1
|
Scellini B, Piroddi N, Dente M, Pioner JM, Ferrantini C, Poggesi C, Tesi C. Myosin Isoform-Dependent Effect of Omecamtiv Mecarbil on the Regulation of Force Generation in Human Cardiac Muscle. Int J Mol Sci 2024; 25:9784. [PMID: 39337273 PMCID: PMC11431984 DOI: 10.3390/ijms25189784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Omecamtiv mecarbil (OM) is a small molecule that has been shown to improve the function of the slow human ventricular myosin (MyHC) motor through a complex perturbation of the thin/thick filament regulatory state of the sarcomere mediated by binding to myosin allosteric sites coupled to inorganic phosphate (Pi) release. Here, myofibrils from samples of human left ventricle (β-slow MyHC-7) and left atrium (α-fast MyHC-6) from healthy donors were used to study the differential effects of μmolar [OM] on isometric force in relaxing conditions (pCa 9.0) and at maximal (pCa 4.5) or half-maximal (pCa 5.75) calcium activation, both under control conditions (15 °C; equimolar DMSO; contaminant inorganic phosphate [Pi] ~170 μM) and in the presence of 5 mM [Pi]. The activation state and OM concentration within the contractile lattice were rapidly altered by fast solution switching, demonstrating that the effect of OM was rapid and fully reversible with dose-dependent and myosin isoform-dependent features. In MyHC-7 ventricular myofibrils, OM increased submaximal and maximal Ca2+-activated isometric force with a complex dose-dependent effect peaking (40% increase) at 0.5 μM, whereas in MyHC-6 atrial myofibrils, it had no effect or-at concentrations above 5 µM-decreased the maximum Ca2+-activated force. In both ventricular and atrial myofibrils, OM strongly depressed the kinetics of force development and relaxation up to 90% at 10 μM [OM] and reduced the inhibition of force by inorganic phosphate. Interestingly, in the ventricle, but not in the atrium, OM induced a large dose-dependent Ca2+-independent force development and an increase in basal ATPase that were abolished by the presence of millimolar inorganic phosphate, consistent with the hypothesis that the widely reported Ca2+-sensitising effect of OM may be coupled to a change in the state of the thick filaments that resembles the on-off regulation of thin filaments by Ca2+. The complexity of this scenario may help to understand the disappointing results of clinical trials testing OM as inotropic support in systolic heart failure compared with currently available inotropic drugs that alter the calcium signalling cascade.
Collapse
Affiliation(s)
- Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.S.); (N.P.); (M.D.); (C.F.); (C.P.)
| | - Nicoletta Piroddi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.S.); (N.P.); (M.D.); (C.F.); (C.P.)
| | - Marica Dente
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.S.); (N.P.); (M.D.); (C.F.); (C.P.)
| | - J. Manuel Pioner
- Department of Biology, University of Florence, 50134 Florence, Italy;
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.S.); (N.P.); (M.D.); (C.F.); (C.P.)
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.S.); (N.P.); (M.D.); (C.F.); (C.P.)
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.S.); (N.P.); (M.D.); (C.F.); (C.P.)
| |
Collapse
|
2
|
Zhou S, Liu Y, Huang X, Wu C, Pórszász R. Omecamtiv Mecarbil in the treatment of heart failure: the past, the present, and the future. Front Cardiovasc Med 2024; 11:1337154. [PMID: 38566963 PMCID: PMC10985333 DOI: 10.3389/fcvm.2024.1337154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Heart failure, a prevailing global health issue, imposes a substantial burden on both healthcare systems and patients worldwide. With an escalating prevalence of heart failure, prolonged survival rates, and an aging demographic, an increasing number of individuals are progressing to more advanced phases of this incapacitating ailment. Against this backdrop, the quest for pharmacological agents capable of addressing the diverse subtypes of heart failure becomes a paramount pursuit. From this viewpoint, the present article focuses on Omecamtiv Mecarbil (OM), an emerging chemical compound said to exert inotropic effects without altering calcium homeostasis. For the first time, as a review, the present article uniquely started from the very basic pathophysiology of heart failure, its classification, and the strategies underpinning drug design, to on-going debates of OM's underlying mechanism of action and the latest large-scale clinical trials. Furthermore, we not only saw the advantages of OM, but also exhaustively summarized the concerns in sense of its effects. These of no doubt make the present article the most systemic and informative one among the existing literature. Overall, by offering new mechanistic insights and therapeutic possibilities, OM has carved a significant niche in the treatment of heart failure, making it a compelling subject of study.
Collapse
Affiliation(s)
- Shujing Zhou
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ying Liu
- Department of Cardiology, Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xufeng Huang
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Chuhan Wu
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róbert Pórszász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Amesz JH, Langmuur SJJ, Zhang L, Manintveld OC, Schinkel AFL, de Jong PL, de Groot NMS, Taverne YJHJ. Biomechanical response of ultrathin slices of hypertrophic cardiomyopathy tissue to myosin modulator mavacamten. Biomed Pharmacother 2024; 170:116036. [PMID: 38134635 DOI: 10.1016/j.biopha.2023.116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited myocardial disorder of the heart, but effective treatment options remain limited. Mavacamten, a direct myosin modulator, has been presented as novel pharmacological therapy for HCM. The aim of this study was to analyze the biomechanical response of HCM tissue to Mavacamten using living myocardial slices (LMS). LMS (n = 58) from patients with HCM (n = 10) were cultured under electromechanical stimulation, and Verapamil and Mavacamten were administered on consecutive days to evaluate their effects on cardiac biomechanics. Mavacamten and Verapamil reduced contractile force and dF/dt and increased time-to-relaxation in a similar manner. Yet, the time-to-peak of the cardiac contraction was prolonged after administration of Mavacamten (221.0 ms (208.8 - 236.3) vs. 237.7 (221.0 - 254.7), p = 0.004). In addition, Mavacamten prolonged the functional refractory period (FRP) (330 ms (304 - 351) vs. 355 ms (313 - 370), p = 0.023) and better preserved twitch force with increasing stimulation frequencies, compared to Verapamil. As such, Mavacamten reduced (hyper-)contractility and prolonged contraction duration of HCM LMS, suggesting a reduction in cardiac wall stress. Also, Mavacamten might protect against the development of ventricular tachyarrhythmias due to prolongation of the FRP, and improve toleration of tachycardia due to better preservation of twitch force at tachycardiac stimulation frequencies.
Collapse
Affiliation(s)
- Jorik H Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Translational Electrophysiology Lab, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sanne J J Langmuur
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lu Zhang
- Translational Electrophysiology Lab, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Olivier C Manintveld
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Arend F L Schinkel
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter L de Jong
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Natasja M S de Groot
- Translational Electrophysiology Lab, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Ting CY, Shih CL, Yu MC, Wu CL, Wu SN. Characterization of Stimulatory Action on Voltage-Gated Na + Currents Caused by Omecamtiv Mecarbil, Known to Be a Myosin Activator. Biomedicines 2023; 11:biomedicines11051351. [PMID: 37239022 DOI: 10.3390/biomedicines11051351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Omecamtiv mecarbil (OM, CK-1827452) is recognized as an activator of myosin and has been demonstrated to be beneficial for the treatment of systolic heart failure. However, the mechanisms by which this compound interacts with ionic currents in electrically excitable cells remain largely unknown. The objective of this study was to investigate the effects of OM on ionic currents in GH3 pituitary cells and Neuro-2a neuroblastoma cells. In GH3 cells, whole-cell current recordings showed that the addition of OM had different potencies in stimulating the transient (INa(T)) and late components (INa(L)) of the voltage-gated Na+ current (INa) with different potencies in GH3 cells. The EC50 value required to observe the stimulatory effect of this compound on INa(T) or INa(L) in GH3 cells was found to be 15.8 and 2.3 µM, respectively. Exposure to OM did not affect the current versus voltage relationship of INa(T). However, the steady-state inactivation curve of the current was observed to shift towards a depolarized potential of approximately 11 mV, with no changes in the slope factor of the curve. The addition of OM resulted in an increase in the decaying time constant during the cumulative inhibition of INa(T) in response to pulse-train depolarizing stimuli. Furthermore, the presence of OM led to a shortening of the recovery time constant in the slow inactivation of INa(T). Adding OM also resulted in an augmentation of the strength of the window Na+ current, which was evoked by a short ascending ramp voltage. However, the OM exposure had little to no effect on the magnitude of L-type Ca2+ currents in GH3 cells. On the other hand, the delayed-rectifier K+ currents in GH3 cells were observed to be mildly suppressed in its presence. Neuro-2a cells also showed a susceptibility to the differential stimulation of INa(T) or INa(L) upon the addition of OM. Molecular analysis revealed potential interactions between the OM molecule and hNaV1.7 channels. Overall, the direct stimulation of INa(T) and INa(L) by OM is assumed to not be mediated by an interaction with myosin, and this has potential implications for its pharmacological or therapeutic actions occurring in vivo.
Collapse
Affiliation(s)
- Chih-Yu Ting
- Department of Emergency Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chia-Lung Shih
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Meng-Cheng Yu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Chao-Liang Wu
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- School of Medicine, National Sun Yat-Sen University College of Medicine, Kaohsiung 80424, Taiwan
| |
Collapse
|