1
|
Fan Q, Gao Y, Mazur F, Chandrawati R. Nanoparticle-based colorimetric sensors to detect neurodegenerative disease biomarkers. Biomater Sci 2021; 9:6983-7007. [PMID: 34528639 DOI: 10.1039/d1bm01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders (NDDs) are progressive, incurable health conditions that primarily affect brain cells, and result in loss of brain mass and impaired function. Current sensing technologies for NDD detection are limited by high cost, long sample preparation, and/or require skilled personnel. To overcome these limitations, optical sensors, specifically colorimetric sensors, have garnered increasing attention towards the development of a cost-effective, simple, and rapid alternative approach. In this review, we evaluate colorimetric sensing strategies of NDD biomarkers (e.g. proteins, neurotransmitters, bio-thiols, and sulfide), address the limitations and challenges of optical sensor technologies, and provide our outlook on the future of this field.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Ruiz-Muelle AB, Moreno PG, Fernández I. Quantitative quadrupolar NMR (qQNMR) using nitrogen-14 for the determination of choline in complex matrixes. Talanta 2021; 230:122344. [PMID: 33934793 DOI: 10.1016/j.talanta.2021.122344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023]
Abstract
NMR offers the unique potential to selectively excite the chosen nuclei avoiding in an extraordinary way the matrix effect. Quantitative Nitrogen-14 NMR (14N qNMR) spectroscopy has been introduced for the first time as a robust and validated method to determine choline in a variety of matrixes including quinoa grains, instant coffee and food supplements. A study about the ion pairing of choline bitartrate in aqueous solution by means of diffusion PGSE, NOESY and HOESY NMR have been also provided. Validation of the method within eight concentrations levels (from 1.58 to 79.0 mM) afforded a limit of detection of 400 μg/mL (1.58 mM), a quantification limit of 1000 μg/mL (3.95 mM), excellent linearity (R2 higher than 0.999), intra-/inter-day precisions lower than 1.24% (CV), recoveries of 93.5%-102.5%, and complete absence of matrix effect. The fast and reliable quantification of choline together with the accuracy and simplicity of this new approach make it useful in the development of analytical procedures that could dramatically affect traditional analysis.
Collapse
Affiliation(s)
- Ana Belén Ruiz-Muelle
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Paula García Moreno
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| |
Collapse
|
3
|
Helmschrodt C, Becker S, Perl S, Schulz A, Richter A. Development of a fast liquid chromatography-tandem mass spectrometry method for simultaneous quantification of neurotransmitters in murine microdialysate. Anal Bioanal Chem 2020; 412:7777-7787. [PMID: 32939566 PMCID: PMC7550289 DOI: 10.1007/s00216-020-02906-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022]
Abstract
The continuous measurement of multiple neurotransmitters in microdialysate of freely moving mice to study neurochemical changes in specific brain regions requires a rapid and very sensitive quantitative analytical method. The quantitative analysis of 11 neurotransmitters and metabolites, including serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), melatonin (ME), dopamine (DA), levodopa (l-DOPA), 3-methoxytyramine (3-MT), norepinephrine (NE), epinephrine (EP), acetylcholine (ACh), choline (Ch), and γ-aminobutyric acid (GABA), was performed using a biphenyl column coupled to an API-QTrap 3200 (AB SCIEX) mass spectrometer in positive electrospray ionization mode. To the microdialysate samples, 0.5 ng of isotopically labeled standard was added for analyte quantification. A rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous analysis of monoamines, their precursor, and metabolites, as well as ACh, Ch, and GABA in murine microdialysate within 7.0 min. The limit of detection in artificial CSF ranged from 0.005 ng/mL (ME) to 0.75 ng/mL (NE and GABA). A comprehensive pre-analytical protocol was validated. Recovery was between 87 and 117% for neurotransmitter concentrations from 0.6 to 45 ng/mL with an inter-day accuracy of below 20%. Basal neurotransmitter values were determined in the striatum of mice over a time period of 3 h. This LC-MS/MS method, including a short and gentle sample preparation, is suitable for simultaneous measurements of neurotransmitters in murine cerebral microdialysate and enables the determination of basal neurotransmitter levels in specific brain regions to detect disease-related and drug-induced neurochemical changes. Graphical abstract![]()
Collapse
Affiliation(s)
- Christin Helmschrodt
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, 04103, Leipzig, Germany.
| | - Susen Becker
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Stefanie Perl
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Anja Schulz
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, 04103, Leipzig, Germany
| |
Collapse
|
4
|
|
5
|
Asri R, O'Neill B, Patel JC, Siletti KA, Rice ME. Detection of evoked acetylcholine release in mouse brain slices. Analyst 2018; 141:6416-6421. [PMID: 27722568 DOI: 10.1039/c6an01758d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of transmitter interactions in reward and motor pathways in the brain, including the striatum, requires methodology to detect stimulus-driven neurotransmitter release events. Such methods exist for dopamine, and have contributed to the understanding of local and behavioral factors that regulate dopamine release. However, factors that regulate release of another key transmitter in these pathways, acetylcholine (ACh), are unresolved, in part because of limited temporal and spatial resolution of current detection methods. We have optimized a voltammetric method for detection of local stimulus-evoked ACh release using enzyme-coated carbon-fiber microelectrodes and fast-scan cyclic voltammetry. These electrodes are based on the detection of H2O2 generated by the actions of acetylcholine esterase and choline oxidase, and reliably respond to ACh in a concentration-dependent manner. Methods for enzyme coating were optimized for mechanical stability that allowed for their use in ex vivo brain slices. We report here the first quantitative assessment of extracellular ACh concentration after local electrical stimulation in dorsal striatum in slices from control mice. The selective detection of ACh under these conditions was confirmed by showing that the response detected in the control slices was absent in slices from mice bred to lack ACh synthesis in the forebrain. These electrodes represent a new tool to study ACh and ACh-dopamine interactions with micrometer spatial resolution.
Collapse
Affiliation(s)
- R Asri
- New York University School of Medicine, Department of Neurosurgery, Department of Neuroscience and Physiology, 550 First Avenue, New York, NY 10016, USA.
| | - B O'Neill
- New York University School of Medicine, Department of Neurosurgery, Department of Neuroscience and Physiology, 550 First Avenue, New York, NY 10016, USA.
| | - J C Patel
- New York University School of Medicine, Department of Neurosurgery, Department of Neuroscience and Physiology, 550 First Avenue, New York, NY 10016, USA.
| | - K A Siletti
- New York University School of Medicine, Department of Neurosurgery, Department of Neuroscience and Physiology, 550 First Avenue, New York, NY 10016, USA.
| | - M E Rice
- New York University School of Medicine, Department of Neurosurgery, Department of Neuroscience and Physiology, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
6
|
Pinalli R, Pedrini A, Dalcanale E. Biochemical sensing with macrocyclic receptors. Chem Soc Rev 2018; 47:7006-7026. [PMID: 30175351 DOI: 10.1039/c8cs00271a] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Preventive healthcare asks for the development of cheap, precise and non-invasive sensor devices for the early detection of diseases and continuous population screening. The actual techniques used for diagnosis, e.g. MRI and PET, or for biochemical marker sensing, e.g. immunoassays, are not suitable for continuous monitoring since they are expensive and prone to false positive responses. Synthetic supramolecular receptors offer new opportunities for the creation of specific, selective and cheap sensor devices for biological sensing of specific target molecules in complex mixtures of organic substances. The fundamental challenges faced in developing such devices are the precise transfer of the molecular recognition events at the solid-liquid interface and its transduction into a readable signal. In this review we present the progress made so far in turning synthetic macrocyclic hosts, namely cyclodextrins, calixarenes, cucurbiturils and cavitands, into effective biochemical sensors and the strategies utilized to solve the above mentioned issues. The performances of the developed sensing devices based on these receptors in detecting specific biological molecules, drugs and proteins are critically discussed.
Collapse
Affiliation(s)
- Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | | | | |
Collapse
|
7
|
Liu C, Gomez FA. A microfluidic paper‐based device to assess acetylcholinesterase activity. Electrophoresis 2017; 38:1002-1006. [DOI: 10.1002/elps.201600206] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/29/2016] [Accepted: 12/11/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Chunye Liu
- Department of Chemistry and Biochemistry California State University Los Angeles CA USA
- School of Pharmacy Xi'an Medical University Xi'an P. R. China
| | - Frank A. Gomez
- Department of Chemistry and Biochemistry California State University Los Angeles CA USA
| |
Collapse
|
8
|
Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro. Biosens Bioelectron 2016; 85:679-683. [DOI: 10.1016/j.bios.2016.05.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/11/2016] [Accepted: 05/23/2016] [Indexed: 02/04/2023]
|
9
|
Mock KL, Tillekeratne LMV, Kirchhoff JR. Synthesis and characterization of water soluble choline labeled cadmium selenide/zinc selenide/zinc sulfide luminescent quantum dots. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Shen M, Colombo ML. Electrochemical nanoprobes for the chemical detection of neurotransmitters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:7095-7105. [PMID: 26327927 PMCID: PMC4551492 DOI: 10.1039/c5ay00512d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neurotransmitters, acting as chemical messengers, play an important role in neurotransmission, which governs many functional aspects of nervous system activity. Electrochemical probes have proven a very useful technique to study neurotransmission, especially to quantify and qualify neurotransmitters. With the emerging interests in probing neurotransmission at the level of single cells, single vesicles, as well as single synapses, probes that enable detection of neurotransmitters at the nanometer scale become vitally important. Electrochemical nanoprobes have been successfully employed in nanometer spatial resolution imaging of single nanopores of Si membrane and single Au nanoparticles, providing both topographical and chemical information, thus holding great promise for nanometer spatial study of neurotransmission. Here we present the current state of electrochemical nanoprobes for chemical detection of neurotransmitters, focusing on two types of nanoelectrodes, i.e. carbon nanoelectrode and nano-ITIES pipet electrode.
Collapse
Affiliation(s)
- Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, USA. Tel: +1 (217) 300 3587
| | - Michelle L. Colombo
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, USA. Tel: +1 (217) 300 3587
| |
Collapse
|
11
|
Simultaneous analysis of multiple neurotransmitters by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 2015; 1395:79-87. [DOI: 10.1016/j.chroma.2015.03.056] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
|
12
|
Colombo ML, Sweedler JV, Shen M. Nanopipet-Based Liquid-Liquid Interface Probes for the Electrochemical Detection of Acetylcholine, Tryptamine, and Serotonin via Ionic Transfer. Anal Chem 2015; 87:5095-100. [PMID: 25877788 PMCID: PMC4483307 DOI: 10.1021/ac504151e] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nanoscale interface between two immiscible electrolyte solutions (ITIES) provides a unique analytical platform for the detection of ionic species of biological interest such as neurotransmitters and neuromodulators, especially those that are otherwise difficult to detect directly on a carbon electrode without electrode modification. We report the detection of acetylcholine, serotonin, and tryptamine on nanopipet electrode probes with sizes ranging from a radius of ≈7 to 35 nm. The transfer of these analytes across a 1,2-dichloroethane/water interface was studied by cyclic voltammetry and amperometry. Well-defined sigmoidal voltammograms were observed on the nanopipet electrodes within the potential window of artificial seawater for acetylcholine and tryptamine. The half wave transfer potential, E1/2, of acetylcholine, tryptamine, and serotonin were found to be -0.11, -0.25, and -0.47 V vs E(1/2,TEA) (term is defined later in experimental), respectively. The detection was linear in the range of 0.25-6 mM for acetylcholine and of 0.5-10 mM for tryptamine in artificial seawater. Transfer of serotonin was linear in the range of 0.15-8 mM in LiCl solution. The limit of detection for serotonin in LiCl on a radius ≈21 nm nanopipet electrode was 77 μM, for acetylcholine on a radius ≈7 nm nanopipet electrode was 205 μM, and for tryptamine on a radius ≈19 nm nanopipet electrode was 86 μM. Nanopipet-supported ITIES probes have great potential to be used in nanometer spatial resolution measurements for the detection of neurotransmitters.
Collapse
Affiliation(s)
- Michelle L. Colombo
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Cifuentes Castro VH, López Valenzuela CL, Salazar Sánchez JC, Peña KP, López Pérez SJ, Ibarra JO, Villagrán AM. An update of the classical and novel methods used for measuring fast neurotransmitters during normal and brain altered function. Curr Neuropharmacol 2014; 12:490-508. [PMID: 25977677 PMCID: PMC4428024 DOI: 10.2174/1570159x13666141223223657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 11/22/2022] Open
Abstract
To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alberto Morales Villagrán
- Department of Molecular and Cellular Biology, Camino Ramón Padilla Sánchez 2100, Nextipac, Zapopan,
Jalisco, México, Zip code: 45110, Mexico
| |
Collapse
|
14
|
Gégout C, McAtee ML, Bennett NM, Viranga Tillekeratne LM, Kirchhoff JR. Synthesis and characterization of luminescent cadmium selenide/zinc selenide/zinc sulfide cholinomimetic quantum dots. NANOSCALE 2012; 4:4719-4725. [PMID: 22744377 DOI: 10.1039/c2nr30713h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Luminescent quantum dots conjugated with highly selective molecular recognition ligands are widely used for targeting and imaging biological structures. In this paper, water soluble cholinomimetic cadmium selenide (core), zinc selenide/zinc sulfide (shell) quantum dots were synthesized for targeting cholinergic sites. Cholinomimetic specificity was incorporated by conjugation of the quantum dots to an aminated analogue of hemicholinium-15, a well known competitive inhibitor of the high affinity choline uptake transporter. Detailed evaluation of the nanocrystal synthesis and characterization of the final product was conducted by (1)H and (31)P NMR, absorption and emission spectroscopy, as well as transmission electron microscopy.
Collapse
Affiliation(s)
- Claire Gégout
- Department of Chemistry, College of Natural Sciences and Mathematics, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | | | | | | | | |
Collapse
|
15
|
Mårtensson C, Agmo Hernández V. Ubiquinone-10 in gold-immobilized lipid membrane structures acts as a sensor for acetylcholine and other tetraalkylammonium cations. Bioelectrochemistry 2012; 88:171-80. [PMID: 22542468 DOI: 10.1016/j.bioelechem.2012.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/13/2012] [Accepted: 03/30/2012] [Indexed: 01/02/2023]
Abstract
It is reported that the reduction of ubiquinone incorporated into supported lipid bilayers and into immobilized liposome layers on gold electrodes is kinetically and thermodynamically enhanced by the presence of acetylcholine and tetrabutylammonium (TBA(+)) in solution. The reduction peak and the mid-peak potentials of the redox reactions, determined by cyclic voltammetry, are displaced towards more positive potentials by approximately 500 and 250mV, respectively, in the case of TBA(+); and by approximately 750 and 530mV, respectively, in the case of acetylcholine. The intensity of the signal varies with the cation concentration, allowing for quantitative determinations in the millimolar range. It is proposed that the enhanced reduction of ubiquinone arises from the formation of tetraalkylammonium cation-ubiquinone radical anion ion-pairs. Electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) measurements confirmed that the potential shift and the intensity of the redox signal are coupled with the adsorption of the tetraalkylammonium cations on the lipid membrane. The Langmuir adsorption equilibrium constant (K) of TBA(+) on lipid membranes at physiological pH is determined. In supported lipid bilayers K=440.7±160M(-1), while in an immobilized liposome layer K=35.53±3.53M(-1).
Collapse
Affiliation(s)
- Christoffer Mårtensson
- Department of Physical and Analytical Chemistry, Uppsala University, Husargatan 3, Box 579, 75123, Uppsala, Sweden.
| | | |
Collapse
|
16
|
Wei W, Kang X, Deng H, Lu Z, Jie Z. Analysis of Choline in Milk Powder Using Electrogenerated Chemiluminescence Including a Mechanism Study. ANAL LETT 2011. [DOI: 10.1080/00032719.2010.512681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Liu D, Wang Z, Jiang X. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. NANOSCALE 2011; 3:1421-33. [PMID: 21359318 DOI: 10.1039/c0nr00887g] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In recent years, gold nanoparticles (AuNPs) have drawn considerable research attention in the fields of catalysis, drug delivery, imaging, diagnostics, therapy and biosensors due to their unique optical and electronic properties. In this review, we summarized recent advances in the development of AuNP-based colorimetric and fluorescent assays for ions including cations (such as Hg(2+), Cu(2+), Pb(2+), As(3+), Ca(2+), Al(3+), etc) and anions (such as NO(2)(-), CN(-), PF(6)(-), F(-), I(-), oxoanions), and small organic molecules (such as cysteine, homocysteine, trinitrotoluene, melamine and cocaine, ATP, glucose, dopamine and so forth). Many of these species adversely affect human health and the environment. Moreover, we paid particular attention to AuNP-based colorimetric and fluorescent assays in practical applications.
Collapse
Affiliation(s)
- Dingbin Liu
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | | | | |
Collapse
|
18
|
Guihen E, O'Connor WT. Capillary and microchip electrophoresis in microdialysis: recent applications. Electrophoresis 2010; 31:55-64. [PMID: 20039293 DOI: 10.1002/elps.200900467] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The theme of this review is to highlight the importance of microscale electrophoretic-based separation systems in microdialysis (microD). The ability of CE and MCE to yield very rapid and highly efficient separations using just nanolitre volumes of microdialysate samples will also be discussed. Recent advances in this area will be highlighted, by illustration of some exciting new applications while the need for further innovation will be covered. The first section briefly introduces the concept of microD sampling coupled with electrophoresis-based separation and the inherent advantages of this approach. The following section highlights some specific applications of CE separations in the detection of important biomarkers such as low-molecular-weight neurotransmitters, amino acids, and other molecules that are frequently encountered in microD. Various detection modes in CE are outlined and some of the advantages and drawbacks thereof are discussed. The last section introduces the concepts of micro-total analysis systems and the coupling of MCE and microD. Some of the latest innovations will be illustrated. The concluding section reflects on the future of this important chemical alliance between microD and CE/MCE.
Collapse
Affiliation(s)
- Elizabeth Guihen
- Graduate Entry Medical School and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | |
Collapse
|
19
|
Nirogi R, Mudigonda K, Kandikere V, Ponnamaneni R. Quantification of acetylcholine, an essential neurotransmitter, in brain microdialysis samples by liquid chromatography mass spectrometry. Biomed Chromatogr 2010; 24:39-48. [PMID: 19877295 DOI: 10.1002/bmc.1347] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemical neurotransmission has been the subject of intensive investigations in recent years. Acetylcholine is an essential neurotransmitter in the central nervous system as it has an effect on alertness, memory and learning. Enzymatic hydrolysis of acetylcholine in the synaptic cleft is fast and quickly metabolizes to choline and acetate by acetylcholinesterase. Hence the concentration in the extracellular fluid of the brain is low (0.1-6 nm). Techniques such as microdialysis are routinely employed to measure acetylcholine levels in living brain systems and the microdialysis sample volumes are usually less than 50 microL. In order to develop medicine for the diseases associated with cognitive dysfunction like mild cognitive impairment, Alzheimer's disease, schizophrenia and Parkinson's disease, or to study the mechanism of the illness, it is important to measure the concentration of acetylcholine in the extracellular fluid of the brain. Recently considerable attention has been focused on the development of chromatographic-mass spectrometric techniques to provide more sensitive and accurate quantification of acetylcholine collected from in-vivo brain microdialysis experiments. This review will provide a brief overview of acetylcholine biosynthesis, microdialysis technique and liquid chromatography mass spectrometry, which is being used to quantitate extracellular levels of acetylcholine.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Discovery Research, Suven Life Sciences Ltd, Serene Chambers, Road -5, Avenue -7, Banjara Hills, Hyderabad 500034, India.
| | | | | | | |
Collapse
|
20
|
Mukherjee J, Kirchhoff JR. Electrocatalytic microelectrode detectors for choline and acetylcholine following separation by capillary electrophoresis. Anal Chem 2009; 81:6996-7002. [PMID: 20337384 PMCID: PMC2867047 DOI: 10.1021/ac9010843] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two electrocatalytic enzyme modified microelectrode systems were employed as end-column amperometric detectors of choline (Ch) and acetylcholine (ACh) following separation by capillary electrophoresis (CE). Horseradish peroxidase cross-linked in an osmium based redox polymer hydrogel (HRP-Os) was physically adsorbed on Au microelectrodes followed by chemical cross-linking of the enzymes acetylcholinesterase (AChE) and choline oxidase (ChO). An alternative approach utilized the deposition of the transition metal catalyst, Prussian Blue (PB), on Pt microelectrodes as the electrocatalyst. Utilizing butyrylcholine (BuCh) as an internal standard, the HRP-Os/AChE-ChO and PB/AChE-ChO electrodes exhibited excellent linear responses from 2-2000 microM and 10-2000 microM, respectively, for both Ch and ACh. Detection limits of 0.1 microM or 38 amol were determined for the HRP-Os/AChE-ChO electrode. The limit of detection for ACh and Ch at the PB/AChE-ChO electrode was 5 microM or 9.5 fmol. The electrodes were operated at potentials of +0.10 and -0.10 V vs Ag/AgCl (3 M NaCl), respectively, and thus minimized the potential response from oxidizable interferences. In addition, both electrocatalytic electrodes showed good operational stability for more than 70 h. The enhanced detection capability of the HRP-Os/AChE-ChO and PB/AChE-ChO electrodes in combination with efficient CE separation of Ch and ACh provides a new sensitive and selective strategy for monitoring and quantifying these cholinergic biomarkers in biological fluids.
Collapse
Affiliation(s)
- Jhindan Mukherjee
- Department of Chemistry, College of Arts & Sciences, University of Toledo, Toledo, OH, 43606
| | - Jon R. Kirchhoff
- Department of Chemistry, College of Arts & Sciences, University of Toledo, Toledo, OH, 43606
| |
Collapse
|
21
|
Ampurdanés J, Crespo GA, Maroto A, Sarmentero MA, Ballester P, Rius FX. Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes. Biosens Bioelectron 2009; 25:344-9. [PMID: 19656669 DOI: 10.1016/j.bios.2009.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/26/2009] [Accepted: 07/10/2009] [Indexed: 11/19/2022]
Abstract
A new solid-contact ion-selective electrode has been developed for determining choline and derivatives in aqueous solutions. The backbone of this new potentiometric sensor is the conjunction of the cavitand receptor, as the molecular recognition element, and a network of non-carboxylated single-walled carbon nanotubes, acting as a solid transducer material. The octaamide cavitand, a synthetic receptor that is highly selective for biologically important trimethyl alkylammonium cations such as choline, acetylcholine or carnitine, makes the selective determination of these compounds possible for the first time. The guest-host interaction takes place in the acrylate ion-selective membrane of the solid-contact electrode. The sensor was characterized by electrochemical impedance spectroscopy and environmental scanning electron microscopy. The new electrode displays a nearly Nernstian slope (57.3+/-1.0 mV/decade) and very stable behaviour (DeltaE/Deltat=224 muVh(-1)) throughout the dynamic range (10(-5) to 10(-1)M). The limit of detection of 10(-6.4)M and the high selectivities obtained will enable choline and derivatives to be determined in biological samples. Finally, the stability of the electrical potential of the new solid-contact electrode was examined by performing current-reversal chronopotentiometry and the influence of the interfacial water film was evaluated by the potentiometric water layer test.
Collapse
Affiliation(s)
- Jordi Ampurdanés
- Department of Analytical and Organic Chemistry, University of Rovira i Virgili, Marcel.lí, Domingo, s/n. 43007, Tarragona, Spain
| | | | | | | | | | | |
Collapse
|