with high uncertainty.
Collapse
Affiliation(s)
- George A Wells
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Shu-Ching Hsieh
- Cardiovascular Research Methods Center, University of Ottawa Heart Institute, Ottawa, Canada
| | - Carine Zheng
- University of Ottawa Heart Institute, Ottawa, Canada
- Statistics Canada, Ottawa, Canada
| | - Joan Peterson
- Clinical Epidemiology Unit, Ottawa Civic Hospital / Loeb Research Institute, Ottawa, Canada
| | - Peter Tugwell
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- WHO Collaborating Centre for Knowledge Translation and Health Technology Assessment in Health Equity, Bruyère Research Institute, Ottawa, Canada
| | - Wenfei Liu
- Cardiovascular Research Methods Center, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
6
|
Ali D, Tencerova M, Figeac F, Kassem M, Jafari A. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne) 2022; 13:981487. [PMID: 36187112 PMCID: PMC9520254 DOI: 10.3389/fendo.2022.981487] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by decreased bone mass and micro-architectural deterioration leading to increased fracture risk. Osteoporosis incidence increases with age in both post-menopausal women and aging men. Among other important contributing factors to bone fragility observed in osteoporosis, that also affect the elderly population, are metabolic disturbances observed in obesity and Type 2 Diabetes (T2D). These metabolic complications are associated with impaired bone homeostasis and a higher fracture risk. Expansion of the Bone Marrow Adipose Tissue (BMAT), at the expense of decreased bone formation, is thought to be one of the key pathogenic mechanisms underlying osteoporosis and bone fragility in obesity and T2D. Our review provides a summary of mechanisms behind increased Bone Marrow Adiposity (BMA) during aging and highlights the pre-clinical and clinical studies connecting obesity and T2D, to BMA and bone fragility in aging osteoporotic women and men.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| |
Collapse
|
7
|
Hu Y, Li X, Zhi X, Cong W, Huang B, Chen H, Wang Y, Li Y, Wang L, Fang C, Guo J, Liu Y, Cui J, Cao L, Weng W, Zhou Q, Wang S, Chen X, Su J. RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss. EMBO Rep 2021; 22:e52481. [PMID: 34121311 DOI: 10.15252/embr.202152481] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022] Open
Abstract
Receptor activator of NF-κB ligand (RANKL) is essential for osteoclast formation and bone remodeling. Nevertheless, the cellular source of RANKL for osteoclastogenesis has not been fully uncovered. Different from peripheral adipose tissue, bone marrow (BM) adipose lineage cells originate from bone marrow mesenchymal stromal cells (BMSCs). Here, we demonstrate that adiponectin promoter-driven Cre expression (AdipoqCre ) can target bone marrow adipose lineage cells. We cross the AdipoqCre mice with ranklfl/fl mice to conditionally delete RANKL from BM adipose lineage cells. Conditional deletion of RANKL increases cancellous bone mass of long bones in mice by reducing the formation of trabecular osteoclasts and inhibiting bone resorption but does not affect cortical bone thickness or resorption of calcified cartilage. AdipoqCre ; ranklfl/fl mice exhibit resistance to estrogen deficiency and rosiglitazone (ROS)-induced trabecular bone loss but show bone loss induced by unloading. BM adipose lineage cells therefore represent an essential source of RANKL for the formation of trabecula osteoclasts and resorption of cancellous bone during remodeling under physiological and pathological conditions. Targeting bone marrow adiposity is a promising way of preventing pathological bone loss.
Collapse
Affiliation(s)
- Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoqun Li
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhi
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Wei Cong
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huiwen Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yajun Wang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Lipeng Wang
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chao Fang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiawei Guo
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jin Cui
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics Trauma, Shanghai Luodian Hospital, Shanghai, China
| | - Weizong Weng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qirong Zhou
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sicheng Wang
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China
| |
Collapse
|
8
|
Duque G, Al Saedi A, Rivas D, Miard S, Ferland G, Picard F, Gaudreau P. Differential Effects of Long-Term Caloric Restriction and Dietary Protein Source on Bone and Marrow Fat of the Aging Rat. J Gerontol A Biol Sci Med Sci 2021; 75:2031-2036. [PMID: 32298404 DOI: 10.1093/gerona/glaa093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2019] [Indexed: 01/11/2023] Open
Abstract
Long-term caloric restriction (CR) has been shown to be beneficial to various tissues and organs. In contrast, CR exerts differential effects on bone, which could be due in part to the nature of the protein regime utilized. Male Sprague Dawley rats (8-month-old) were subjected for 12 months to 40% CR in macronutrients and compared with rats fed ad libitum for the same period. Casein- and soy-fed groups were compared. There was a significant decrease in bone quality in both CR groups, which was independent of the source of protein in the diet. In contrast, the group fed soy protein ad libitum showed better bone quality and higher levels of bone formation compared with casein-fed animals. Notably, bone marrow adipocytes were not mobilized upon CR as demonstrated by an absence of change in adipocyte number and tissue expression of leptin. This study demonstrates that the negative effect of CR on bone quality could not be prevented by the most common protein regimes.
Collapse
Affiliation(s)
- Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia.,Department of Medicine-Western Health, University of Melbourne, St. Albans, Australia
| | - Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia.,Department of Medicine-Western Health, University of Melbourne, St. Albans, Australia
| | - Daniel Rivas
- Lady Davis Institute for Medical Research, Montreal, Canada
| | | | - Guylaine Ferland
- Département de nutrition, Faculté de médecine de l'Université de Montréal (UdeM), Canada.,Centre de recherche de l'Institut de cardiologie de Montréal, Canada
| | - Frederic Picard
- Quebec Heart and Lung Institute, Canada.,Faculty of Pharmacy, Université Laval, Québec, Canada
| | - Pierrette Gaudreau
- Département de médecine, UdeM, Montreal, Canada.,Laboratoire de Neuroendocrinologie du vieillissement, Centre de Recherche du Centre hospitalier de l'UdeM, Montréal, Canada
| |
Collapse
|
9
|
Tripathi AK, Rai D, Kothari P, Kushwaha P, Sinha S, Sardar A, Sashidhara KV, Trivedi R. Benzofuran pyran compound rescues rat and human osteoblast from lipotoxic effect of palmitate by inhibiting lipid biosynthesis and promoting stabilization of RUNX2. Toxicol In Vitro 2020; 66:104872. [DOI: 10.1016/j.tiv.2020.104872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/01/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
|
10
|
Aparisi Gómez MP, Ayuso Benavent C, Simoni P, Aparisi F, Guglielmi G, Bazzocchi A. Fat and bone: the multiperspective analysis of a close relationship. Quant Imaging Med Surg 2020; 10:1614-1635. [PMID: 32742956 DOI: 10.21037/qims.2020.01.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
The study of bone has for many years been focused on the study of its mineralized component, and one of the main objects of study as radiology developed as a medical specialty. The assessment has until recently been almost limited to its role as principal component of the scaffolding of the human body. Bone is a very active tissue, in continuous cross-talk with other organs and systems, with functions that are endocrine and paracrine and that have an important involvement in metabolism, ageing and health in general. Bone is also the continent for the bone marrow, in the form of "yellow marrow" (mainly adipocytes) or "red marrow" (hematopoietic cells and adipocytes). Recently, numerous studies have focused on these adipocytes contained in the bone marrow, often referred to as marrow adipose tissue (MAT). Bone marrow adipocytes do not only work as storage tissue, but are also endocrine and paracrine cells, with the potential to contribute to local bone homeostasis and systemic metabolism. Many metabolic disorders (osteoporosis, obesity, diabetes) have a complex and still not well-established relationship with MAT. The development of imaging methods, in particular the development of cross-sectional imaging has helped us to understand how much more laid beyond our classical way to look at bone. The impact on the mineralized component of bone in some cases (e.g., osteoporosis) is well-established, and has been extensively analyzed and quantified through different radiological methods. The application of advanced magnetic resonance techniques has unlocked the possibility to access the detailed study, characterization and quantification of the bone marrow components in a non-invasive way. In this review, we will address what is the evidence on the physiological role of MAT in normal skeletal health (interaction with the other bone components), during the process of normal aging and in the context of some metabolic disorders, highlighting the role that imaging methods play in helping with quantification and diagnosis.
Collapse
Affiliation(s)
- Maria Pilar Aparisi Gómez
- Department of Radiology, Auckland City Hospital, Auckland, New Zealand.,Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | | | - Paolo Simoni
- Department of Radiology, "Reine Fabiola" Children's University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Francisco Aparisi
- Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | - Giuseppe Guglielmi
- Department of Radiology, University of Foggia, Foggia, Italy.,Department of Radiology, Hospital San Giovanni Rotondo, Foggia, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
11
|
Muruganandan S, Ionescu AM, Sinal CJ. At the Crossroads of the Adipocyte and Osteoclast Differentiation Programs: Future Therapeutic Perspectives. Int J Mol Sci 2020; 21:ijms21072277. [PMID: 32224846 PMCID: PMC7177886 DOI: 10.3390/ijms21072277] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
The coordinated development and function of bone-forming (osteoblasts) and bone-resorbing (osteoclasts) cells is critical for the maintenance of skeletal integrity and calcium homeostasis. An enhanced adipogenic versus osteogenic potential of bone marrow mesenchymal stem cells (MSCs) has been linked to bone loss associated with diseases such as diabetes mellitus, as well as aging and postmenopause. In addition to an inherent decrease in bone formation due to reduced osteoblast numbers, recent experimental evidence indicates that an increase in bone marrow adipocytes contributes to a disproportionate increase in osteoclast formation. Therefore, a potential strategy for therapeutic intervention in chronic bone loss disorders such as osteoporosis is to interfere with the pro-osteoclastogenic influence of marrow adipocytes. However, application of this approach is limited by the extremely complex regulatory processes in the osteoclastogenic program. For example, key regulators of osteoclastogenesis such as the receptor activator of nuclear factor-kappaB ligand (RANKL) and the soluble decoy receptor osteoprotegerin (OPG) are not only secreted by both osteoblasts and adipocytes, but are also regulated through several cytokines produced by these cell types. In this context, biologically active signaling molecules secreted from bone marrow adipocytes, such as chemerin, adiponectin, leptin, visfatin and resistin, can have a profound influence on the osteoclast differentiation program of hematopoietic stem cells (HSCs), and thus, hold therapeutic potential under disease conditions. In addition to these paracrine signals, adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPα), C/EBP beta (C/EBPβ) and peroxisome proliferator-associated receptor gamma (PPARγ) are also expressed by osteoclastogenic cells. However, in contrast to MSCs, activation of these adipogenic transcription factors in HSCs promotes the differentiation of osteoclast precursors into mature osteoclasts. Herein, we discuss the molecular mechanisms that link adipogenic signaling molecules and transcription factors to the osteoclast differentiation program and highlight therapeutic strategies targeting these mechanisms for promoting bone homeostasis.
Collapse
Affiliation(s)
- Shanmugam Muruganandan
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +614-971-0412
| | - Andreia M. Ionescu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA;
| | | |
Collapse
|
12
|
McGrath C, Sankaran JS, Misaghian‐Xanthos N, Sen B, Xie Z, Styner MA, Zong X, Rubin J, Styner M. Exercise Degrades Bone in Caloric Restriction, Despite Suppression of Marrow Adipose Tissue (MAT). J Bone Miner Res 2020; 35:106-115. [PMID: 31509274 PMCID: PMC6980282 DOI: 10.1002/jbmr.3872] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/26/2019] [Revised: 08/13/2019] [Accepted: 08/30/2019] [Indexed: 01/06/2023]
Abstract
Marrow adipose tissue (MAT) and its relevance to skeletal health during caloric restriction (CR) is unknown: It remains unclear whether exercise, which is anabolic to bone in a calorie-replete state, alters bone or MAT in CR. We hypothesized that response of bone and MAT to exercise in CR differs from the calorie-replete state. Ten-week-old female B6 mice fed a regular diet (RD) or 30% CR diet were allocated to sedentary (RD, CR, n = 10/group) or running exercise (RD-E, CR-E, n = 7/group). After 6 weeks, CR mice weighed 20% less than RD, p < 0.001; exercise did not affect weight. Femoral bone volume (BV) via 3D MRI was 20% lower in CR versus RD (p < 0.0001). CR was associated with decreased bone by μCT: Tb.Th was 16% less in CR versus RD, p < 0.003, Ct.Th was 5% less, p < 0.07. In CR-E, Tb.Th was 40% less than RD-E, p < 0.0001. Exercise increased Tb.Th in RD (+23% RD-E versus RD, p < 0.003) but failed to do so in CR. Cortical porosity increased after exercise in CR (+28%, p = 0.04), suggesting exercise during CR is deleterious to bone. In terms of bone fat, metaphyseal MAT/ BV rose 159% in CR versus RD, p = 0.003 via 3D MRI. Exercise decreased MAT/BV by 52% in RD, p < 0.05, and also suppressed MAT in CR (-121%, p = 0.047). Histomorphometric analysis of adipocyte area correlated with MAT by MRI (R2 = 0.6233, p < 0.0001). With respect to bone, TRAP and Sost mRNA were reduced in CR. Intriguingly, the repressed Sost in CR rose with exercise and may underlie the failure of CR-bone quantity to increase in response to exercise. Notably, CD36, a marker of fatty acid uptake, rose 4088% in CR (p < 0.01 versus RD), suggesting that basal increases in MAT during calorie restriction serve to supply local energy needs and are depleted during exercise with a negative impact on bone. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Cody McGrath
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Jeyantt S Sankaran
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Negin Misaghian‐Xanthos
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Buer Sen
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Zhihui Xie
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Martin A Styner
- Department of Computer ScienceUniversity of North CarolinaChapel HillNCUSA
- Department of PsychiatryUniversity of North CarolinaChapel HillNCUSA
| | - Xiaopeng Zong
- Biomedical Research Imaging CenterUniversity of North CarolinaChapel HillNCUSA
| | - Janet Rubin
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Maya Styner
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| |
Collapse
|
13
|
Bani Hassan E, Ghasem-Zadeh A, Imani M, Kutaiba N, Wright DK, Sepehrizadeh T, Duque G. Bone Marrow Adipose Tissue Quantification by Imaging. Curr Osteoporos Rep 2019; 17:416-428. [PMID: 31713178 DOI: 10.1007/s11914-019-00539-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The significance and roles of marrow adipose tissue (MAT) are increasingly known, and it is no more considered a passive fat storage but a tissue with significant paracrine and endocrine activities that can cause lipotoxicity and inflammation. RECENT FINDINGS Changes in the MAT volume and fatty acid composition appear to drive bone and hematopoietic marrow deterioration, and studying it may open new horizons to predict bone fragility and anemia development. MAT has the potential to negatively impact bone volume and strength through several mechanisms that are partially described by inflammaging and lipotoxicity terminology. Evidence indicates paramount importance of MAT in age-associated decline of bone and red marrow structure and function. Currently, MAT measurement is being tested and validated by several techniques. However, purpose-specific adaptation of existing imaging technologies and, more importantly, development of new modalities to quantitatively measure MAT are yet to be done.
Collapse
Affiliation(s)
- Ebrahim Bani Hassan
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
- Department of Medicine-Western Health, The University of Melbourne, St. Albans, VIC, Australia
| | - Ali Ghasem-Zadeh
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
- Department of Medicine and Endocrinology, Austin Health, Melbourne, VIC, Australia
| | - Mahdi Imani
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
- Department of Medicine-Western Health, The University of Melbourne, St. Albans, VIC, Australia
| | - Numan Kutaiba
- Austin Health, Department of Radiology, Heidelberg, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia.
- Department of Medicine-Western Health, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
14
|
Dieckmeyer M, Ruschke S, Rohrmeier A, Syväri J, Einspieler I, Seifert-Klauss V, Schmidmayr M, Metz S, Kirschke JS, Rummeny EJ, Zimmer C, Karampinos DC, Baum T. Vertebral bone marrow fat fraction changes in postmenopausal women with breast cancer receiving combined aromatase inhibitor and bisphosphonate therapy. BMC Musculoskelet Disord 2019; 20:515. [PMID: 31694630 PMCID: PMC6836649 DOI: 10.1186/s12891-019-2916-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/04/2019] [Accepted: 10/25/2019] [Indexed: 01/02/2023] Open
Abstract
Background Quantification of vertebral bone marrow (VBM) water–fat composition has been proposed as advanced imaging biomarker for osteoporosis. Estrogen deficiency is the primary reason for trabecular bone loss in postmenopausal women. By reducing estrogen levels aromatase inhibitors (AI) as part of breast cancer therapy promote bone loss. Bisphosphonates (BP) are recommended to counteract this adverse drug effect. The purpose of our study was to quantify VBM proton density fat fraction (PDFF) changes at the lumbar spine using chemical shift encoding-based water-fat MRI (CSE-MRI) and bone mineral density (BMD) changes using dual energy X-ray absorptiometry (DXA) related to AI and BP treatment over a 12-month period. Methods Twenty seven postmenopausal breast cancer patients receiving AI therapy were recruited for this study. 22 subjects completed the 12-month study. 14 subjects received AI and BP (AI+BP), 8 subjects received AI without BP (AI-BP). All subjects underwent 3 T MRI. An eight-echo 3D spoiled gradient-echo sequence was used for CSE-based water-fat separation at the lumbar spine to generate PDFF maps. After manual segmentation of the vertebral bodies L1-L5 PDFF values were extracted for each vertebra and averaged for each subject. All subjects underwent DXA of the lumbar spine measuring the average BMD of L1-L4. Results Baseline age, PDFF and BMD showed no significant difference between the two groups (p > 0.05). There was a relative longitudinal increase in mean PDFF (∆relPDFF) in both groups (AI+BP: 5.93%; AI-BP: 3.11%) which was only significant (p = 0.006) in the AI+BP group. ∆relPDFF showed no significant difference between the two groups (p > 0.05). There was no significant longitudinal change in BMD (p > 0.05). Conclusions Over a 12-month period, VBM PDFF assessed with CSE-MRI significantly increased in subjects receiving AI and BP. The present results contradict previous results regarding the effect of only BP therapy on bone marrow fat content quantified by magnetic resonance spectroscopy and bone biopsies. Future longer-term follow-up studies are needed to further characterize the effects of combined AI and BP therapy.
Collapse
Affiliation(s)
- Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroadiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Stefan Ruschke
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Rohrmeier
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan Syväri
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ingo Einspieler
- Department of Radiology, University Medical Center Regensburg, Regensburg, Germany
| | - Vanadin Seifert-Klauss
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Monika Schmidmayr
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan Metz
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroadiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ernst J Rummeny
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroadiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroadiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
15
|
Baraghithy S, Smoum R, Attar-Namdar M, Mechoulam R, Bab I, Tam J. HU-671, a Novel Oleoyl Serine Derivative, Exhibits Enhanced Efficacy in Reversing Ovariectomy-Induced Osteoporosis and Bone Marrow Adiposity. Molecules 2019; 24:molecules24203719. [PMID: 31623098 PMCID: PMC6832161 DOI: 10.3390/molecules24203719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 01/06/2023] Open
Abstract
Oleoyl serine (OS), an endogenous fatty acyl amide (FAA) found in bone, has been shown to have an anti-osteoporotic effect. OS, being an amide, can be hydrolyzed in the body by amidases. Hindering its amide bond by introducing adjacent substituents has been demonstrated as a successful method for prolonging its skeletal activity. Here, we tested the therapeutic efficacy of two methylated OS derivatives, oleoyl α-methyl serine (HU-671) and 2-methyl-oleoyl serine (HU-681), in an ovariectomized mouse model for osteoporosis by utilizing combined micro-computed tomography, histomorphometry, and cell culture analyses. Our findings indicate that daily treatment for 6 weeks with OS or HU-671 completely rescues bone loss, whereas HU-681 has only a partial effect. The increased bone density was primarily due to enhanced trabecular thickness and number. Moreover, the most effective dose of HU-671 was 0.5 mg/kg/day, an order of magnitude lower than with OS. The reversal of bone loss resulted from increased bone formation and decreased bone resorption, as well as reversal of bone marrow adiposity. These results were further confirmed by determining the serum levels of osteocalcin and type 1 collagen C-terminal crosslinks, as well as demonstrating the enhanced antiadipogenic effect of HU-671. Taken together, these data suggest that methylation interferes with OS’s metabolism, thus enhancing its effects by extending its availability to its target cells.
Collapse
Affiliation(s)
- Saja Baraghithy
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Bone Laboratory, Institute for Dental Research, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.S.)
| | - Reem Smoum
- Bone Laboratory, Institute for Dental Research, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.S.)
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Malka Attar-Namdar
- Bone Laboratory, Institute for Dental Research, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.S.)
| | - Raphael Mechoulam
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Itai Bab
- Bone Laboratory, Institute for Dental Research, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.S.)
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Correspondence: ; Tel.: +972-2-6757645; Fax: +972-2-6757015
| |
Collapse
|
16
|
Costa S, Fairfield H, Reagan MR. Inverse correlation between trabecular bone volume and bone marrow adipose tissue in rats treated with osteoanabolic agents. Bone 2019; 123:211-223. [PMID: 30954729 PMCID: PMC6559822 DOI: 10.1016/j.bone.2019.03.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/16/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/28/2022]
Abstract
There is currently an unmet clinical need for improved treatments for skeletal diseases such as osteoporosis and cancer-induced bone disease. This is due in part to a paucity of novel targets and an incomplete understanding of the mechanisms of action for established therapies. We defined the effects of anabolic treatments on bone and the bone marrow adipocyte (BMA). Sclerostin-neutralizing antibodies (Scl-Ab), romosozumab, human parathyroid hormone (hPTH, 1-34), and hPTH/hPTHrP analogues (e.g. teriparatide and abaloparatide) stimulate bone formation and have been studied in clinical trials for severe osteoporosis. In this study, eight-week-old male and female rats were administered vehicle, Scl-Ab (3 mg/kg or 50 mg/kg) weekly, or hPTH (1-34) (75 μg/kg) daily for 4 or 26 weeks. Histological analyses of distal femura were performed using a novel ImageJ method for trabecular bone and bone marrow adipose tissue (BMAT). Adipocyte number, circumference, and total adipose area were compared within the tissue area (T.Ar) or the marrow area (Ma.Ar), (defined as the T.Ar minus the trabecular bone area). After 26 weeks of treatment, a significant inverse correlation between bone and tissue adiposity (total adipocyte area divided by T.Ar) were observed in males and females (p < 0.0001). However, there were no significant correlations between bone and marrow adiposity (total adipocyte area divided by Ma.Ar) for either sex after 26 weeks of treatments. Scl-Ab treatments also resulted in no effect on adipocytes based on marrow adiposity for either sex after 26 weeks. However, chronic hPTH treatments significantly reduced adipocyte number and adiposity within the T.Ar and within the Ma.Ar in males. Overall, our data suggest that with long-term treatment, Scl-Abs decrease total tissue adiposity mainly by increasing trabecular bone, resulting in an overall reduction in the space in which adipocytes can reside. These findings were determined by developing and comparing two different methods of assessment of the marrow cavity, defined to either include or exclude trabecular bone. Thus, researchers should consider which adiposity measurement is more informative and relevant for their studies. Overall, our findings should help design improved therapies or combination treatments to target a potential new contributor to bone diseases: the bone marrow adipocyte.
Collapse
Affiliation(s)
- Samantha Costa
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Heather Fairfield
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Michaela R Reagan
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
17
|
Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P. Marrow adiposity and bone: Review of clinical implications. Bone 2019; 118:8-15. [PMID: 29477645 DOI: 10.1016/j.bone.2018.02.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/25/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
There is growing interest in the relationship between bone marrow fat (BMF) and skeletal health. Progress in clinical studies of BMF and skeletal health has been greatly enhanced by recent technical advances in our ability to measure BMF non-invasively. Magnetic resonance imagery (MRI) with or without spectroscopy is currently the standard technique for evaluating BMF content and composition in humans. This review focuses on clinical studies of marrow fat and its relationship with bone. The amount of marrow fat is associated with bone mineral density (BMD). Several studies have reported a significant negative association between marrow fat content and BMD in both healthy and osteoporotic populations. There may also be a relationship between marrow fat and fracture (mostly vertebral fracture), but data are scarce and further studies are needed. Furthermore, a few studies suggest that a lower proportion of unsaturated lipids in vertebral BMF may be associated with reduced BMD and greater prevalence of fracture. Marrow fat might be influenced by metabolic diseases associated with bone loss and fractures, such as diabetes mellitus, obesity and anorexia nervosa. An intriguing aspect of bariatric (weight loss) surgery is that it induces bone loss and fractures, but with different impacts on marrow fat depending on diabetic status. In daily practice, the usefulness for clinicians of assessing marrow fat using MRI is still limited. However, the perspectives are exciting, particularly in terms of improving the diagnosis and management of osteoporosis. Further studies are needed to better understand the regulators involved in the marrow fat-bone relationship and the links between marrow fat, other fat depots and energy metabolism.
Collapse
Affiliation(s)
- Julien Paccou
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France; Service de rhumatologie, CHRU, 59000 Lille, France.
| | - Guillaume Penel
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France
| | - Christophe Chauveau
- Univ. Littoral Côte d'Opale, Univ. Lille, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-62300 Boulogne-sur-Mer, France
| | - Bernard Cortet
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France; Service de rhumatologie, CHRU, 59000 Lille, France
| | - Pierre Hardouin
- Univ. Littoral Côte d'Opale, Univ. Lille, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-62300 Boulogne-sur-Mer, France
| |
Collapse
|
18
|
Beekman KM, Veldhuis-Vlug AG, den Heijer M, Maas M, Oleksik AM, Tanck MW, Ott SM, van 't Hof RJ, Lips P, Bisschop PH, Bravenboer N. The effect of raloxifene on bone marrow adipose tissue and bone turnover in postmenopausal women with osteoporosis. Bone 2019; 118:62-68. [PMID: 29032175 DOI: 10.1016/j.bone.2017.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/09/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
In patients with postmenopausal osteoporosis low bone volume is associated with high bone marrow adipose tissue (MAT). Moreover, high MAT is associated with increased fracture risk. This suggests an interaction between MAT and bone turnover, however literature remains equivocal. Estrogen treatment decreases MAT, but the effect of raloxifene, a selective estrogen receptor modulator (SERM) registered for treatment of postmenopausal osteoporosis, on MAT is not known. The aim of this study is 1] to determine the effect of raloxifene on MAT and 2] to determine the relationship between MAT and bone turnover in patients with osteoporosis. Bone biopsies from the MORE trial were analyzed. The MORE trial investigated the effects of raloxifene 60 or 120mg per day versus placebo on bone metabolism and fracture incidence in patients with postmenopausal osteoporosis. We quantified MAT in iliac crest biopsies obtained at baseline and after 2years of treatment (n=53; age 68.2±6.2years). Raloxifene did not affect the change in MAT volume after 2years compared to baseline (placebo: 1.89±10.84%, raloxifene 60mg: 6.31±7.22%, raloxifene 120mg: -0.77±10.72%), nor affected change in mean adipocyte size (placebo: 1.45 (4.45) μm, raloxifene 60mg: 1.45 (4.35) μm, raloxifene 120mg: 0.81 (5.21) μm). Adipocyte number tended to decrease after placebo treatment (-9.92 (42.88) cells/mm2) and tended to increase during raloxifene 60mg treatment (13.27 (66.14) cells/mm2) while adipocyte number remained unchanged in the raloxifene 120mg group, compared to placebo (3.06 (39.80) cells/mm2, Kruskal-Wallis p=0.055, post hoc: placebo vs raloxifene 60mg p=0.017). MAT volume and adipocyte size were negatively associated with osteoclast number at baseline (R2=0.123, p=0.006 and R2=0.098, p=0.016 respectively). Furthermore adipocyte size was negatively associated with osteoid surface (R2=0.067, p=0.049). Finally, patients with vertebral fractures had higher MAT volume (50.82 (8.80)%) and larger adipocytes (55.75 (3.14) μm) compared to patients without fractures (45.58 (12.72)% p=0.032, 52.77 (3.73) μm p=0.004 respectively). In conclusion, raloxifene did not affect marrow adipose tissue, but tended to increase adipocyte number compared to placebo. At baseline MAT volume and adipocyte size were associated with bone resorption, and adipocyte size was associated with osteoid surface, suggesting an interaction between bone marrow adipocytes and bone turnover. In addition, we found that high MAT volume and larger adipocyte size are associated with prevalent vertebral fractures in postmenopausal women with osteoporosis, indicating that adipocyte size affects bone quality independent of bone volume.
Collapse
Affiliation(s)
- Kerensa M Beekman
- VU University Medical Center, Department of Internal Medicine, Section of Endocrinology, PO Box 7057, 1007MB, Amsterdam, The Netherlands; Academic Medical Center/University of Amsterdam, Department of Radiology and Nuclear Medicine, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| | - Annegreet G Veldhuis-Vlug
- Academic Medical Center/University of Amsterdam, Department of Endocrinology and Metabolism, The Netherlands; Maine Medical Center Research Institute, Center for Clinical and Translational Medicine, 81 Research Drive, 04074 Scarborough, ME, USA.
| | - Martin den Heijer
- VU University Medical Center, Department of Internal Medicine, Section of Endocrinology, PO Box 7057, 1007MB, Amsterdam, The Netherlands.
| | - Mario Maas
- Academic Medical Center/University of Amsterdam, Department of Radiology and Nuclear Medicine, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| | - Ania M Oleksik
- Leiden University Medical Center, Department of Internal Medicine, Albinusdreef 2, PO Box 9600, 2300RC Leiden, The Netherlands.
| | - Michael W Tanck
- Academic Medical Center/University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, The Netherlands.
| | - Susan M Ott
- University of Washington, Bone and Joint Center, Box 354740, 4245 Roosevelt Way N.E., Seattle, WA 98105-6920, USA.
| | - Rob J van 't Hof
- University of Liverpool, Institute of Ageing and Chronic Disease, 6 West Derby Street, Liverpool L7 8TX, United Kingdom.
| | - Paul Lips
- VU University Medical Center, Department of Internal Medicine, Section of Endocrinology, PO Box 7057, 1007MB, Amsterdam, The Netherlands.
| | - Peter H Bisschop
- Academic Medical Center/University of Amsterdam, Department of Radiology and Nuclear Medicine, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| | - Nathalie Bravenboer
- Leiden University Medical Center, Department of Internal Medicine, Albinusdreef 2, PO Box 9600, 2300RC Leiden, The Netherlands; VU University Medical Center, Department of Clinical Chemistry, The Netherlands.
| |
Collapse
|
19
|
Abstract
Bone marrow adipocytes (BMA-) constitute an original and heterogeneous fat depot whose development appears interlinked with bone status throughout life. The gradual replacement of the haematopoietic tissue by BMA arises in a well-ordered way during childhood and adolescence concomitantly to bone growth and continues at a slower rate throughout the adult life. Importantly, BM adiposity quantity is found well associated with bone mineral density (BMD) loss at different skeletal sites in primary osteoporosis such as in ageing or menopause but also in secondary osteoporosis consecutive to anorexia nervosa. Since BMA and osteoblasts originate from a common mesenchymal stem cell, adipogenesis is considered as a competitive process that disrupts osteoblastogenesis. Besides, most factors secreted by bone and bone marrow cells (ligands and antagonists of the WNT/β-catenin pathway, BMP and others) reciprocally regulate the two processes. Hormones such as oestrogens, glucocorticoids, parathyroid and growth hormones that control bone remodelling also modulate the differentiation and the activity of BMA. Actually, BMA could also contribute to bone loss through the release of paracrine factors altering osteoblast and/or osteoclast formation and function. Based on clinical and fundamental studies, this review aims at presenting and discussing these current arguments that support but also challenge the involvement of BMA in the bone mass integrity.
Collapse
Affiliation(s)
- Tareck Rharass
- Littoral Côte d’Opale University, Lille University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, Lille, F-59000, France
| | - Stéphanie Lucas
- Littoral Côte d’Opale University, Lille University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, Lille, F-59000, France
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To summarize and discuss recent progress and novel signaling mechanisms relevant to bone marrow adipocyte formation and its physiological/pathophysiological implications for bone remodeling. RECENT FINDINGS Skeletal remodeling is a coordinated process entailing removal of old bone and formation of new bone. Several bone loss disorders such as osteoporosis are commonly associated with increased bone marrow adipose tissue. Experimental and clinical evidence supports that a reduction in osteoblastogenesis from mesenchymal stem cells at the expense of adipogenesis, as well as the deleterious effects of adipocyte-derived signaling, contributes to the etiology of osteoporosis as well as bone loss associated with aging, diabetes mellitus, post-menopause, and chronic drug therapy. However, this view is challenged by findings indicating that, in some contexts, bone marrow adipose tissue may have a beneficial impact on skeletal health. Further research is needed to better define the role of marrow adipocytes in bone physiology/pathophysiology and to determine the therapeutic potential of manipulating mesenchymal stem cell differentiation.
Collapse
Affiliation(s)
- Shanmugam Muruganandan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Christopher J Sinal
- Department of Pharmacology, Dalhousie University, 5850 College Street, Box 15000, Halifax, Nova Scotia, B3H4R2, Canada.
| |
Collapse
|
21
|
Hernandez MJ, dos Reis LM, Marques ID, Araujo MJ, Truyts CAM, Oliveira IB, Barreto FC, David-Neto E, Custodio MR, Moyses RM, Bellorin-Font E, Jorgetti V. The effect of vitamin D and zoledronic acid in bone marrow adiposity in kidney transplant patients: A post hoc analysis. PLoS One 2018; 13:e0197994. [PMID: 29799857 PMCID: PMC5969759 DOI: 10.1371/journal.pone.0197994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2017] [Accepted: 05/10/2018] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Osteoblasts and adipocytes are derived from mesenchymal stem cells. An imbalance in the differentiation of these lineages could affect the preservation of bone integrity. Several studies have suggested the importance of this imbalance in the pathogenesis of osteoporosis after kidney transplant (KT), but the role of bone marrow adiposity in this process is not well known, and if the treatment with the anti-absorptive (zoledronic acid-ZA) drugs could attenuate bone loss. Thus, our objective was compare bone marrow adiposity, osteoblasts and osteocytes before and after KT, verify an association between bone remodeling process (Turnover, Volume, and Mineralization-TMV classification), the osteocyte sclerostin expression to evaluate if there is a role of Wnt pathway, as well as the effect of ZA on these cells. METHODS We studied 29 new living-donor KT patients. One group received ZA at the time of KT plus cholecalciferol for twelve months, and the other group received only cholecalciferol. Bone biopsies were performed at baseline and after 12 months of treatment. Histomorphometric evaluation was performed in bone and bone marrow adipocytes. Sclerostin (Scl) expression in osteocytes was evaluated by immunohistochemistry. RESULTS Some bone marrow adiposity parameters were increased before KT. After KT, some of them remained increased and they worsened with the use of ZA. In the baseline, lower bone Volume and Turnover, were associated with increased bone marrow adiposity parameters (some of them). After KT, both groups showed the same associations. Osteocyte Scl expression after KT decreased with the use of ZA. We observed also an inverse association between bone adiposity parameters and lower osteocyte sclerostin expression 12 months after KT. CONCLUSION In conclusion, the present study suggests that KT fails to normalize bone marrow adiposity, and it even gets worse with the use of ZA. Moreover, bone marrow adiposity is inversely associated with bone Volume and Turnover, which seems to be accentuated by the antiresorptive therapy.
Collapse
Affiliation(s)
- Mariel J. Hernandez
- LIM 16 – Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brasil
- Servicio de Nefrología y Trasplante Renal, Hospital Universitario de Caracas, Universidad Central de Venezuela, Caracas, Venezuela
| | - Luciene M. dos Reis
- LIM 16 – Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brasil
| | - Igor D. Marques
- LIM 16 – Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brasil
| | - Maria J. Araujo
- LIM 16 – Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brasil
- Divisao de Urologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brasil
| | - Cesar A. M. Truyts
- LIM 16 – Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brasil
| | - Ivone B. Oliveira
- LIM 16 – Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brasil
| | - Fellype C. Barreto
- Divisao de Nefrologia, Universidade Federal do Parana, Curitiba, Parana, Brasil
| | - Elias David-Neto
- Divisao de Urologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brasil
| | - Melani R. Custodio
- LIM 16 – Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brasil
| | - Rosa M. Moyses
- LIM 16 – Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brasil
- Programa de Pos-Graduaçao em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo, Sao Paulo, Brasil
| | - Ezequiel Bellorin-Font
- Servicio de Nefrología y Trasplante Renal, Hospital Universitario de Caracas, Universidad Central de Venezuela, Caracas, Venezuela
| | - Vanda Jorgetti
- LIM 16 – Laboratorio de Fisiopatologia Renal, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brasil
- Hospital Samaritano Americas Serviços Medicos, Sao Paulo, Sao Paulo, Brasil
- * E-mail:
| |
Collapse
|
22
|
Gibbs JC, Brown ZM, Wong AKO, Craven BC, Adachi JD, Giangregorio LM. Measuring Marrow Density and Area Using Peripheral Quantitative Computed Tomography at the Tibia: Precision in Young and Older Adults and Individuals With Spinal Cord Injury. J Clin Densitom 2018; 21:269-280. [PMID: 28359675 DOI: 10.1016/j.jocd.2017.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/25/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
The objective of this study was to compare the test-retest precision error for peripheral quantitative computed tomography (pQCT)-derived marrow density and marrow area segmentation at the tibia using 3 software packages. A secondary analysis of pQCT data in young adults (n = 18, mean ± standard deviation 25.4 ± 3.2 yr), older adults (n = 47, 71.8 ± 8.2 yr), and individuals with spinal cord injury (C1-T12 American Spinal Injury Association Impairment Scale, classes A-C; n = 19, 43.5 ± 8.6 yr) was conducted. Repeat scans of the tibial shaft (66%) were performed using pQCT (Stratec XCT2000). Test-retest precision errors (root mean square standard deviation and root mean square coefficient of variation [RMSCV%]) for marrow density (mg/cm3) and marrow area (mm2) were reported for the watershed-guided manual segmentation method (SliceOmatic version 4.3 [Sliceo-WS]) and the 2 threshold-based edge detection methods (Stratec version 6.0 [Stratec-TB] and BoneJ version 1.3.14 [BoneJ-TB]). Bland-Altman plots and 95% limits of agreement were computed to evaluate test-retest discrepancies within and between methods of analysis and subgroups. RMSCV% for marrow density segmentation was >5% for all methods across subgroups (Stratec-TB: 12.2%-28.5%, BoneJ-TB: 14.5%-25.2%, and Sliceo-WS: 10.9%-23.0%). RMSCV% for marrow area segmentation was within 5% for all methods across subgroups (Stratec-TB: 1.9%-4.4%, BoneJ-TB: 2.6%-5.1%, and Sliceo-WS: 2.4%-4.5%), except using BoneJ-TB in older adults. Intermethod discrepancies in marrow density appeared to be present across the range of marrow density values and did not differ by subgroup. Intermethod discrepancies varied to a greater extent for marrow area and were found to be more frequently at mid- to higher-range values for those with spinal cord injury. Precision error for pQCT-derived marrow density segmentation exceeded 5% for all methods of analysis across a range of bone mineral densities and fat infiltration, whereas precision error for marrow area segmentation ranged from 2% to 5%. Further investigation is necessary to determine alternative acquisition and analysis methods for pQCT-derived marrow segmentation.
Collapse
Affiliation(s)
- Jenna C Gibbs
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
| | - Zachary M Brown
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Andy K O Wong
- Joint Department of Medical Imaging, Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Centre of Excellence in Skeletal Health Assessment, Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Arthritis Program, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - B Catharine Craven
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada; Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Lora M Giangregorio
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada; Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada; Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
23
|
Abstract
Marrow adipocytes, collectively termed marrow adipose tissue (MAT), reside in the bone marrow in close contact to bone cells and haematopoietic cells. Marrow adipocytes arise from the mesenchymal stem cell and share their origin with the osteoblast. Shifts in the lineage allocation of the mesenchymal stromal cell could potentially explain the association between increased MAT and increased fracture risk in diseases such as postmenopausal osteoporosis, anorexia nervosa and diabetes. Functionally, marrow adipocytes secrete adipokines, such as adiponectin, and cytokines, such as RANK ligand and stem cell factor. These mediators can influence both bone remodelling and haematopoiesis by promoting bone resorption and haematopoietic recovery following chemotherapy. In addition, marrow adipocytes can secrete free fatty acids, acting as a energy supply for bone and haematopoietic cells. However, this induced lipolysis is also used by neoplastic cells to promote survival and proliferation. Therefore, MAT could represent a new therapeutic target for multiple diseases from osteoporosis to leukaemia, although the exact characteristics and role of the marrow adipocyte in health and diseases remain to be determined.
Collapse
Affiliation(s)
- A G Veldhuis-Vlug
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - C J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| |
Collapse
|
24
|
Sollmann N, Dieckmeyer M, Schlaeger S, Rohrmeier A, Syvaeri J, Diefenbach MN, Weidlich D, Ruschke S, Klupp E, Franz D, Rummeny EJ, Zimmer C, Kirschke JS, Karampinos DC, Baum T. Associations Between Lumbar Vertebral Bone Marrow and Paraspinal Muscle Fat Compositions-An Investigation by Chemical Shift Encoding-Based Water-Fat MRI. Front Endocrinol (Lausanne) 2018; 9:563. [PMID: 30323789 PMCID: PMC6172293 DOI: 10.3389/fendo.2018.00563] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/15/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose: Advanced magnetic resonance imaging (MRI) methods enable non-invasive quantification of body fat situated in different compartments. At the level of the lumbar spine, the paraspinal musculature is the compartment spatially and functionally closely related to the vertebral column, and both vertebral bone marrow fat (BMF) and paraspinal musculature fat contents have independently shown to be altered in various metabolic and degenerative diseases. However, despite their close relationships, potential correlations between fat compositions of these compartments remain largely unclear. Materials and Methods: Thirty-nine female subjects (38.5% premenopausal women, 29.9 ± 7.1 years; 61.5% postmenopausal women, 63.2 ± 6.3 years) underwent MRI at 3T of the lumbar spine using axially- and sagittally-prescribed gradient echo sequences for chemical shift encoding-based water-fat separation. The erector spinae muscles and vertebral bodies of L1-L5 were segmented to determine the proton density fat fraction (PDFF) of the paraspinal and vertebral bone marrow compartments. Correlations were calculated between the PDFF of the paraspinal muscle and bone marrow compartments. Results: The average PDFF of the paraspinal muscle and bone marrow compartments were significantly lower in premenopausal women when compared to postmenopausal women (11.6 ± 2.9% vs. 24.6 ± 7.1% & 28.8 ± 8.3% vs. 47.2 ± 8.5%; p < 0.001 for both comparisons). In premenopausal women, no significant correlation was found between the PDFF of the erector spinae muscles and the PDFF of the bone marrow of lumbar vertebral bodies (p = 0.907). In contrast, a significant correlation was shown in postmenopausal women (r = 0.457, p = 0.025). Significance was preserved after inclusion of age and body mass index (BMI) as control variables (r = 0.472, p = 0.027). Conclusion: This study revealed significant correlations between the PDFF of paraspinal and vertebral bone marrow compartments in postmenopausal women. The PDFF of the paraspinal and vertebral bone marrow compartments and their correlations might potentially serve as biomarkers; however, future studies including more subjects are required to evaluate distinct clinical value and reliability. Future studies should also follow up our findings in patients suffering from metabolic and degenerative diseases to clarify how these correlations change in the course of such diseases.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- *Correspondence: Nico Sollmann
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Rohrmeier
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan Syvaeri
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian N. Diefenbach
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Elisabeth Klupp
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ernst J. Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
25
|
The emerging role of bone marrow adipose tissue in bone health and dysfunction. J Mol Med (Berl) 2017; 95:1291-1301. [PMID: 29101431 DOI: 10.1007/s00109-017-1604-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/27/2023]
Abstract
Replacement of red hematopoietic bone marrow with yellow adipocyte-rich marrow is a conserved physiological process among mammals. The extent of this conversion is influenced by a wide array of pathological and non-pathological conditions. Of particular interest is the observation that some marrow adipocyte-inducing factors seem to oppose each other, for instance obesity and caloric restriction. Intriguingly, several important molecular characteristics of bone marrow adipose tissue (BMAT) are distinct from the classical depots of white and brown fat tissue. This depot of fat has recently emerged as an active part of the bone marrow niche that exerts paracrine and endocrine functions thereby controlling osteogenesis and hematopoiesis. While some functions of BMAT may be beneficial for metabolic adaptation and bone homeostasis, respectively, most findings assign bone fat a detrimental role during regenerative processes, such as hematopoiesis and osteogenesis. Thus, an improved understanding of the biological mechanisms leading to formation of BMAT, its molecular characteristics, and its physiological role in the bone marrow niche is warranted. Here we review the current understanding of BMAT biology and its potential implications for health and the development of pathological conditions.
Collapse
|
26
|
Enhanced Osteogenic Differentiation in Zoledronate-Treated Osteoporotic Patients. Int J Mol Sci 2017; 18:ijms18061261. [PMID: 28608802 PMCID: PMC5486083 DOI: 10.3390/ijms18061261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2017] [Revised: 06/03/2017] [Accepted: 06/07/2017] [Indexed: 01/12/2023] Open
Abstract
Bisphosphonates are well known inhibitors of osteoclast activity and thus may be employed to influence osteoblast activity. The present study was designed to evaluate the in vivo effects of zoledronic acid (ZA) on the proliferation and osteoblastic commitment of mesenchymal stem cells (MSC) in osteoporotic patients. We studied 22 postmenopausal osteoporotic patients. Densitometric, biochemical, cellular and molecular data were collected before as well as after 6 and 12 months of ZA treatment. Peripheral blood MSC-like cells were quantified by colony-forming unit fibroblastic assay; their osteogenic differentiation potential was evaluated after 3 and 7 days of induction, respectively. Circulating MSCs showed significantly increased expression levels of osteoblastic marker genes such as Runt-related transcription factor 2 (RUNX2), and Osteonectin (SPARC) during the 12 months of monitoring time. Lumbar bone mineral density (BMD) variation and SPARC gene expression correlated positively. Bone turnover marker levels were significantly lowered after ZA treatment; the effect was more pronounced for C terminal telopeptide (CTX) than for Procollagen Type 1 N-Terminal Propeptide (P1NP) and bone alkaline phosphatase (bALP). Our findings suggest a discrete anabolic activity supported by osteogenic commitment of MSCs, consequent to ZA treatment. We confirm its anabolic effects in vivo on osteogenic precursors.
Collapse
|
27
|
Spirlandeli AL, Dick-de-Paula I, Zamarioli A, Jorgetti V, Ramalho LN, Nogueira-Barbosa MH, Volpon JB, Jordão AA, Cunha FQ, Fukada SY, de Paula FJ. Hepatic Osteodystrophy: The Mechanism of Bone Loss in Hepatocellular Disease and the Effects of Pamidronate Treatment. Clinics (Sao Paulo) 2017; 72:231-237. [PMID: 28492723 PMCID: PMC5401620 DOI: 10.6061/clinics/2017(04)07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/29/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES: The present study was designed to evaluate the bone phenotypes and mechanisms involved in bone disorders associated with hepatic osteodystrophy. Hepatocellular disease was induced by carbon tetrachloride (CCl4). In addition, the effects of disodium pamidronate on bone tissue were evaluated. METHODS: The study included 4 groups of 15 mice: a) C = mice subjected to vehicle injections; b) C+P = mice subjected to vehicle and pamidronate injections; c) CCl4+V = mice subjected to CCl4 and vehicle injections; and d) CCl4+P = mice subjected to CCl4 and pamidronate injections. CCl4 or vehicle was administered for 8 weeks, while pamidronate or vehicle was injected at the end of the fourth week. Bone histomorphometry and biomechanical analysis were performed in tibiae, while femora were used for micro-computed tomography and gene expression. RESULTS: CCl4 mice exhibited decreased bone volume/trabecular volume and trabecular numbers, as well as increased trabecular separation, as determined by bone histomorphometry and micro-computed tomography, but these changes were not detected in the group treated with pamidronate. CCl4 mice showed increased numbers of osteoclasts and resorption surface. High serum levels of receptor activator of nuclear factor-κB ligand and the increased expression of tartrate-resistant acid phosphatase in the bones of CCl4 mice supported the enhancement of bone resorption in these mice. CONCLUSION: Taken together, these results suggest that bone resorption is the main mechanism of bone loss in chronic hepatocellular disease in mice.
Collapse
Affiliation(s)
- Adriano L. Spirlandeli
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Ingrid Dick-de-Paula
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Ariane Zamarioli
- Departamento de Biomecânica, Medicina e Rehabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, BR
| | - Vanda Jorgetti
- Departamento de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - Leandra N.Z. Ramalho
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Marcello H. Nogueira-Barbosa
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Jose B. Volpon
- Departamento de Biomecânica, Medicina e Rehabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, BR
| | - Alceu A. Jordão
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Fernando Q. Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Sandra Y. Fukada
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Francisco J.A. de Paula
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
28
|
Abstract
Marrow adipose tissue (MAT) is a recently identified endocrine organ capable of modulating a host of responses. Given its intimate proximity to the bone microenvironment, the impact marrow adipocytes exert on bone has attracted much interest and scientific inquiry. Although many questions and controversies remain about marrow adipocytes, multiple conditions/disease states in which alterations occur have provided clues about their function. The consensus is that MAT is associated inversely with bone density and quality. While further investigation is warranted, MAT has clearly been demonstrated as an active dynamic depot that contributes to bone turnover and overall metabolic homeostasis.
Collapse
Affiliation(s)
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| |
Collapse
|
29
|
Veldhuis-Vlug AG, Rosen CJ. Mechanisms of marrow adiposity and its implications for skeletal health. Metabolism 2017; 67:106-114. [PMID: 28081773 PMCID: PMC5325679 DOI: 10.1016/j.metabol.2016.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/13/2016] [Revised: 11/02/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022]
Abstract
The bone marrow niche is composed of cells from hematopoietic and mesenchymal origin. Both require energy to power differentiation and these processes are intimately connected to systemic metabolic homeostasis. Glycolysis is the preferred substrate for mesenchymal stromal cells in the niche, although fatty acid oxidation and glutaminolysis are important during stage specific differentiation. Autophagy and lipophagy, in part triggered by adenosine monophosphate-activated protein kinase (AMPK), may also play an important but temporal specific role in osteoblast differentiation. Enhanced marrow adiposity is caused by clinical factors that are genetically, environmentally, and hormonally mediated. These determinants mediate a switch from the osteogenic to the adipogenic lineage. Preliminary evidence supports an important role for fuel utilization in those cell fate decisions. Although both the origin and function of the marrow adipocyte remain to be determined, and in some genetic mouse models high marrow adiposity may co-exist with greater bone mass, in humans changes in marrow adiposity are closely linked to adverse changes in skeletal metabolism. This supports an intimate relationship between bone and fat in the marrow. Future studies will likely shed more light on the relationship of cellular as well as whole body metabolism on the ultimate fate of bone marrow stromal cells.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW This study aims to describe bone marrow fat changes in diabetes and to discuss the potential role of marrow fat in skeletal fragility. RECENT FINDINGS Advances in non-invasive imaging have facilitated marrow fat research in humans. In contrast to animal studies which clearly demonstrate higher levels of marrow fat in diabetes, human studies have shown smaller and less certain differences. Marrow fat has been reported to correlate with A1c, and there may be a distinct marrow lipid saturation profile in diabetes. Greater marrow fat is associated with impaired skeletal health. Marrow fat may be a mediator of skeletal fragility in diabetes. Circulating lipids, growth hormone alterations, visceral adiposity, and hypoleptinemia have been associated with greater marrow fat and may represent potential mechanisms for the putative effects of diabetes on marrow fat, although other factors likely contribute. Additional research is needed to further define the role of marrow fat in diabetic skeletal fragility and to determine whether marrow fat is a therapeutic target.
Collapse
Affiliation(s)
- Tiffany Y Kim
- University of California, San Francisco, 1700 Owens St, Room 349, San Francisco, CA, 94158, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| | - Anne L Schafer
- University of California, San Francisco, 1700 Owens St, Room 349, San Francisco, CA, 94158, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
31
|
Li B, Jiang Y, Sun J, Liang J, Jin Y. MR spectroscopy for assessing the effects of oxytocin on marrow adipogenesis induced by glucocorticoid in rabbits. Acta Radiol 2016; 57:701-7. [PMID: 26297728 DOI: 10.1177/0284185115599804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2015] [Accepted: 07/19/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies suggest that oxytocin (OT) negatively modulates adipogenesis while promoting osteogenesis in vitro. Because of its effects on marrow stromal cells, OT might have potential utility in therapy for glucocorticoid-induced osteoporosis (GIO). PURPOSE To explore the effects of OT on marrow adipogenesis in a rabbit model of GIO. MATERIAL AND METHODS Thirty-six-month-old female New Zealand rabbits were randomly assigned to the control, GIO, and GIO + OT groups. Magnetic resonance (MR) spectroscopy and multi-detector computed tomography (MDCT) were performed to detect marrow fat content (MFC) and bone mineral density (BMD) at baseline, and 1, 2, and 3 months. After 3 months of treatment, marrow adipocytes were quantitatively evaluated by histopathology. RESULTS In the GIO group, MFC substantially increased from 34.1% to 43.2% at month 1, and it was maintained until month 3 (by 59.2%, all P <0.01). MFC values in the GIO group were significantly different from the control and OT-treated groups over time. Early OT treatment reversed marrow adiposity to levels of the controls. BMD values were significantly lower in the GIO group at months 2 and 3 compared to the controls; however, partial recovery of vertebral BMD (87.1% of baseline) and femoral BMD (89.3% of baseline) in the OT-treated group were observed. The mean diameter and density of adipocyte and percentage of adipocyte area increased by 30.0%, 70.1%, and 88.9%, respectively (all P <0.05) in the GIO group, but remained unchanged in the OT-treated group. CONCLUSION Early OT treatment was sufficient to eliminate glucocorticoid-induced marrow adiposity.
Collapse
Affiliation(s)
- Baoqing Li
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| | - Yuqing Jiang
- Clinical Laboratory, Beijing Hospital, The First Affiliated College of Peking University, Beijing, PR China
| | - Jinlei Sun
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| | - Jie Liang
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| | - Yulian Jin
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| |
Collapse
|
32
|
Yang Y, Luo X, Yan F, Jiang Z, Li Y, Fang C, Shen J. Effect of zoledronic acid on vertebral marrow adiposity in postmenopausal osteoporosis assessed by MR spectroscopy. Skeletal Radiol 2015; 44:1499-505. [PMID: 26130070 DOI: 10.1007/s00256-015-2200-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/17/2015] [Revised: 06/02/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Zoledronic acid (ZOL) has a suppressive effect on marrow adiposity in ovariectomized rats. Currently, however, data on the effect of ZOL on marrow fat in humans are unavailable. The purpose of this work was to determine the in vivo effect of ZOL on bone remodeling and marrow adipogenesis in postmenopausal osteoporosis. MATERIALS AND METHODS In a 12-month, randomized, double-blind, placebo-controlled trial, we studied 100 postmenopausal women with osteoporosis who were randomly given either a single dose of intravenous infusion of ZOL (5 mg) or placebo. All subjects received adequate dietary calcium and vitamin D3. Main outcome measures included bone mineral density by dual-energy X-ray absorptiometry, vertebral marrow fat content by proton MR spectroscopy, serum markers of bone turnover by biochemical analysis. RESULTS Ninety percent of the participants completed the 12-month follow-up. With respect to baselines, marrow fat content reduced by 8.1% in the ZOL-treated women and increased by 3.0% in the controls (all p < 0.05). In addition, there were significant increases of bone mineral density by 2.8, 2.0, and 1.7% in the lumbar spine, femoral neck, and total hip, respectively, in the ZOL group compared with the placebo group. Serum levels of bone resorption marker CTX and bone formation marker BALP decreased by 33 and 18% in postmenopausal women receiving ZOL. CONCLUSIONS In postmenopausal women with osteoporosis, a single dose of ZOL therapy significantly reduced marrow adiposity. MR spectroscopy of vertebral marrow fat may therefore serve as a novel tool for BMD-independent efficacy assessment.
Collapse
Affiliation(s)
- Yi Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Paccou J, Hardouin P, Cotten A, Penel G, Cortet B. The Role of Bone Marrow Fat in Skeletal Health: Usefulness and Perspectives for Clinicians. J Clin Endocrinol Metab 2015; 100:3613-21. [PMID: 26244490 DOI: 10.1210/jc.2015-2338] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
CONTEXT There is growing interest in the relationship between bone marrow fat (BMF), bone mineral density (BMD), and fractures. Moreover, BMF might be influenced by metabolic diseases associated with bone loss and fractures, such as type 2 diabetes mellitus (T2DM), anorexia nervosa (AN), and obesity. METHODS The primary-source literature for this review was acquired using a PubMed search for articles published between January 2000 and April 2015. Search terms included BMF, BMD, fractures, T2DM, AN, and obesity. The titles and abstracts of all articles were reviewed for relevant subjects. RESULTS Magnetic resonance imaging, with or without spectroscopy, was used to noninvasively quantify BMF in humans. A negative relationship was found between BMD and BMF in both healthy and osteopenic/osteoporotic populations. Data are lacking on the relationship between BMF and fractures. Studies in populations of individuals with metabolic diseases such as T2DM, AN, and obesity have shown BMF abnormalities. CONCLUSIONS We conclude that most human data demonstrate an inverse relationship between BMF and BMD, but data on the relationship with fractures are inconsistent and need further study. In daily practice, the usefulness for clinicians of assessing BMF using magnetic resonance imaging is still limited. However, the perspectives are exciting, particularly in terms of improving the diagnosis and management of osteoporosis.
Collapse
Affiliation(s)
- Julien Paccou
- Université de Lille (J.P., A.C., G.P., B.C.), Faculté de Chirurgie Dentaire, Place de Verdun, 59000 Lille, France; Service de Rhumatologie (J.P., B.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France; Université du Littoral Côte (P.H.), 62327 Boulogne-sur-Mer, France; and Service d'Imagerie Musculo-Squelettique (A.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France
| | - Pierre Hardouin
- Université de Lille (J.P., A.C., G.P., B.C.), Faculté de Chirurgie Dentaire, Place de Verdun, 59000 Lille, France; Service de Rhumatologie (J.P., B.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France; Université du Littoral Côte (P.H.), 62327 Boulogne-sur-Mer, France; and Service d'Imagerie Musculo-Squelettique (A.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France
| | - Anne Cotten
- Université de Lille (J.P., A.C., G.P., B.C.), Faculté de Chirurgie Dentaire, Place de Verdun, 59000 Lille, France; Service de Rhumatologie (J.P., B.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France; Université du Littoral Côte (P.H.), 62327 Boulogne-sur-Mer, France; and Service d'Imagerie Musculo-Squelettique (A.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France
| | - Guillaume Penel
- Université de Lille (J.P., A.C., G.P., B.C.), Faculté de Chirurgie Dentaire, Place de Verdun, 59000 Lille, France; Service de Rhumatologie (J.P., B.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France; Université du Littoral Côte (P.H.), 62327 Boulogne-sur-Mer, France; and Service d'Imagerie Musculo-Squelettique (A.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France
| | - Bernard Cortet
- Université de Lille (J.P., A.C., G.P., B.C.), Faculté de Chirurgie Dentaire, Place de Verdun, 59000 Lille, France; Service de Rhumatologie (J.P., B.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France; Université du Littoral Côte (P.H.), 62327 Boulogne-sur-Mer, France; and Service d'Imagerie Musculo-Squelettique (A.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France
| |
Collapse
|
34
|
Coe LM, Tekalur SA, Shu Y, Baumann MJ, McCabe LR. Bisphosphonate treatment of type I diabetic mice prevents early bone loss but accentuates suppression of bone formation. J Cell Physiol 2015; 230:1944-53. [PMID: 25641511 DOI: 10.1002/jcp.24929] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
Type I (T1) diabetes is an autoimmune and metabolic disease associated with bone loss. Previous studies demonstrate that T1-diabetes decreases osteoblast activity and viability. Bisphosphonate therapy, commonly used to treat osteoporosis, is demonstrated to inhibit osteoclast activity as well as osteoblast apoptosis. Therefore, we examined the effect of weekly alendronate treatments on T1-diabetes induced osteoblast apoptosis and bone loss. Bone TUNEL assays identified that alendronate therapy prevents the diabetes-induced osteoblast death observed during early stages of diabetes development. Consistent with this, alendronate treatment for 40 days was able to prevent diabetes-induced trabecular bone loss. Alendronate was also able to reduce marrow adiposity in both control diabetic mice compared to untreated mice. Mechanical testing indicated that 40 days of alendronate treatment increased bone stiffness but decreased the work required for fracture in T1-diabetic and alendronate treated mice. Of concern at this later time point, bone formation rate and osteoblast markers, which were already decreased in diabetic mice, were further suppressed in alendronate-treated diabetic mice. Taken together, our results suggest that short-term alendronate treatment can prevent T1-diabetes-induced bone loss in mice, possibly in part by inhibiting diabetes onset associated osteoblast death, while longer treatment enhanced bone density but at the cost of further suppressing bone formation in diabetic mice.
Collapse
Affiliation(s)
- Lindsay M Coe
- Department of Physiology, Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan
| | | | | | | | | |
Collapse
|
35
|
Abstract
OBJECTIVE Icariin prevents bone loss by stimulating new bone formation and by inhibiting bone resorption. However, less is known about how icariin affects marrow adiposity. This lack of information is a vital problem, as the degree of marrow adipogenesis may be an alternative indicator of the severity of osteoporosis in relation to the degree of osteogenesis and osteoblastogenesis. To explore this question, we tested the effects of icariin on bone mineral density (BMD) and marrow fat content in a rat model of postmenopausal osteoporosis. METHODS Thirty-six 3-month-old female Sprague-Dawley rats were randomly assigned to one of the following treatment groups: sham operation, ovariectomized controls, and ovariectomized rats treated orally with either 17β-estradiol or icariin for 12 weeks. BMD and marrow fat fraction were dynamically measured on weeks 0, 6, and 12. After 12 weeks of treatment, serum 17β-estradiol and bone biomarker levels were measured, and marrow adipocytes were quantitatively evaluated by histopathology. RESULTS Ovariectomized controls experienced a marked increase in fat fraction over time, with increases of 40% between weeks 0 and 6 and 69.4% between weeks 6 and 12 (P < 0.001). Marrow adiposity in ovariectomized controls was dramatically higher than that in sham rats on week 6; however, a reduction in BMD was detected in ovariectomized rats on week 12 (P < 0.001). Ovariectomized rats had levels of serum alkaline phosphatase and serum C-terminal telopeptide of type I collagen that were 49.4% and 67.2% higher, respectively, than those of sham rats (P < 0.001). The density, size, and volume of marrow adipocytes in ovariectomized controls were 57.3%, 29.5%, and 163% higher, respectively, than those in sham rats. Early icariin treatment decreased bone biomarker levels, inhibited bone degeneration, and restored marrow fat infiltration and adipocyte parameters to the levels observed in sham rats. Overall, the osteoprotective effect of icariin was comparable with that of 17β-estradiol; however, icariin did not produce uterine estrogenicity. CONCLUSIONS Early icariin treatment restores marrow adiposity in the estrogen-deficient rat model.
Collapse
|
36
|
Abstract
Obesity and osteoporosis are two of the most common chronic disorders of the 21st century. Both are accompanied by significant morbidity. The only place in the mammalian organism where bone and fat lie adjacent to each other is in the bone marrow. Marrow adipose tissue is a dynamic depot that probably exists as both constitutive and regulated compartments. Adipocytes secrete cytokines and adipokines that either stimulate or inhibit adjacent osteoblasts. The relationship of marrow adipose tissue to other fat depots is complex and might play very distinct parts in modulation of metabolic homoeostasis, haemopoiesis, and osteogenesis. Understanding of the relationship between bone and fat cells that arise from the same progenitor within the bone marrow niche provides insight into the pathophysiology of age-related osteoporosis, diabetes, and obesity.
Collapse
Affiliation(s)
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| |
Collapse
|
37
|
Mori K, Suzuki K, Hozumi A, Goto H, Tomita M, Koseki H, Yamashita S, Osaki M. Potentiation of osteoclastogenesis by adipogenic conversion of bone marrow-derived mesenchymal stem cells. Biomed Res 2014; 35:153-9. [PMID: 24759183 DOI: 10.2220/biomedres.35.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are the indispensable component of the bone marrow, being the common precursors for adipocytes and osteoblasts. We show here that adipogenic differentiation resulted in increase in the production of adipocyte markers, such as adiponectin,fatty-acid binding proteins (FABP4), peroxisome proliferator-activated receptor γ (PPARγ), as well as the receptor activator of nuclear-κB ligand (RANKL). Co-culture of osteoclast precursors (OCPs) with BMSCs-derived adipocytes significantly enhanced osteoclast differentiation with low-dose RANKL, whose levels alone could not promote osteoclastogenesis. These results demonstrate for the first time that adipogenic differentiation of BMSCs plays a pivotal role in maintaining bone homeostasis.
Collapse
Affiliation(s)
- Keisuke Mori
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Li GW, Xu Z, Chang SX, Zhou L, Wang XY, Nian H, Shi X. Influence of early zoledronic acid administration on bone marrow fat in ovariectomized rats. Endocrinology 2014; 155:4731-8. [PMID: 25243855 DOI: 10.1210/en.2014-1359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
Abstract
Although the primary target cell of bisphosphonates is the osteoclast, increasing attention is being given to other effector cells influenced by bisphosphonates, such as osteoblasts and marrow adipocytes. Early zoledronic acid (ZA) treatment to ovariectomized (OVX) rats has been found to fully preserve bone microarchitecture over time. However, little is known regarding the influence of ZA on marrow adipogenesis. The purpose of this study was to monitor the ability of early administration of ZA in restoring marrow adiposity in an estrogen-deficient rat model. Thirty female Sprague-Dawley rats were randomly divided into sham-operated (SHAM), OVX + vehicle, and OVX + ZA groups (n=10/group). Dual-energy x-ray absorptiometry and water/fat magnetic resonance imaging were performed at baseline, 6 weeks, and 12 weeks after treatment to assess bone mineral density and marrow fat fraction. Serum biochemical markers, bone remodeling, and marrow adipocyte parameters were analyzed using biochemistry, histomorphometry, and histopathology, respectively. The expression levels of osteoblast, adipocyte, and osteoclast-related genes in bone marrow were assessed using RT-PCR. The OVX rats showed marked bone loss, first detected at 12 weeks, but estrogen deficiency resulted in a remarked increase in marrow fat fraction, first detected at 6 weeks compared with the SHAM rats (all P < .001). Similarly, the OVX rats had a substantially larger percent adipocyte area (+163.0%), mean diameter (+29.5%), and higher density (+57.3%) relative to the SHAM rats. Bone histomorphometry, levels of osteoclast-related gene expression, and a serum resorption marker confirmed that ZA significantly suppressed bone resorption activities. Furthermore, ZA treatment returned adipocyte-related gene expression and marrow adipocyte parameters toward SHAM levels. These data suggest that a single dose of early ZA treatment acts to reverse marrow adipogenesis occurring during estrogen deficiency, which may contribute to its capacity to reduce bone loss.
Collapse
Affiliation(s)
- Guan-Wu Li
- Departments of Radiology (G.-W.L., S.-X.C., L.Z., X.-Y.W.), Pharmacy (H.N.), and Gerontology (X.S.), Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; and Medico-Technical Department (Z.X.), Xin-Zhuang Community Health Service Center, Shanghai 201199, China
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Sadie-Van Gijsen H, Hough FS, Ferris WF. Determinants of bone marrow adiposity: the modulation of peroxisome proliferator-activated receptor-γ2 activity as a central mechanism. Bone 2013; 56:255-65. [PMID: 23800517 DOI: 10.1016/j.bone.2013.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/27/2013] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 12/23/2022]
Abstract
Although the presence of adipocytes in the bone marrow is a normal physiological phenomenon, the role of these cells in bone homeostasis and during pathological states has not yet been fully delineated. As osteoblasts and adipocytes originate from a common progenitor, with an inverse relationship existing between osteoblastogenesis and adipogenesis, bone marrow adiposity often negatively correlates with osteoblast number and bone mineral density. Bone adiposity can be affected by several physiological and pathophysiological factors, with abnormal, elevated marrow fat resulting in a pathological state. This review focuses on the regulation of bone adiposity by physiological factors, including aging, mechanical loading and growth factor expression, as well as the pathophysiological factors, including diseases such as anorexia nervosa and dyslipidemia, and pharmacological agents such as thiazolidinediones and statins. Although these factors regulate bone marrow adiposity via a plethora of different intracellular signaling pathways, these diverse pathways often converge on the modulation of the expression and/or activity of the pro-adipogenic transcription factor peroxisome proliferator-activated receptor (PPAR)-γ2, suggesting that any factor that affects PPAR-γ2 may have an impact on the fat content of bone.
Collapse
Affiliation(s)
- H Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg 7505, South Africa.
| | | | | |
Collapse
|
41
|
Casado-Díaz A, Santiago-Mora R, Dorado G, Quesada-Gómez JM. Risedronate Positively Affects Osteogenic Differentiation of Human Mesenchymal Stromal Cells. Arch Med Res 2013; 44:325-34. [DOI: 10.1016/j.arcmed.2013.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2012] [Accepted: 05/08/2013] [Indexed: 01/05/2023]
|
42
|
Rantalainen T, Nikander R, Heinonen A, Cervinka T, Sievänen H, Daly RM. Differential effects of exercise on tibial shaft marrow density in young female athletes. J Clin Endocrinol Metab 2013; 98:2037-44. [PMID: 23616150 DOI: 10.1210/jc.2012-3748] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023]
Abstract
CONTEXT Increased mechanical loading can promote the preferential differentiation of bone marrow mesenchymal stem cells to osteoblastogenesis, but it is not known whether long-term bone strength-enhancing exercise in humans can reduce marrow adiposity. OBJECTIVE Our objective was to examine whether bone marrow density (MaD), as an estimate of marrow adiposity 1) differs between young female athletes with contrasting loading histories and bone strengths and 2) is an independent predictor of bone strength at the weight-bearing tibia. DESIGN Mid-tibial MaD, cortical area (CoA), total area, medullary area, strength strain index (SSI), and cortical volumetric bone mineral density (vBMD) (total, endocortical, midcortical, and pericortical) was assessed using peripheral quantitative computed tomography in 179 female athletes involved in both impact and nonimpact loading sports and 41 controls aged 17-40 years. RESULTS As we have previously reported CoA, total area, and SSI were 16% to 24% greater in the impact group compared with the controls (all P < .001) and 12% to 18% greater than in the nonimpact group (all P < .001). The impact group also had 0.5% higher MaD than the nonimpact and control groups (both P < .05). Regression analysis further showed that midtibial MaD was significantly associated with SSI, CoA, endocortical vBMD, and pericortical vBMD (P < .05) in all women combined, after adjusting for age, bone length, loading groups, medullary area, muscle cross-sectional area, and percent fat. CONCLUSION In young female athletes, tibial bone MaD was associated with loading history and was an independent predictor of tibial bone strength. These findings suggest that an exercise-induced increase in bone strength may be mediated via reduced bone marrow adiposity and consequently increased osteoblastogenesis.
Collapse
Affiliation(s)
- Timo Rantalainen
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC 3125, Australia.
| | | | | | | | | | | |
Collapse
|
43
|
Iwaniec UT, Turner RT. Failure to generate bone marrow adipocytes does not protect mice from ovariectomy-induced osteopenia. Bone 2013; 53:145-53. [PMID: 23246792 PMCID: PMC3564669 DOI: 10.1016/j.bone.2012.11.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/22/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 01/04/2023]
Abstract
A reciprocal association between bone marrow fat and bone mass has been reported in ovariectomized rodents, suggesting that bone marrow adipogenesis has a negative effect on bone growth and turnover balance. Mice with loss of function mutations in kit receptor (kit(W/W-v)) have no bone marrow adipocytes in tibia or lumbar vertebra. We therefore tested the hypothesis that marrow fat contributes to the development of osteopenia by comparing the skeletal response to ovariectomy (ovx) in growing wild type (WT) and bone marrow adipocyte-deficient kit(W/W-v) mice. Mice were ovx at 4 weeks of age and sacrificed 4 or 10 weeks post-surgery. Body composition was measured at necropsy by dual-energy X-ray absorptiometry. Cortical (tibia) and cancellous (tibia and lumbar vertebra) bone architecture were evaluated by microcomputed tomography. Bone marrow adipocyte size and density, osteoblast- and osteoclast-lined bone perimeters, and bone formation were determined by histomorphometry. Ovx resulted in an increase in total body fat mass at 10 weeks post-ovx in both genotypes, but the response was attenuated in the in kit(W/W-v) mice. Adipocytes were present in bone marrow of tibia and lumbar vertebra in WT mice and bone marrow adiposity increased following ovx. In contrast, marrow adipocytes were not detected in either intact or ovx kit(W/W-v) mice. However, ovx in WT and kit(W/W-v) mice resulted in statistically indistinguishable changes in cortical and cancellous bone mass, cortical and cancellous bone formation rate, and cancellous osteoblast and osteoclast-lined bone perimeters. In conclusion, our findings do not support a causal role for increased bone marrow fat as a mediator of ovx-induced osteopenia in mice.
Collapse
Affiliation(s)
- Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
44
|
Bolan PJ, Arentsen L, Sueblinvong T, Zhang Y, Moeller S, Carter JS, Downs LS, Ghebre R, Yee D, Froelich J, Hui S. Water-fat MRI for assessing changes in bone marrow composition due to radiation and chemotherapy in gynecologic cancer patients. J Magn Reson Imaging 2013; 38:1578-84. [PMID: 23450703 DOI: 10.1002/jmri.24071] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2012] [Accepted: 01/11/2013] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To assess the feasibility of using fat-fraction imaging for measuring marrow composition changes over large regions in patients undergoing cancer therapy. MATERIALS AND METHODS Thirteen women with gynecologic malignancies who were to receive radiation and/or chemotherapy were recruited for this study. Subjects were imaged on a 3T magnetic resonance (MR) scanner at baseline (after surgery but before radiation or chemotherapy), 6 months, and 12 months after treatment. Water-fat imaging was used to generate high-resolution, 3D signal fat fraction (sFF) maps extending from mid-femur to L3. Treatment changes were assessed by measuring marrow sFF in the L4 vertebra, femoral necks, and control tissues. RESULTS Pretreatment and 6-month scans were compared in nine women. sFF increased significantly in both the L4 vertebral marrow (P = 0.04) and the femoral necks (P = 0.03), while no significant change was observed in control regions. Qualitatively, chemotherapy changes were more uniform in space, whereas the radiation-induced changes were largest in marrow regions inside and close to the target radiation field. CONCLUSION Water-fat MRI is sensitive to changes in red/yellow marrow composition, and can be used for quantitative and qualitative assessment of treatment-induced marrow damage.
Collapse
Affiliation(s)
- Patrick J Bolan
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li GW, Chang SX, Fan JZ, Tian YN, Xu Z, He YM. Marrow adiposity recovery after early zoledronic acid treatment of glucocorticoid-induced bone loss in rabbits assessed by magnetic resonance spectroscopy. Bone 2013; 52:668-75. [PMID: 23142803 DOI: 10.1016/j.bone.2012.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/16/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although there is an inverse relationship between bone mass and marrow adiposity, the reversal function of zoledronic acid (ZOL) on increased marrow fat has not been studied. The aim of our study is to use the 3T magnetic resonance spectroscopy (MRS) to characterize the dynamical change process of the marrow fat responding to early ZOL treatment in the rabbit model with glucocorticoid-induced bone loss. METHODS Fifteen 20-week-old female New Zealand White rabbits were randomized to control group, methylprednisolone (MPS) group, and MPS+ZOL group equally. Bone mineral density (BMD) and marrow fat fraction (FF) at L3-L4 vertebrae and left proximal femur were measured by Dual-energy X-ray absorptiometry and MRS at week 0, 4, 8, and 12. The animals were euthanized at the end of our experiment and their left femurs were dissected out for the histopathological examination. RESULTS The MPS group demonstrated a remarkable increase in FF but a reduction in BMD compared with the controls at week 4 and 8, respectively (P<0.05 for all). Early treatment of ZOL can inhibit bone degeneration, although the bone mass would not recover to its original level. FF in MPS group exhibited a dramatic increase over time, with an increased FF variation (+31.6%, P=0.009) at week 4 from baseline and it was maintained until week 12 (+75.2%, P<0.001). In MPS+ZOL group, the FF returned to baseline value after the ZOL treatment. Comparing with the controls, larger marrow adipocyte density, the mean of the adipocyte diameter, and the percentage area of the adipocyte were observed in the MPS group (P<0.05 for all), whereas there were no significant differences in quantitative parameters of marrow adipocytes between the ZOL-treated group and the normal rabbits. CONCLUSION An increase of the marrow adiposity is synchronized with the deterioration of the MPS-induced bone mass. A single dose of early ZOL can reverse the marrow adiposity to its original level completely.
Collapse
Affiliation(s)
- Guan-Wu Li
- Department of Radiology, Yueyang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | | | | | | | | | | |
Collapse
|
46
|
Shen W, Chen J, Gantz M, Punyanitya M, Heymsfield SB, Gallagher D, Albu J, Engelson E, Kotler D, Pi-Sunyer X, Gilsanz V. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults. Eur J Clin Nutr 2012; 66:983-8. [PMID: 22491495 PMCID: PMC3396793 DOI: 10.1038/ejcn.2012.35] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2011] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND/OBJECTIVES Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM; age 18.0-39.9 years) and an older group with potential bone loss (PoBL; age 40.0-88.0 years). SUBJECTS/METHODS Pelvic BMAT was evaluated in 560 healthy men and women with T1-weighted whole-body magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. RESULTS An inverse correlation was observed between pelvic BMAT and pelvic, total and spine BMD in the younger PBM group (r=-0.419 to -0.461, P<0.001) and in the older PoBL group (r=-0.405 to -0.500, P<0.001). After adjusting for age, sex, ethnicity, menopausal status, total body fat, skeletal muscle, subcutaneous and visceral adipose tissue, neither subject group (younger PBM vs older PoBL) nor its interaction with pelvic BMAT significantly contributed to the regression models with BMD as dependent variable and pelvic BMAT as independent variable (P=0.434-0.928). CONCLUSIONS Our findings indicate that an inverse relationship between pelvic BMAT and BMD is present both in younger subjects who have not yet experienced bone loss and also in older subjects. These results provide support at the macro-imaging level for the hypothesis that low BMD may be a result of preferential differentiation of mesenchymal stem cells from osteoblasts to adipocytes.
Collapse
Affiliation(s)
- W Shen
- New York Obesity Nutrition Research Center, St Luke's-Roosevelt Hospital and Institute of Human Nutrition, Columbia University, New York, NY 10025, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shen W, Chen J, Gantz M, Punyanitya M, Heymsfield SB, Gallagher D, Albu J, Engelson E, Kotler D, Pi-Sunyer X, Shapses S. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship. Osteoporos Int 2012; 23:2293-301. [PMID: 22173789 PMCID: PMC3378820 DOI: 10.1007/s00198-011-1873-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/15/2011] [Accepted: 09/26/2011] [Indexed: 12/16/2022]
Abstract
UNLABELLED The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. INTRODUCTION It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. METHODS Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18-88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. RESULTS A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r = -0.533, -0.576, respectively; P < 0.001). In multiple regression analyses with BMD as the dependent variable, ethnicity significantly entered the regression models as either an individual term or an interaction with BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premenopausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. CONCLUSIONS An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations.
Collapse
Affiliation(s)
- W Shen
- New York Obesity Nutrition Research Center, St. Luke's-Roosevelt Hospital, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shen W, Scherzer R, Gantz M, Chen J, Punyanitya M, Lewis CE, Grunfeld C. Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study. J Clin Endocrinol Metab 2012; 97:1337-46. [PMID: 22319043 PMCID: PMC3319176 DOI: 10.1210/jc.2011-2605] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
CONTEXT An increasing number of studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Our previous study of Caucasian women demonstrated that there is an inverse relationship between BMAT and whole-body bone mineral density (BMD). It is unknown whether visceral adipose tissue (VAT), sc adipose tissue (SAT), and skeletal muscle had an effect on the relationship between BMAT and BMD. OBJECTIVE In the present study we investigated the relationship between pelvic, hip, and lumbar spine BMAT with hip and lumbar spine BMD in the population-based Coronary Artery Risk Development in Young Adults (CARDIA) sample with adjustment for whole-body magnetic resonance imaging (MRI)-measured VAT, SAT, and skeletal muscle. DESIGN T1-weighted MRI was acquired for 210 healthy African-American and Caucasian men and women (age 38-52 yr). Hip and lumbar spine BMD were measured by dual-energy x-ray absorptiometry. RESULTS Pelvic, hip, and lumbar spine BMAT had negative correlations with hip and lumbar spine BMD (r = -0.399 to -0.550, P < 0.001). The inverse associations between BMAT and BMD remained strong after adjusting for demographics, weight, skeletal muscle, SAT, VAT, total adipose tissue (TAT), menopausal status, lifestyle factors, and inflammatory markers (standardized regression coefficients = -0. 296 to -0.549, P < 0.001). Among body composition measures, skeletal muscle was the strongest correlate of BMD after adjusting for BMAT (standardized regression coefficients = 0.268-0.614, P < 0.05), with little additional contribution from weight, SAT, VAT, or total adipose tissue. CONCLUSION In this middle-aged population, a negative relationship existed between MRI-measured BMAT and hip and lumbar spine BMD independent of demographics and body composition. These observations support the growing evidence linking BMAT with low bone density.
Collapse
Affiliation(s)
- Wei Shen
- New York Obesity Nutrition Research Center, St. Luke's-Roosevelt Hospital and Institute of Human Nutrition, Columbia University, 1090 Amsterdam Avenue, 14H, New York, New York 10025, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Jin J, Wang L, Wang XK, Lai PL, Huang MJ, Jin DD, Zhong ZM, Chen JT, Bai XC. Risedronate inhibits bone marrow mesenchymal stem cell adipogenesis and switches RANKL/OPG ratio to impair osteoclast differentiation. J Surg Res 2012; 180:e21-9. [PMID: 22487394 DOI: 10.1016/j.jss.2012.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Osteoporosis is accompanied by an increase in bone marrow adipose tissue. Bone marrow adipogenesis has emerged as a therapeutic target for prevention of bone loss. Amino-bisphosphonates have been widely used for treatment of osteoporosis, but the mechanism through which amino-bisphosphonates inhibit osteoporosis remains unclear. The purpose of this study is to investigate the effects of bisphosphonates on bone marrow adipogenesis and the pro-osteoclastic factors produced by adipocytes in bone marrow microenvironment. MATERIALS AND METHODS Human mesenchymal stem cells were obtained and purified from six volunteer donors. Each sample of cells was treated by increasing concentrations of risedronate with or without adipogenic induction for 14 d, and then droplets of the differentiated adipocytes were analyzed. The level of receptor activator of nuclear factor-κB ligand and osteoprotegerin, as well as pro-osteoclastic inflammatory factors interleukin-1, interleukin-6, and tumor necrosis factor α produced by adipocytes were evaluated by Western blot and ELISA assay. Moreover, the effect of risedronate on the activity of mammalian target of rapamycin complex 1, a key Ser/Thr kinase for initiation of adipocyte differentiation, was investigated. RESULTS Risedronate not only dose-dependently inhibited the bone marrow adipogenesis from human mesenchymal stem cells but also suppressed receptor activator of nuclear factor-κB ligand, not osteoprotegerin, expression in differentiated adipocytes, as well as pro-osteoclastic inflammatory factors. Furthermore, the activity of mammalian target of rapamycin complex 1 was suppressed by risedronate. CONCLUSION Our findings that risedronate influences the crosstalk between bone marrow adipocyte-osteoclast represent a novel mechanism for the anti-osteoporotic effects of risedronate.
Collapse
Affiliation(s)
- Jian Jin
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li GW, Tang GY, Liu Y, Tang RB, Peng YF, Li W. MR spectroscopy and micro-CT in evaluation of osteoporosis model in rabbits: comparison with histopathology. Eur Radiol 2011; 22:923-9. [PMID: 22101829 DOI: 10.1007/s00330-011-2325-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2011] [Revised: 09/09/2011] [Accepted: 09/18/2011] [Indexed: 12/11/2022]
Abstract
PURPOSE To explore the evidence of regular alteration of bone quality in osteoporosis dynamically examined by MRS and micro-CT, comparing with histopathology. METHODS Forty rabbits were allocated into two groups. Group A were used as sham. Group B underwent bilateral ovariectomy (OVX) combined with daily intramuscular methylprednisolone, underwent MR spectroscopy, micro-CT, and histopathology of L5 at 2, 4, 8, and 10 weeks after operation. RESULTS Fat fraction as shown by MRS in Group B was significantly increased over the time course of osteoporosis development with significant difference between two groups at 4, 8, and 10 weeks after OVX. Continuous deterioration of cancellous bone architecture in Group B, was first detected at week 4. FF value in group B correlated with micro-CT parameters. Marrow fat as measured by MR and CT was positively correlated with both the mean density and diameter of adipocytes (both of which increased over time). CONCLUSIONS Marrow adipogenesis occurs in synchrony with deterioration of trabecular microarchitecture.MRS may be valuable to assess the pathophysiological changes of bone marrow in osteoporosis in early stage. KEY POINTS MRS revealed gradually increasing bone marrow fat in rabbits rendered osteoporotic. Marrow adipogenesis occurs in synchrony with deterioration of trabecular microarchitecture. Pathology revealed an early increase in number of marrow adipocytes in osteoporosis. MRS may help assess early pathophysiological bone marrow changes in osteoporosis.
Collapse
Affiliation(s)
- Guan-wu Li
- Department of Radiology, Affiliated Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | | | | | | | | | | |
Collapse
|