1
|
Lakavath K, Kafley C, Sajeevan A, Jana S, Marty JL, Kotagiri YG. Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins (Basel) 2024; 16:244. [PMID: 38922139 PMCID: PMC11209398 DOI: 10.3390/toxins16060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Monitoring agricultural toxins such as mycotoxins is crucial for a healthy society. High concentrations of these toxins lead to the cause of several chronic diseases; therefore, developing analytical systems for detecting/monitoring agricultural toxins is essential. These toxins are found in crops such as vegetables, fruits, food, and beverage products. Currently, screening of these toxins is mostly performed with sophisticated instrumentation such as chromatography and spectroscopy techniques. However, these techniques are very expensive and require extensive maintenance, and their availability is limited to metro cities only. Alternatively, electrochemical biomimetic sensing methodologies have progressed hugely during the last decade due to their unique advantages like point-of-care sensing, miniaturized instrumentations, and mobile/personalized monitoring systems. Specifically, affinity-based sensing strategies including immunosensors, aptasensors, and molecular imprinted polymers offer tremendous sensitivity, selectivity, and stability to the sensing system. The current review discusses the principal mechanisms and the recent developments in affinity-based sensing methodologies for the detection and continuous monitoring of mycotoxins and pesticides. The core discussion has mainly focused on the fabrication protocols, advantages, and disadvantages of affinity-based sensing systems and different exploited electrochemical transduction techniques.
Collapse
Affiliation(s)
- Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Chandan Kafley
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Soumyajit Jana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Jean Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| |
Collapse
|
2
|
|
3
|
Yang Y, Tang Y, Wang C, Liu B, Wu Y. Selection and identification of a DNA aptamer for ultrasensitive and selective detection of λ-cyhalothrin residue in food. Anal Chim Acta 2021; 1179:338837. [PMID: 34535250 DOI: 10.1016/j.aca.2021.338837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Pyrethroid pesticides residues will not only pollute the environment, but also cause high toxicity to the human body. It is significant to establish an efficient and accurate method for pyrethroid detection in food. Considering that the common biomolecules like antibody is complicated and easy to inactivate, it is urgent to find a new type of biomolecule to specifically recognize pyrethroid pesticides. This study proposed the Capture-SELEX strategy to firstly select λ-cyhalothrin aptamer by immobilizing random ssDNA library. High-throughput sequencing was performed on the enriched ssDNA library through multiple Capture-SELEX rounds. Comprehensively inspecting structural similarity and homology, six sequences were chosen from five families for further analysis. The results showed that the aptamer (named LCT-1) could specifically recognize λ-cyhalothrin with the strongest affinity (Kd = 50.64 ± 4.33 nmol L-1). Molecular docking results revealed that the binding sites between λ-cyhalothrin and LCT-1 aptamer are mainly related to the bases A-5, C-6, C-28, A-29, C-30, G-31 and G-32. The LCT-1 aptamer was truncated to a shorter sequence (named as LCT-1-39) by removing other irrelevant bases, and its Kd value was determined as (10.27 ± 1.33) nmol·L-1 by Microscale Thermophoresis (MST). Both LCT-1 and LCT-1-39 aptamers were employed as recognition molecules to establish the colorimetric aptasensors for λ-cyhalothrin detection, which displayed good repeatability and reproducibility. The detection limit of the aptasensors were individually calculated as 0.0197 μg ml-1 and 0.0186 μg ml-1, and their recovery rate of λ-cyhalothrin in pear and cucumber samples was in the range of 82.93-95.50%. This article provides a promising application for the detection of λ-cyhalothrin.
Collapse
Affiliation(s)
- Yuxia Yang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yue Tang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Chunxiao Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Bangyan Liu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China; Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin, 644000, China.
| |
Collapse
|
4
|
Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food Chem Toxicol 2021; 149:112030. [DOI: 10.1016/j.fct.2021.112030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/22/2022]
|
5
|
Guo X, Wen F, Zheng N, Saive M, Fauconnier ML, Wang J. Aptamer-Based Biosensor for Detection of Mycotoxins. Front Chem 2020; 8:195. [PMID: 32373573 PMCID: PMC7186343 DOI: 10.3389/fchem.2020.00195] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
Mycotoxins are a large type of secondary metabolites produced by fungi that pose a great hazard to and cause toxic reactions in humans and animals. A majority of countries and regulators, such as the European Union, have established a series of requirements for their use, and they have also set maximum tolerance levels. The development of high sensitivity and a specific analytical platform for mycotoxins is much in demand to address new challenges for food safety worldwide. Due to the superiority of simple, rapid, and low-cost characteristics, aptamer-based biosensors have successfully been developed for the detection of various mycotoxins with high sensitivity and selectivity compared with traditional instrumental methods and immunological approaches. In this article, we discuss and analyze the development of aptasensors for mycotoxins determination in food and agricultural products over the last 11 years and cover the literatures from the first report in 2008 until the present time. In addition, challenges and future trends for the selection of aptamers toward various mycotoxins and aptasensors for multi-mycotoxins analyses are summarized. Given the promising development and potential application of aptasensors, future research studies made will witness the great practicality of using aptamer-based biosensors within the field of food safety.
Collapse
Affiliation(s)
- Xiaodong Guo
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Chimie Générale et Organique, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Wen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Matthew Saive
- Chimie Générale et Organique, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Chimie Générale et Organique, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
7
|
Xu H, Zhu X, Wang J, Lin Z, Chen G. Electrochemiluminescent functional nucleic acids‐based sensors for food analysis. LUMINESCENCE 2019; 34:308-315. [DOI: 10.1002/bio.3596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Huifeng Xu
- Academy of Integrative MedicineFujian University of Traditional Chinese Medicine Fuzhou Fujian P. R. China
| | - Xi Zhu
- College of Life SciencesFujian Agriculture and Forestry University Fuzhou Fujian P. R. China
| | - Jian Wang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of ChemistryFuzhou University Fuzhou Fujian P. R. China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of ChemistryFuzhou University Fuzhou Fujian P. R. China
| | - Guonan Chen
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of ChemistryFuzhou University Fuzhou Fujian P. R. China
| |
Collapse
|
8
|
Shen P, Li W, Ding Z, Deng Y, Liu Y, Zhu X, Cai T, Li J, Zheng T. A competitive aptamer chemiluminescence assay for ochratoxin A using a single silica photonic crystal microsphere. Anal Biochem 2018; 554:28-33. [PMID: 29860095 DOI: 10.1016/j.ab.2018.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
We designed a competitive aptamer chemiluminescence assay for ochratoxin A (OTA) on the surface of a single silica photonic crystal microsphere (SPCM) in cereal samples. The structural color of SPCMs is used to recognize and trace the microspheres during process of detection. Anti-aptamer was immobilized on the surface of SPCM. OTA and anti-aptamer competed to bind to aptamer when OTA and its aptamer (labeled by biotin at 5'end) were added in the system. The chemiluminescence signal was developed by the horseradish peroxidase (HRP), luminol and H2O2. The molecules on the single SPCM can produce enough chemiluminescence signal intensity for quantitative detection for OTA. The linear detection range for OTA was from 1 pg/mL to 1 ng/mL and recovery rates were 89%-95%, 81%-92% and 94%-105% in rice, wheat and corn, respectively. The results showed that the developed method for OTA using a single SPCM has a great application potential in cereal samples.
Collapse
Affiliation(s)
- Peng Shen
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Wei Li
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, S3 7HQ, United Kingdom
| | - Zhi Ding
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Yang Deng
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Yan Liu
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Xuerui Zhu
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Tingting Cai
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Jianlin Li
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China.
| | - Tiesong Zheng
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| |
Collapse
|
9
|
Jiang C, Lan L, Yao Y, Zhao F, Ping J. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Lee B, Park JH, Byun JY, Kim JH, Kim MG. An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin A. Biosens Bioelectron 2017; 102:504-509. [PMID: 29197812 DOI: 10.1016/j.bios.2017.11.062] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/16/2017] [Accepted: 11/24/2017] [Indexed: 02/02/2023]
Abstract
Label-free biosensing methods that rely on the use of localized surface plasmon resonance (LSPR) have attracted great attention as a result of their simplicity, high sensitivity, and relatively low cost. However, in-situ analysis of real samples using these techniques has remained challenging because colloidal nanoparticles (NPs) can be unstable at certain levels of pH and salt concentration. Even in the case of a chip-type LSPR sensor that can resolve the instability problem by employing NPs immobilized on the substrate, loading of a sample to sensor chip with exact volume control can be difficult for unskilled users. Herein, we report an optical-fiber-based LSPR aptasensor that can avoid these problems and serve as a portable and simple system for sensitive detection of a small mycotoxin, ochratoxin A (OTA), in real samples. The optical fiber coated with aptamer-modified gold nanorods (GNRs) is simply dipped into a solution containing OTA and subjected to LSPR analysis. Quantitative analysis of OTA is performed by measuring the spectral red shift of the LSPR peak of GNRs. Under optimized conditions, the LSPR peak shift displays a linear response (R2 = 0.9887) to OTA in the concentration range from 10pM to 100nM, with a limit of detection of 12.0pM (3S). The developed sensor shows a high selectivity for OTA over other mycotoxins such as zearalenone (ZEN) and ochratoxin B (OTB), and shows an accurate detection capability for OTA in real grape juice samples.
Collapse
Affiliation(s)
- Bobin Lee
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jin-Ho Park
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ju-Young Byun
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Joon Heon Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
11
|
Shen P, Li W, Liu Y, Ding Z, Deng Y, Zhu X, Jin Y, Li Y, Li J, Zheng T. High-Throughput Low-Background G-Quadruplex Aptamer Chemiluminescence Assay for Ochratoxin A Using a Single Photonic Crystal Microsphere. Anal Chem 2017; 89:11862-11868. [PMID: 28988477 DOI: 10.1021/acs.analchem.7b03592] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We reported a novel hemin-G-quadruplex aptamer chemiluminescence assay platform for ochratoxin A (OTA) using the single silica photonic crystal microsphere (SPCM). The oligonucleotide A sequence containing aptamer sequences of hemin and OTA is immobilized on the surface of SPCM. The other oligonucleotide B sequence containing a partially complementary sequence with one part OTA aptamer and one part hemin aptamer is used as a blocking chain. The hybridization between chain A and chain B will be influenced by the presence or absence of OTA in the system, which will affect the bioactivity of DNAzyme. Thus, the chemiluminescence signal depends on the concentration of OTA in the samples. In the single particle assay platform, the signal/noise is remarkably enhanced, and the background signal can be ignored by separating hemin from the surface of SPCM. The limit of detection of the new method reaches to the pg/mL scale, and the linear detection range is 4 orders of magnitude for OTA. The new assay platform can provide a sensitive, cost-efficient, simple, and high-throughput screening for OTA.
Collapse
Affiliation(s)
- Peng Shen
- Department of Food Science and Engineering, Nanjing Normal University , Nanjing 210024, China
| | - Wei Li
- Department of Electronic and Electrical Engineering, The University of Sheffield , Sheffield S3 7HQ, United Kingdom
| | - Yan Liu
- Department of Food Science and Engineering, Nanjing Normal University , Nanjing 210024, China
| | - Zhi Ding
- Department of Food Science and Engineering, Nanjing Normal University , Nanjing 210024, China
| | - Yang Deng
- Department of Food Science and Engineering, Nanjing Normal University , Nanjing 210024, China
| | - Xuerui Zhu
- Department of Food Science and Engineering, Nanjing Normal University , Nanjing 210024, China
| | - Yanhao Jin
- Department of Food Science and Engineering, Nanjing Normal University , Nanjing 210024, China
| | - Yichen Li
- Department of Food Science and Engineering, Nanjing Normal University , Nanjing 210024, China
| | - Jianlin Li
- Department of Food Science and Engineering, Nanjing Normal University , Nanjing 210024, China
| | - Tiesong Zheng
- Department of Food Science and Engineering, Nanjing Normal University , Nanjing 210024, China
| |
Collapse
|
12
|
Sutarlie L, Ow SY, Su X. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins. Biotechnol J 2016; 12. [PMID: 27787955 DOI: 10.1002/biot.201500459] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/13/2023]
Abstract
Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application.
Collapse
Affiliation(s)
- Laura Sutarlie
- Insitute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore
| | - Sian Yang Ow
- Insitute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore
| | - Xiaodi Su
- Insitute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore.,Department of Chemistry, National University of Singapore, Singapore
| |
Collapse
|
13
|
Malir F, Ostry V, Pfohl-Leszkowicz A, Malir J, Toman J. Ochratoxin A: 50 Years of Research. Toxins (Basel) 2016; 8:E191. [PMID: 27384585 PMCID: PMC4963825 DOI: 10.3390/toxins8070191] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/21/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022] Open
Abstract
Since ochratoxin A (OTA) was discovered, it has been ubiquitous as a natural contaminant of moldy food and feed. The multiple toxic effects of OTA are a real threat for human beings and animal health. For example, OTA can cause porcine nephropathy but can also damage poultries. Humans exposed to OTA can develop (notably by inhalation in the development of acute renal failure within 24 h) a range of chronic disorders such as upper urothelial carcinoma. OTA plays the main role in the pathogenesis of some renal diseases including Balkan endemic nephropathy, kidney tumors occurring in certain endemic regions of the Balkan Peninsula, and chronic interstitial nephropathy occurring in Northern African countries and likely in other parts of the world. OTA leads to DNA adduct formation, which is known for its genotoxicity and carcinogenicity. The present article discusses how renal carcinogenicity and nephrotoxicity cause both oxidative stress and direct genotoxicity. Careful analyses of the data show that OTA carcinogenic effects are due to combined direct and indirect mechanisms (e.g., genotoxicity, oxidative stress, epigenetic factors). Altogether this provides strong evidence that OTA carcinogenicity can also occur in humans.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| | - Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Brno 61242, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, Auzeville-Tolosane 31320, France.
| | - Jan Malir
- Institute of State and Law, Czech Academy of Sciences, Narodni 18, Prague 11600, Czech Republic.
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| |
Collapse
|
14
|
Qian J, Wang K, Wang C, Hua M, Yang Z, Liu Q, Mao H, Wang K. A FRET-based ratiometric fluorescent aptasensor for rapid and onsite visual detection of ochratoxin A. Analyst 2016; 140:7434-42. [PMID: 26396995 DOI: 10.1039/c5an01403d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A color change observable by the naked eye to indicate the content of an analyte is considered to be the most conceivable way of various sensing protocols. By taking advantage of the Förster resonance energy transfer (FRET) principles, we herein designed a dual-emission ratiometric fluorescent aptasensor for ochratoxin A (OTA) detection via a dual mode of fluorescent sensing and onsite visual screening. Amino group-modified OTA's aptamer was firstly labeled with the green-emitting CdTe quantum dots (gQDs) donor. The red-emitting CdTe QDs (rQDs) which were wrapped in the silica sphere could serve as the reference signal, while the gold nanoparticle (AuNP) acceptors were attached on the silica surface to bind with the thiolated complementary DNA (cDNA). The hybridization reaction between the aptamer and the cDNA brought gQD-AuNP pair close enough, thereby making the FRET occur in the aptasensor fabrication, while the subsequent fluorescence recovery induced by OTA was obtained in the detection procedure. Based on the red background of the wrapped rQDs, the aptasensor in response to increasing OTA displayed a distinguishable color change from red to yellow-green, which could be conveniently readout in solution even by the naked eye. Since the bioconjugations used as the aptasensor can be produced at large scale, this method can be used for in situ, rapid, or high-throughput OTA detection after only an incubation step in a homogeneous mode. We believe that this novel aptasensing strategy provides not only a promising method for OTA detection but also a universal model for detecting diverse targets by changing the corresponding aptamer.
Collapse
Affiliation(s)
- Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Recent development of electrochemiluminescence sensors for food analysis. Anal Bioanal Chem 2016; 408:7035-48. [DOI: 10.1007/s00216-016-9548-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
|
16
|
Chauhan R, Singh J, Sachdev T, Basu T, Malhotra BD. Recent advances in mycotoxins detection. Biosens Bioelectron 2016; 81:532-545. [PMID: 27019032 DOI: 10.1016/j.bios.2016.03.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 01/01/2023]
Abstract
Mycotoxins contamination in both food and feed is inevitable. Mycotoxin toxicity in foodstuff can occur at very low concentrations necessitating early availability of sensitive and reliable methods for their detection. The present research thrust is towards the development of a user friendly biosensor for mycotoxin detection at both academic and industrial levels to replace conventional expensive chromatographic and ELISA techniques. This review critically analyzes the recent research trend towards the construction of immunosensor, aptasensor, enzymatic sensors and others for mycotoxin detection with a reference to label and label free methods, synthesis of new materials including nano dimension, and transuding techniques. Technological aspects in the development of biosensors for mycotoxin detection, current challenges and future prospects are also included to provide a overview and suggestions for future research directions.
Collapse
Affiliation(s)
- Ruchika Chauhan
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, India.
| | - Jay Singh
- Department of Applied Chemistry & Polymer Technology, Delhi Technological University, Delhi 110042, India.
| | - Tushar Sachdev
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, India.
| | - T Basu
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, India.
| | - B D Malhotra
- Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
17
|
Ha TH. Recent Advances for the Detection of Ochratoxin A. Toxins (Basel) 2015; 7:5276-300. [PMID: 26690216 PMCID: PMC4690132 DOI: 10.3390/toxins7124882] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022] Open
Abstract
Ochratoxin A (OTA) is one of the mycotoxins secreted by Aspersillus and Penicillium that can easily colonize various grains like coffee, peanut, rice, and maize. Since OTA is a chemically stable compound that can endure the physicochemical conditions of modern food processing, additional research efforts have been devoted to develop sensitive and cost-effective surveillance solutions. Although traditional chromatographic and immunoassays appear to be mature enough to attain sensitivity up to the regulation levels, alternative detection schemes are still being enthusiastically pursued in an attempt to meet the requirements of rapid and cost-effective detections. Herein, this review presents recent progresses in OTA detections with minimal instrumental usage, which have been facilitated by the development of OTA aptamers and by the innovations in functional nanomaterials. In addition to the introduction of aptamer-based OTA detection techniques, OTA-specific detection principles are also presented, which exclusively take advantage of the unique chemical structure and related physicochemical characteristics.
Collapse
Affiliation(s)
- Tai Hwan Ha
- BioNanotechnology Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Nanobiotechnology (Major), Korea University of Science & Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
18
|
Turner NW, Bramhmbhatt H, Szabo-Vezse M, Poma A, Coker R, Piletsky SA. Analytical methods for determination of mycotoxins: An update (2009-2014). Anal Chim Acta 2015; 901:12-33. [PMID: 26614054 DOI: 10.1016/j.aca.2015.10.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/25/2022]
Abstract
Mycotoxins are a problematic and toxic group of small organic molecules that are produced as secondary metabolites by several fungal species that colonise crops. They lead to contamination at both the field and postharvest stages of food production with a considerable range of foodstuffs affected, from coffee and cereals, to dried fruit and spices. With wide ranging structural diversity of mycotoxins, severe toxic effects caused by these molecules and their high chemical stability the requirement for robust and effective detection methods is clear. This paper builds on our previous review and summarises the most recent advances in this field, in the years 2009-2014 inclusive. This review summarises traditional methods such as chromatographic and immunochemical techniques, as well as newer approaches such as biosensors, and optical techniques which are becoming more prevalent. A section on sampling and sample treatment has been prepared to highlight the importance of this step in the analytical methods. We close with a look at emerging technologies that will bring effective and rapid analysis out of the laboratory and into the field.
Collapse
Affiliation(s)
- Nicholas W Turner
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
| | - Heli Bramhmbhatt
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Monika Szabo-Vezse
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK; Toximet Ltd., ToxiMet Limited, 130 Abbott Drive, Kent Science Park, Sittingbourne, Kent, ME9 8AZ, UK
| | - Alessandro Poma
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK; Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Raymond Coker
- Toximet Ltd., ToxiMet Limited, 130 Abbott Drive, Kent Science Park, Sittingbourne, Kent, ME9 8AZ, UK
| | - Sergey A Piletsky
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
19
|
Hao L, Duan N, Wu S, Xu B, Wang Z. Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles. Anal Bioanal Chem 2015; 407:7907-15. [PMID: 26297462 DOI: 10.1007/s00216-015-8957-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
A novel chemiluminescent aptasensor for the highly sensitive detection of chloramphenicol (CAP) in milk was successfully developed using biotinylated CAP aptamer-functionalized magnetic nanoparticles (MNPs) as capture probes and thiolated hybridized complementary strand-modified N-(4-aminobutyl)-N-ethylisoluminol (ABEI)-functionalized flower-like gold nanostructures (AuNFs) as signal probes. P-iodophenol (PIP) was also added to form an ABEI-H2O2-PIP steady-state chemiluminescence (CL) system. Based on a competitive format, the CL intensity was negatively correlated with the concentration of CAP in the range of 0.01-0.20 ng/mL and the detection limit was 0.01 ng/mL in buffer and 1 ng/mL in milk. The proposed method was successfully applied to measure CAP in milk samples and compared to a commercial ELISA method. The high sensitivity of AuNFs, excellent selectivity and stability of aptamers, and good overall stability of the chemiluminescent bioassay with magnetic separation make them a promising approach for the detection of small molecular illegal additives. Additionally, the high sensitivity, easy operation, and good reproducibility exhibited by the stable chemiluminescent bioassay demonstrate its applicability for the trace detection of CAP in applications, such as animal husbandry.
Collapse
Affiliation(s)
- Liling Hao
- State Key Laboratory of Food Science & Technology, Synergetic Innovation Center of Food Safety & Nutrition, School of Food Science & Technology, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science & Technology, Synergetic Innovation Center of Food Safety & Nutrition, School of Food Science & Technology, Jiangnan University, Wuxi, 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science & Technology, Synergetic Innovation Center of Food Safety & Nutrition, School of Food Science & Technology, Jiangnan University, Wuxi, 214122, China
| | - Baocai Xu
- State Key Laboratory of Meat Processing & Quality Control, Yurun Group, Nanjing, 210041, China
| | - Zhouping Wang
- State Key Laboratory of Food Science & Technology, Synergetic Innovation Center of Food Safety & Nutrition, School of Food Science & Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
20
|
Li Z, Fu Y, Fang W, Li Y. Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin. SENSORS 2015; 15:19212-24. [PMID: 26251911 PMCID: PMC4570367 DOI: 10.3390/s150819212] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 12/30/2022]
Abstract
Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate) (DTSP) on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL−1, with a linear detection range from 102 to 107 cfu·mL−1 (r2 = 0.98). The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens.
Collapse
Affiliation(s)
- Zhanming Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Weihuan Fang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Yanbin Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
21
|
Sharma R, Ragavan KV, Thakur MS, Raghavarao KSMS. Recent advances in nanoparticle based aptasensors for food contaminants. Biosens Bioelectron 2015; 74:612-27. [PMID: 26190473 DOI: 10.1016/j.bios.2015.07.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022]
Abstract
Food safety and hazard analysis is a prime concern of human life, thus quality assessment of food and water is the need of the day. Recent advances in nano-biotechnology play a significant role in providing possible solutions for developing highly sensitive and affordable detection tools for food analysis. Nanomaterials based aptasensors hold great potential to overcome the drawbacks of conventional analytical techniques. Aptamers comprise a novel class of highly specific bio-recognition elements which are produced by SELEX (systematic evolution of ligands by exponential enrichment) process. They bind to target molecules by folding into 3D structures that can discriminate different chiral compounds. The flexibility in making modifications in aptamers contribute to the design of biosensors, enabling the generation of bio-recognition elements for a wide variety of target molecules. Nanomaterials such as metal nanoparticles, metal nanoclusters, metal oxide nanoparticles, metal and carbon quantum dots, graphene, carbon nanotubes and nanocomposites enable higher sensitivity by signal amplification and introduce several novel transduction principles such as enhanced chemiluminescence, fluorescence, Raman signals, electrochemical signals, enhanced catalytic activity, and super-paramagnetic properties to the biosensor. Although there are a few reviews published recently which deal with the potential of aptamers in various fields, none are devoted exclusively to the potential of aptasensors based on nanomaterials for the analysis of food contaminants. Hence, the current review discusses several transduction systems and their principles used in aptamer based nanosensors which have been developed in the past five years, the challenges faced in their designing, along with their strengths and limitations.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Food Engineering, CSIR-CFTRI, India; Academy of Scientific and Innovative Research, India
| | - K V Ragavan
- Department of Food Engineering, CSIR-CFTRI, India; Academy of Scientific and Innovative Research, India
| | - M S Thakur
- Materials Science Centre, University of Mysore, Mysore 570005, Karnataka, India.
| | - K S M S Raghavarao
- Department of Food Engineering, CSIR-CFTRI, India; Academy of Scientific and Innovative Research, India.
| |
Collapse
|
22
|
Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26199940 PMCID: PMC4493287 DOI: 10.1155/2015/419318] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed.
Collapse
|
23
|
Rai M, Jogee PS, Ingle AP. Emerging nanotechnology for detection of mycotoxins in food and feed. Int J Food Sci Nutr 2015; 66:363-70. [DOI: 10.3109/09637486.2015.1034251] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Loo AH, Bonanni A, Pumera M. Mycotoxin Aptasensing Amplification by using Inherently Electroactive Graphene-Oxide Nanoplatelet Labels. ChemElectroChem 2015. [DOI: 10.1002/celc.201402403] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Wang R, Xiang Y, Zhou X, Liu LH, Shi H. A reusable aptamer-based evanescent wave all-fiber biosensor for highly sensitive detection of Ochratoxin A. Biosens Bioelectron 2014; 66:11-8. [PMID: 25460875 DOI: 10.1016/j.bios.2014.10.079] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 12/24/2022]
Abstract
Although aptamer-based biosensors have attracted ever-increasing attentions and found potential applications in a wide range of areas, they usually adopted the assay protocol of immobilizing DNA probe (e.g., aptamer, aptamer-complementary oligonucleotides) on a solid sensing surface, making it critical and challengeable to keep the integration of nucleic acid surface during the regeneration and the restoration to its original DNA probe form after repeated uses. In order to address the issue, we report a novel aptamer-based biosensing strategy based on an evanescent wave all-fiber (EWA) platform. In a simple target capturing step using aptamer-functionalized magnetic microbeads, signal probes conjugated with streptavidin are released and further detected by a EWA biosensor via a facial dethiobiotin-streptavidin recognition. Apart from the inherent advantages of aptamer-based evanescent wave biosensors (e.g. target versatility, sensitivity, selectivity and portability), the proposed strategy exhibits a high stability and remarkable reusability over other aptasensors. Under the optimized conditions, the typical calibration curve obtained for Ochratoxin A has a detection limit of 3nM with a linear response ranging from 6nM to 500nM. The dethiobiotin-streptavidin sensing surface instead of the traditional nucleic acid one can be reused for over 300 times without losing sensitivity.
Collapse
Affiliation(s)
- Ruoyu Wang
- School of environment, Tsinghua University, Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- School of environment, Tsinghua University, Beijing 100084, China.
| | - Lan-Hua Liu
- School of environment, Tsinghua University, Beijing 100084, China
| | - Hanchang Shi
- School of environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
McKeague M, Velu R, Hill K, Bardóczy V, Mészáros T, DeRosa MC. Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins (Basel) 2014; 6:2435-52. [PMID: 25153252 PMCID: PMC4147592 DOI: 10.3390/toxins6082435] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 01/10/2023] Open
Abstract
Nucleic acid aptamers are emerging as useful molecular recognition tools for food safety monitoring. However, practical and technical challenges limit the number and diversity of available aptamer probes that can be incorporated into novel sensing schemes. This work describes the selection of novel DNA aptamers that bind to the important food contaminant ochratoxin A (OTA). Following 15 rounds of in vitro selection, sequences were analyzed for OTA binding. Two of the isolated aptamers demonstrated high affinity binding and selectivity to this mycotoxin compared to similar food adulterants. These sequences, as well as a truncated aptamer (minimal sequence required for binding), were incorporated into a SYBR® Green I fluorescence-based OTA biosensing scheme. This label-free detection platform is capable of rapid, selective, and sensitive OTA quantification with a limit of detection of 9 nM and linear quantification up to 100 nM.
Collapse
Affiliation(s)
- Maureen McKeague
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA 94305, USA.
| | - Ranganathan Velu
- Chemistry Department, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Kayla Hill
- Chemistry Department, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Viola Bardóczy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary.
| | - Tamás Mészáros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tûzoltó u. 37-47, H-1094 Budapest, Hungary.
| | - Maria C DeRosa
- Chemistry Department, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
27
|
Yuan J, Wu S, Duan N, Ma X, Xia Y, Chen J, Ding Z, Wang Z. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 2014; 127:163-8. [PMID: 24913871 DOI: 10.1016/j.talanta.2014.04.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/29/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
In this study, a gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus (S. aureus) using tyramine signal amplification (TSA) technology has been developed. First, the biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of the microtiter plate via biotin-avidin binding. Then, the target bacteria (S. aureus), biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and avidin-catalase were successively introduced into the wells of the microtiter plate. After that, the existing catalase consumed the hydrogen peroxide. Finally, the freshly prepared gold (III) chloride trihydrate was added, the color of the reaction production would be changed and the absorbance at 550 nm could be measured with a plate reader. Under optimized conditions, there was a linear relationship between the absorbance at 550 nm and the concentration of S. aureus over the range from 10 to 10(6) cfu mL(-1) (with an R² of 0.9947). The limit of the developed method was determined to be 9 cfu mL(-1).
Collapse
Affiliation(s)
- Jinglei Yuan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhansheng Ding
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
28
|
Lv Z, Chen A, Liu J, Guan Z, Zhou Y, Xu S, Yang S, Li C. A simple and sensitive approach for ochratoxin A detection using a label-free fluorescent aptasensor. PLoS One 2014; 9:e85968. [PMID: 24465818 PMCID: PMC3897567 DOI: 10.1371/journal.pone.0085968] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
Ochratoxin A(OTA) is found to be one of the predominant contaminating mycotoxins in a wide variety of food commodities. To avoid the risk of OTA consumption, the detection and quantitation of OTA level are of great significance. Based on the fact that ssDNA aptamer has the ability to form a double-strand structure with its complementary sequence, a simple and rapid aptamer-based label-free approach for highly sensitive and selective fluorescence detection of OTA was developed by using ultra-sensitive double-strand DNA specific dyes PicoGreen. The results showed that as low as 1 ng/mL of OTA could be detected with a dynamic range of more than 5 orders of magnitude which satisfies the requirements for OTA maximum residue limit in various food regulated by European Commission. With the specificity of aptamer, the assay exhibited high selectivity for OTA against two other analogues (N-acetyl-l-phenylalanine and zearalenone). We also tested the aptasensor practicability using real sample of 1% beer spiked with a series of concentration of OTA and the results show good tolerance to matrix effect. All detections could be achieved in less than 30 min, which provides a simple, quick and sensitive detection method for OTA screening in food safety and could be easily extend to other small molecular chemical compounds detection which aptamer has been selected.
Collapse
Affiliation(s)
- Zhenzhen Lv
- College of Food Science, Sichuan Agricultural University, Ya'an, China
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing, China
| | - Ailiang Chen
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing, China
- * E-mail: (AC); (CL)
| | - Jinchuan Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing, China
| | - Zheng Guan
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing, China
| | - Yu Zhou
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing, China
| | - Siyuan Xu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing, China
| | - Shuming Yang
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
- * E-mail: (AC); (CL)
| |
Collapse
|
29
|
Li W, Powers S, Dai S. Using commercial immunoassay kits for mycotoxins: ‘joys and sorrows’? WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2014.1715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Rapid test methods are widely used for measuring mycotoxins in a variety of matrices. This review presents an overview of the current commercially available immunoassay rapid test formats. Enzyme linked immune-sorbent assay (ELISA), lateral flow tests, flow through immunoassay, fluorescent polarisation immunoassay, and immunoaffinity columns coupled with fluorometric assay are common formats in the current market. The two existing evaluation programs for commercial testing kits by United State Department of Agricultural Grain Inspection, Packers & Stockyards Administration (USDA-GIPSA) and AOAC Research Institute are introduced. The strengths and weaknesses of these test kits are discussed with regard to the application scope, variance, specificity and cross reactivity, accuracy and precision, and measurement range. Generally speaking, the current commercially available testing kits meet research and industrial needs as ‘fit-for-purpose’. Furthermore, quality assurance concerns and future perspectives are elaborated for broader application of commercial test kits in research, industry and regulatory applications. It is expected that new commercial kits based on advanced technologies such as electrochemical affinity biosensors, molecularly imprinted polymers, surface plasmon resonance, fluorescence resonance energy transfer, aptamer-based biosensors and dynamic light scattering might be available to users in the future. Meanwhile, harmonisation of testing kit evaluation, incorporation of more quality assurance into the testing kit utilisation scheme, and a larger variety of kits available at lower cost will expand the usage of testing kits for food safety testing worldwide.
Collapse
Affiliation(s)
- Wei Li
- Office of the Texas State Chemist, Texas A&M University, 445 Agronomy Road, College Station, TX 77843, USA
| | - S. Powers
- VICAM, 34 Maple Street, Milford, MA 02157, USA
| | - S.Y. Dai
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| |
Collapse
|
30
|
Yang X, Qian J, Jiang L, Yan Y, Wang K, Liu Q, Wang K. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy. Bioelectrochemistry 2013; 96:7-13. [PMID: 24355136 DOI: 10.1016/j.bioelechem.2013.11.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/21/2013] [Accepted: 11/24/2013] [Indexed: 01/21/2023]
Abstract
Ochratoxin A (OTA) has a number of toxic effects to both humans and animals, so developing sensitive detection method is of great importance. Herein, we describe an ultrasensitive electrochemical aptasensor for OTA based on the two-level cascaded signal amplification strategy with methylene blue (MB) as a redox indicator. In this method, capture DNA, aptamers, and reporter DNA functionalized-gold nanoparticles (GNPs) were immobilized on the electrode accordingly, where GNPs were used as the first-level signal enhancer. To receive the more sensitive response, a larger number of guanine (G)-rich DNA was bound to the GNPs' surface to provide abundant anchoring sites for MB to achieve the second-level signal amplification. By employing this novel strategy, an ~8.5 (±0.3) fold amplification in signal intensity was obtained. Afterward, OTA was added to force partial GNPs/G-rich DNA to release from the sensing interface and thus decreased the electrochemical response. An effective sensing range from 2.5pM to 2.5nM was received with an extremely low detection limit of 0.75 (±0.12) pM. This amplification strategy has the potential to be the main technology for aptamer-based electrochemical biosensor in a variety of fields.
Collapse
Affiliation(s)
- Xingwang Yang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
| | - Ling Jiang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
| | - Yuting Yan
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
| | - Kan Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China.
| |
Collapse
|
31
|
Evtugyn G, Porfireva A, Stepanova V, Kutyreva M, Gataulina A, Ulakhovich N, Evtugyn V, Hianik T. Impedimetric aptasensor for ochratoxin A determination based on Au nanoparticles stabilized with hyper-branched polymer. SENSORS (BASEL, SWITZERLAND) 2013; 13:16129-45. [PMID: 24287535 PMCID: PMC3892811 DOI: 10.3390/s131216129] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023]
Abstract
An impedimetric aptasensor for ochratoxin A (OTA) detection has been developed on the base of a gold electrode covered with a new modifier consisting of electropolymerized Neutral Red and a mixture of Au nanoparticles suspended in the dendrimeric polymer Botlorn H30®. Thiolated aptamer specific to OTA was covalently attached to Au nanoparticles via Au-S bonding. The interaction of the aptamer with OTA induced the conformational switch of the aptamer from linear to guanine quadruplex form followed by consolidation of the surface layer and an increase of the charge transfer resistance. The aptasensor makes it possible to detect from 0.1 to 100 nM of OTA (limit of detection: 0.02 nM) in the presence of at least 50 fold excess of ochratoxin B. The applicability of the aptasensor for real sample assay was confirmed by testing spiked beer samples. The recovery of 2 nM OTA was found to be 70% for light beer and 78% for dark beer.
Collapse
Affiliation(s)
- Gennady Evtugyn
- Analytical Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (G.E.); (A.P.); (V.S.)
| | - Anna Porfireva
- Analytical Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (G.E.); (A.P.); (V.S.)
| | - Veronika Stepanova
- Analytical Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (G.E.); (A.P.); (V.S.)
| | - Marianna Kutyreva
- Inorganic Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (M.K.); (A.G.); (N.U.)
| | - Alfiya Gataulina
- Inorganic Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (M.K.); (A.G.); (N.U.)
| | - Nikolay Ulakhovich
- Inorganic Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (M.K.); (A.G.); (N.U.)
| | - Vladimir Evtugyn
- Electron Microscopy Laboratory of the Faculty of Biology, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mail:
| | - Tibor Hianik
- Electron Microscopy Laboratory of the Faculty of Biology, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mail:
| |
Collapse
|
32
|
Jiang L, Qian J, Yang X, Yan Y, Liu Q, Wang K, Wang K. Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A. Anal Chim Acta 2013; 806:128-35. [PMID: 24331048 DOI: 10.1016/j.aca.2013.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/30/2013] [Accepted: 11/02/2013] [Indexed: 11/25/2022]
Abstract
An amplified electrochemical impedimetric aptasensor for ochratoxin A (OTA) was developed with picomolar sensitivity. A facile route to fabricate gold nanoparticles covalently bound reduced graphene oxide (AuNPs-rGO) resulted in a large number of well-dispersed AuNPs on graphene sheets with tremendous binding sites for DNA, since the single rGO sheet and each AuNP can be loaded with hundreds of DNA strands. An aptasensor with sandwich model was fabricated which involved thiolated capture DNA immobilized on a gold electrode to capture the aptamer, then the sensing interface was incubated with OTA at a desired concentration, followed by AuNPs-rGO functionalized reporter DNA hybridized with the residual aptamers. By exploiting the AuNPs-rGO as an excellent signal amplified platform, a single hybridization event between aptamer and reporter DNA was translated into more than 10(7) redox events, leading to a substantial increase in charge-transfer resistance (Rct) by 7~ orders of magnitude compared with that of the free aptamer modified electrode. Such designed aptasensor showed a decreased response of Rct to the increase of OTA concentrations over a wide range of 1 pg mL(-1)-50 ng mL(-1) and could detect extremely low OTA concentration, namely, 0.3 pg mL(-1) or 0.74 pM, which was much lower than that of most other existed impedimetric aptasensors. The signal amplification platform presented here would provide a promising model for the aptamer-based detection with a direct impedimetric method.
Collapse
Affiliation(s)
- Ling Jiang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xingwang Yang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yuting Yan
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kan Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
33
|
Hayat A, Yang C, Rhouati A, Marty JL. Recent advances and achievements in nanomaterial-based, and structure switchable aptasensing platforms for ochratoxin A detection. SENSORS (BASEL, SWITZERLAND) 2013; 13:15187-208. [PMID: 24201319 PMCID: PMC3871093 DOI: 10.3390/s131115187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 02/07/2023]
Abstract
Aptamer-based bioreceptors that can easily adopt their surroundings have captured the attention of scientists from a wide spectrum of domains in designing highly sensitive, selective and structure switchable sensing assays. Through elaborate design and chemical functionalization, numerous aptamer-based assays have been developed that can switch their conformation upon incubation with target analyte, resulting in an enhanced output signal. To further lower the detection limits to picomolar levels, nanomaterials have attracted great interest in the design of aptamer-based sensing platforms. Associated to their unique properties, nanomaterials offer great promise for numerous aptasensing applications. This review will discuss current research activities in the aptasensing with typical example of detection of ochratoxin A (OTA). OTA, a secondary fungal metabolite, contaminates a variety of food commodities, and has several toxicological effects such as nephrotoxic, hepatotoxic, neurotoxic, teratogenic and immunotoxic activities. The review will introduce advances made in the methods of integrating nanomaterials in aptasensing, and will discuss current conformational switchable design strategies in aptasensor fabrication methodologies.
Collapse
Affiliation(s)
- Akhtar Hayat
- BIOMEM, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.H.); (C.Y.); (A.R.)
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Cheng Yang
- BIOMEM, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.H.); (C.Y.); (A.R.)
| | - Amina Rhouati
- BIOMEM, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.H.); (C.Y.); (A.R.)
| | - Jean Louis Marty
- BIOMEM, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.H.); (C.Y.); (A.R.)
| |
Collapse
|
34
|
Rhouati A, Yang C, Hayat A, Marty JL. Aptamers: a promosing tool for ochratoxin A detection in food analysis. Toxins (Basel) 2013; 5:1988-2008. [PMID: 24196457 PMCID: PMC3847711 DOI: 10.3390/toxins5111988] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022] Open
Abstract
The contamination of food and feed by mycotoxins has become an increasingly serious problem. Mycotoxins represent a major risk to human and animal health, as well as economics. Herein, we focus on Ochratoxin A (OTA), which is one of the most common mycotoxins contaminating feed and foodstuffs. OTA is a secondary metabolite produced by various Aspergillus and Penicillium strains. Upon ingestion, OTA has a number of acute and chronic toxic effects. It is nephrotoxic, teratogenic, immunosuppressive, and carcinogenic (group 2B). As a consequence, some regulatory limits have been introduced on the levels of OTA in several commodities. The toxic nature of OTA demands highly sensitive and selective monitoring techniques to protect human and animal health. As alternative to traditional analytical techniques, biochemical methods for OTA analysis have attained great interest in the last few decades. They are mainly based on the integration of antibodies or aptamers as biorecognition elements in sensing platforms. However, aptamers have gained more attention in affinity-based assays because of their high affinity, specificity, stability, and their easy chemical synthesis. In this brief review, we present an overview of aptamer-based assays and their applications in OTA purification and detection, appeared in the literature in the last five years.
Collapse
Affiliation(s)
- Amina Rhouati
- IMAGES, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.R.); (C.Y.)
| | - Cheng Yang
- IMAGES, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.R.); (C.Y.)
| | - Akhtar Hayat
- Department of Chemistry and Biomolecular science, Clarkson University, Potsdam, NY 13699, USA; E-Mail:
| | - Jean-Louis Marty
- IMAGES, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.R.); (C.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-468662254; Fax: +33-468662223
| |
Collapse
|
35
|
YANG XH, KONG WJ, YANG MH, ZHAO M, OUYANG Z. Application of Aptamer Identification Technology in Rapid Analysis of Mycotoxins. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1016/s1872-2040(13)60630-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Galarreta BC, Tabatabaei M, Guieu V, Peyrin E, Lagugné-Labarthet F. Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Anal Bioanal Chem 2012. [PMID: 23187825 DOI: 10.1007/s00216-012-6557-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A selective aptameric sequence is adsorbed on a two-dimensional nanostructured metallic platform optimized for surface-enhanced Raman spectroscopy (SERS) measurements. Using nanofabrication methods, a metallic nanostructure was prepared by electron-beam lithography onto a glass coverslip surface and embedded within a microfluidic channel made of polydimethylsiloxane, allowing one to monitor in situ SERS fingerprint spectra from the adsorbed molecules on the metallic nanostructures. The gold structure was designed so that its localized surface plasmon resonance matches the excitation wavelength used for the Raman measurement. This optofluidic device is then used to detect the presence of a toxin, namely ochratoxin-A (OTA), in a confined environment, using very small amounts of chemicals, and short data acquisition times, by taking advantage of the optical properties of a SERS platform to magnify the Raman signals of the aptameric monolayer system and avoiding chemical labeling of the aptamer or the OTA target.
Collapse
Affiliation(s)
- Betty C Galarreta
- Department of Chemistry, University of Western Ontario, London, ON, Canada
| | | | | | | | | |
Collapse
|
37
|
Lauridsen LH, Veedu RN. Nucleic acid aptamers against biotoxins: a new paradigm toward the treatment and diagnostic approach. Nucleic Acid Ther 2012; 22:371-9. [PMID: 23113767 DOI: 10.1089/nat.2012.0377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nucleic acid aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with very high affinity and specificity, and are generally selected by a process referred to as systematic evolution of ligands by exponential enrichment. Conventional antibody-based therapeutic and diagnostic approach currently employed against biotoxins pose major limitations such as the requirement of a live animal for the in vivo enrichment of the antibody species, decreased stability, high production cost, and side effects. Aptamer technology is a viable alternative that can be used to combat these problems. Fully sequestered in vitro, aptamers eliminate the need for a living host. Furthermore, one of the key advantages of using aptamers instead of antibodies is that they can be selected against very weakly immunogenic and cytotoxic substances. In this review, we focus on nucleic acid aptamers developed against various biotoxins of plant, microorganism, or animal origin and show how these can be used in diagnostics (e.g., biosensors) and therapy.
Collapse
Affiliation(s)
- Lasse Holm Lauridsen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | | |
Collapse
|
38
|
Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor. Anal Chim Acta 2012; 753:27-31. [PMID: 23107133 DOI: 10.1016/j.aca.2012.09.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/21/2012] [Accepted: 09/23/2012] [Indexed: 11/23/2022]
Abstract
A one-step electrochemical aptasensor using the thiol- and methylene blue- (MB-) dual-labeled aptamer modified gold electrode for determination of ochratoxin A (OTA) was presented in this research. The aptamer against OTA was covalently immobilized on the surface of the electrode by the self-assembly effect and used as recognition probes for OTA detection by the binding induced folding of the aptamer. Under the optimal conditions, the developed electrochemical aptasensor demonstrated a wide linear range from 0.1 pg mL(-1) to 1000 pg mL(-1) with the limit of detection (LOD) of 0.095 pg mL(-1), which was an extraordinary sensitivity compared with other common methods for OTA detection. Moreover, as a practical application, this proposed electrochemical aptasensor was used to monitor the OTA level in red wine samples without any special pretreatment and with satisfactory results obtained. Study results showed that this electrochemical aptasensor could be a potential useful platform for on-site OTA measurement in real complex samples.
Collapse
|
39
|
Hayat A, Paniel N, Rhouati A, Marty JL, Barthelmebs L. Recent advances in ochratoxin A-producing fungi detection based on PCR methods and ochratoxin A analysis in food matrices. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.01.060] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Hun X, Liu F, Mei Z, Ma L, Wang Z, Luo X. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Biosens Bioelectron 2012; 39:145-51. [PMID: 22938841 DOI: 10.1016/j.bios.2012.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/29/2012] [Accepted: 07/07/2012] [Indexed: 11/19/2022]
Abstract
In this work, a new signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A (OTA) is reported. OTA aptamer (DNA1) and OTA aptamer complementary (DNA2) were immobilized onto a magnetic bead (MB). In the presence of OTA, DNA2 was dissociated and released from the MB. The released DNA2 then hybridized with DNA3, which was linked at the 5' terminus of the amplification template and can extend along the template in the presence of Phi 29 DNA polymerase. The formed double-stranded DNA was cleaved by nicking endonuclease Nb.BbvCI and produced a short single-stranded DNA. The cleaved DNA strand generated a new site by Phi 29 DNA polymerase and the process of extension and cleavage was cyclical. Thus, a amount of the short single-stranded DNA were produced. Using DNA and ABEI labeled carboxylic silica nanoparticles chemiluminescence (CL) probe, the short single-stranded DNA could be sensitively detected. The CL intensity (ΔI) versus the concentration of OTA was linear in the range from 1.0×10(-12) to 5.0×10(-8)g mL(-1). The detection limit was 3.0×10(-13)g mL(-1), and the RSD was 3.4% at 1.0×10(-10)g mL(-1) (n=7). The developed method has been applied to detect OTA in naturally contaminated wheat samples. Due to its simplicity, sensitivity and no need of specific recognition of aptamer for cleavage, this CL bioassay offers a promising approach for the detection of OTA and other biomolecules.
Collapse
Affiliation(s)
- Xu Hun
- Shandong Provincial Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | | | | | | | | | | |
Collapse
|
41
|
Chen J, Fang Z, Liu J, Zeng L. A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.11.039] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Analytical performances of a DNA-ligand system using time-resolved fluorescence for the determination of ochratoxin A in wheat. Anal Bioanal Chem 2012; 403:2627-34. [PMID: 22576657 DOI: 10.1007/s00216-012-6076-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/16/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
The analytical performances of a novel DNA-ligand system using the time-resolved fluorescence (TRF) response of ochratoxin A (OTA)-terbium-DNA aptamer interaction were tested for the quantitative determination of OTA in wheat. Wheat was extracted with acetonitrile/water (60:40, v/v) followed by clean-up through affinity columns containing a DNA-aptamer-based oligosorbent. Then, OTA was detected by TRF spectroscopy after reaction with a terbium fluorescent solution containing the DNA-aptamer probe. The entire procedure was performed in less than 30 min, including sample preparation, and allowed analysis of several samples simultaneously with a 96-well microplate reader. The average recovery from samples spiked with 2.5-25 μg kg(-1) OTA was 77%, with a relative standard deviation lower than 6% and a quantification limit of 0.5 μg kg(-1). Comparative analyses of 29 naturally contaminated (up to 14 μg kg(-1)) wheat samples using the aptamer-affinity column/TRF method or the immunoaffinity column/high-performance liquid chromatography method showed good correlation (r = 0.985) in the range tested. The trueness of the aptamer-based method was additionally assessed by analysis of two quality control wheat materials for OTA. The DNA-ligand system is innovative, simple and rapid, and can be used to screen large quantities of samples for OTA contamination at levels below the EU regulatory limit with analytical performances satisfying EU criteria for method acceptability.
Collapse
|
43
|
Duan N, Wu S, Ma X, Chen X, Huang Y, Wang Z. Gold Nanoparticle-Based Fluorescence Resonance Energy Transfer Aptasensor for Ochratoxin A Detection. ANAL LETT 2012. [DOI: 10.1080/00032719.2011.653899] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine. Biosens Bioelectron 2012; 33:113-9. [DOI: 10.1016/j.bios.2011.12.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 12/17/2022]
|
45
|
Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, Jiang Y. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Anal Chim Acta 2012; 723:1-6. [PMID: 22444566 DOI: 10.1016/j.aca.2012.02.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/01/2012] [Accepted: 02/06/2012] [Indexed: 10/14/2022]
Abstract
A sensitive luminescent bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus was developed using aptamer-conjugated magnetic nanoparticles (MNPs) for both recognition and concentration elements and using upconversion nanoparticles (UCNPs) as highly sensitive dual-color labels. The bioassay system was fabricated by immobilizing aptamer 1 and aptamer 2 onto the surface of MNPs, which were employed to capture and concentrate S. Typhimurium and S. aureus. NaY(0.78)F(4):Yb(0.2),Tm(0.02) UCNPs modified aptamer 1 and NaY(0.28)F(4):Yb(0.70),Er(0.02) UCNPs modified aptamer 2 further were bond onto the captured bacteria surface to form sandwich-type complexes. Under optimal conditions, the correlation between the concentration of S. Typhimurium and the luminescent signal was found to be linear within the range of 10(1)-10(5) cfu mL(-1) (R(2)=0.9964), and the signal was in the range of 10(1)-10(5) cfu mL(-1) (R(2)=0.9936) for S. aureus. The limits of detection of the developed method were found to be 5 and 8 cfu mL(-1) for S. Typhimurium and S. aureus, respectively. The ability of the bioassay to detect S. Typhimurium and S. aureus in real water samples was also investigated, and the results were compared to the experimental results from the plate-counting methods. Improved by the magnetic separation and concentration effect of MNPs, the high sensitivity of UCNPs, and the different emission lines of Yb/Er- and Yb/Tm-doped NaYF(4) UCNPs excited by a 980 nm laser, the present method performs with both high sensitivity and selectivity for the two different types of bacteria.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | | | |
Collapse
|
46
|
McGrath TF, Elliott CT, Fodey TL. Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 2012; 403:75-92. [PMID: 22278073 DOI: 10.1007/s00216-011-5685-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/17/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Increases in food production and the ever-present threat of food contamination from microbiological and chemical sources have led the food industry and regulators to pursue rapid, inexpensive methods of analysis to safeguard the health and safety of the consumer. Although sophisticated techniques such as chromatography and spectrometry provide more accurate and conclusive results, screening tests allow a much higher throughput of samples at a lower cost and with less operator training, so larger numbers of samples can be analysed. Biosensors combine a biological recognition element (enzyme, antibody, receptor) with a transducer to produce a measurable signal proportional to the extent of interaction between the recognition element and the analyte. The different uses of the biosensing instrumentation available today are extremely varied, with food analysis as an emerging and growing application. The advantages offered by biosensors over other screening methods such as radioimmunoassay, enzyme-linked immunosorbent assay, fluorescence immunoassay and luminescence immunoassay, with respect to food analysis, include automation, improved reproducibility, speed of analysis and real-time analysis. This article will provide a brief footing in history before reviewing the latest developments in biosensor applications for analysis of food contaminants (January 2007 to December 2010), focusing on the detection of pathogens, toxins, pesticides and veterinary drug residues by biosensors, with emphasis on articles showing data in food matrices. The main areas of development common to these groups of contaminants include multiplexing, the ability to simultaneously analyse a sample for more than one contaminant and portability. Biosensors currently have an important role in food safety; further advances in the technology, reagents and sample handling will surely reinforce this position.
Collapse
Affiliation(s)
- T F McGrath
- ASSET Technology Centre, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | | |
Collapse
|
47
|
Tong P, Zhao WW, Zhang L, Xu JJ, Chen HY. Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification. Biosens Bioelectron 2011; 33:146-51. [PMID: 22270050 DOI: 10.1016/j.bios.2011.12.042] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/20/2011] [Accepted: 12/25/2011] [Indexed: 10/14/2022]
Abstract
On the basis of aptamer-based rolling circle amplification (RCA) and magnetic beads (MBs), a highly sensitive electrochemical method was developed for the determination of Ochratoxin A (OTA). Initially, an amino-modified capture DNA was immobilized onto MBs for the following hybridization with an OTA aptamer and a phosphate labeled padlock DNA. In the presence of OTA, the aptamer would dissociate from the bioconjugate, and the padlock DNA would subsequently hybridize with the capture DNA to form a circular template with the aid of the T4 ligase. Next, capture DNA would act as primer to initiate a linear RCA reaction and hence generate a long tandem repeated sequences by phi29 DNA polymerase and dNTPs. Then, two quantum dots (QDs) labeled DNA probes were tagged on the resulted RCA product to indicate the OTA recognition event by electrochemical readout. This strategy, based on the novel design of OTA-mediated DNA circularization, the combination of RCA and double signal probes introduction, could detect OTA down to the level of 0.2 pg mL(-1) with a dynamic range spanning more than 4 orders of magnitude. The proposed approach is tested to determine OTA in red wines and shows good application potential in real samples.
Collapse
Affiliation(s)
- Ping Tong
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | | | | | | | | |
Collapse
|
48
|
Castillo G, Lamberti I, Mosiello L, Hianik T. Impedimetric DNA Aptasensor for Sensitive Detection of Ochratoxin A in Food. ELECTROANAL 2011. [DOI: 10.1002/elan.201100485] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
|
50
|
Tong P, Zhang L, Xu JJ, Chen HY. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Biosens Bioelectron 2011; 29:97-101. [PMID: 21855315 DOI: 10.1016/j.bios.2011.07.075] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/20/2011] [Accepted: 07/29/2011] [Indexed: 11/18/2022]
Abstract
A new "signal-on" aptasensor for ultrasensitive detection of Ochratoxin A (OTA) in wheat starch was developed based on exonuclease-catalyzed target recycling. To construct the aptasensor, a ferrocene (Fc) labeled probe DNA (S1) was immobilized on a gold electrode (GE) via Au-S bonding for the following hybridization with the complementary OTA aptamer, with the labeled Fc on S1 far from the GE surface. In the presence of analyte OTA, the formation of aptamer-OTA complex would result in not only the dissociation of aptamer from the double-strand DNA but also the transformation of the probe DNA into a hairpin structure. Subsequently, the OTA could be liberated from the aptamer-OTA complex for analyte recycling due to the employment of exonuclease, which is a single-stranded DNA specific exonuclease to selectively digest the appointed DNA (aptamer). Owing to the labeled Fc in close proximity to the electrode surface caused by the formation of the hairpin DNA and to the analyte recycling, differential pulse voltammetry (DPV) signal could be produced with enhanced signal amplification. Based on this strategy, an ultrasensitive aptasensor for the detection of OTA could be exhibited with a wide linear range of 0.005-10.0ngmL(-1) with a low detection limit (LOD) of 1.0pgmL(-1) OTA (at 3σ). The fabricated biosensor was then applied for the measurement of OTA in real wheat starch sample and validated by ELISA method.
Collapse
Affiliation(s)
- Ping Tong
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Analytical and Testing Center, The Sport Science Research Center, Fuzhou University, Fuzhou, Fujian 350002, China
| | | | | | | |
Collapse
|