1
|
Hooks K, Kiani K, Fu Q. Cortical neural activity during responses to mechanical perturbation: Effects of hand preference and hand used. Neuroimage 2025; 310:121111. [PMID: 40043783 DOI: 10.1016/j.neuroimage.2025.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/12/2025] Open
Abstract
Handedness is an important feature of human behavioral lateralization that has often been associated with hemispheric specialization. Existing neuroimaging research on the effect of handedness during motor control has focused on well-practiced or predictable tasks, but not tasks that involve unpredictable perturbations. We examined the extent to which handedness (measured by self-reported hand preference) and whether the dominant hand is used or not influence the motor and neural response during unimanual voluntary corrective actions. The experimental task involved controlling a robotic manipulandum to move a cursor from a center start point to a target presented above or below the start. In some trials, a mechanical perturbation of the hand was randomly applied by the robot either consistent or against the target direction, while electroencephalography (EEG) was recorded. Fourteen left-handers and fourteen right-handers completed the experiment. Left-handed individuals had a greater negative peak in the frontal event-related potential (ERP) during the initial voluntary response stage (N140) than right-handed individuals. Furthermore, left-handed individuals showed more symmetrical ERP distributions between two hemispheres than right-handed individuals in the frontal and parietal regions during the late voluntary response stage (P380). To the best of our knowledge, this is the first evidence to demonstrate the differences in the cortical control of voluntary corrective actions between left-handers and right-handers.
Collapse
Affiliation(s)
- Kevin Hooks
- Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32827, United States.
| | - Kimia Kiani
- Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32827, United States.
| | - Qiushi Fu
- Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32827, United States; Biionix Cluster, University of Central Florida, Orlando, FL 32827, United States.
| |
Collapse
|
2
|
Kitchen NM, Dexheimer B, Yuk J, Maenza C, Ruelos PR, Kim T, Sainburg RL. The complementary dominance hypothesis: a model for remediating the 'good' hand in stroke survivors. J Physiol 2025; 603:663-683. [PMID: 38733166 PMCID: PMC11610521 DOI: 10.1113/jp285561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The complementary dominance hypothesis is a novel model of motor lateralization substantiated by decades of research examining interlimb differences in the control of upper extremity movements in neurotypical adults and hemisphere-specific motor deficits in stroke survivors. In contrast to earlier ideas that attribute handedness to the specialization of one hemisphere, our model proposes complementary motor control specializations in each hemisphere. The dominant hemisphere mediates optimal control of limb dynamics as required for smooth and efficient movements, whereas the non-dominant hemisphere mediates impedance control, important for countering unexpected mechanical conditions and achieving steady-state limb positions. Importantly, this model proposes that each hemisphere contributes its specialization to both arms (though with greater influence from either arm's contralateral hemisphere) and thus predicts that lesions to one hemisphere should produce hemisphere-specific motor deficits in not only the contralesional arm, but also the ipsilesional arm of stroke survivors - a powerful prediction now supported by a growing body of evidence. Such ipsilesional arm motor deficits vary with contralesional arm impairment, and thus individuals with little to no functional use of the contralesional arm experience both the greatest impairments in the ipsilesional arm, as well as the greatest reliance on it to serve as the main or sole manipulator for activities of daily living. Accordingly, we have proposed and tested a novel intervention that reduces hemisphere-specific ipsilesional arm deficits and thereby improves functional independence in stroke survivors with severe contralesional impairment.
Collapse
Affiliation(s)
- Nick M. Kitchen
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Brooke Dexheimer
- Department of Occupational TherapyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jisung Yuk
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Candice Maenza
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Paul R. Ruelos
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Taewon Kim
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Physical Medicine and Rehabilitation, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Huck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Robert L. Sainburg
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Huck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
3
|
Hooks K, Kiani K, Fu Q. Cortical neural activity during responses to mechanical perturbation: Effects of hand preference and hand used. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625431. [PMID: 39651226 PMCID: PMC11623621 DOI: 10.1101/2024.11.26.625431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Handedness, as measured by self-reported hand preference, is an important feature of human behavioral lateralization that has often been associated with hemispheric specialization. We examined the extent to which hand preference and whether the dominant hand is used or not influence the motor and neural response during voluntary unimanual corrective actions. The experimental task involved controlling a robotic manipulandum to move a cursor from a center start point to a target presented above or below the start. In some trials, a mechanical perturbation of the hand was randomly applied by the robot either consistent or against the target direction, while electroencephalography (EEG) was recorded. Twelve left-handers and ten right-handers completed the experiment. Left-handed individuals had a greater negative peak in the frontal event-related potential (ERP) than right-handed participants during the initial response phase (N150) than right-handed individuals. Furthermore, left-handed individuals showed more symmetrical ERP distributions between two hemispheres than right-handed individuals in the frontal and parietal regions during the late voluntary response phase (P390). To the best of our knowledge, this is the first evidence that demonstrates the differences in the cortical control of voluntary corrective actions between left-handers and right-handers.
Collapse
|
4
|
Coudiere A, de Rugy A, Danion FR. Right-left hand asymmetry in manual tracking: when poorer control is associated with better adaptation and interlimb transfer. PSYCHOLOGICAL RESEARCH 2024; 88:594-606. [PMID: 37466674 DOI: 10.1007/s00426-023-01858-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
To date, interlimb transfer following visuomotor adaptation has been mainly investigated through discrete reaching movements. Here we explored this issue in the context of continuous manual tracking, a task in which the contribution of online feedback mechanisms is crucial, and in which there is a well-established right (dominant) hand advantage under baseline conditions. We had two objectives (1) to determine whether this preexisting hand asymmetry would persist under visuomotor rotation, (2) to examine interlimb transfer by assessing whether prior experience with the rotation by one hand benefit to the other hand. To address these, 44 right-handed participants were asked to move a joystick and to track a visual target following a rather unpredictable trajectory. Visuomotor adaptation was elicited by introducing a 90° rotation between the joystick motion and the cursor motion. Half of the participants adapted to the rotation first with the right hand, and then with the left, while the other half performed the opposite protocol. As expected during baseline trials, the left hand was less accurate while also exhibiting more variable and exploratory behavior. However, participants exhibited a left hand advantage during first exposure to the rotation. Moreover, interlimb transfer was observed albeit more strongly from the left to the right hand. We suggest that the less effective and more variable/exploratory control strategy of the left hand promoted its adaptation, which incidentally favored transfer from left to right hand. Altogether, this study speaks for further attention to the dominant/non-dominant asymmetry during baseline before examining interlimb transfer of adaptation.
Collapse
Affiliation(s)
- Adrien Coudiere
- CNRS, Université de Poitiers, Université de Tours, CeRCA, UMR 7295, Poitiers, France
| | - Aymar de Rugy
- Université de Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Frederic R Danion
- CNRS, Université de Poitiers, Université de Tours, CeRCA, UMR 7295, Poitiers, France.
| |
Collapse
|
5
|
Beyaz O, Eyraud V, Demirhan G, Akpinar S, Przybyla A. Effects of Short-Term Novice Archery Training on Reaching Movement Performance and Interlimb Asymmetries. J Mot Behav 2023; 56:78-90. [PMID: 37586703 DOI: 10.1080/00222895.2023.2245352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/26/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
Previous studies showed numerous evidence for the interlimb asymmetries in motor performance during arm reaching movements. Furthermore, these interlimb asymmetries have been shown to associate with spatial patterns of hand selection behavior. Importantly, these interlimb asymmetries can be modified systematically by occlusion of visual feedback, or a long-term sports training. In this study, we asked about the effects of a short-term training on interlimb asymmetries. Eighteen healthy young participants underwent a 12-week novice traditional archery training (TAT). Their unimanual dominant and nondominant arm reaching movement performance was assessed before and after TAT. We found that movement accuracy, movement precision, and movement efficiency in the experimental group have all improved significantly as a result of TAT. These improvements were comparable across both arms, thus the interlimb differences in movement performance were not affected by the short-term TAT and remained similar. These results suggest that while short-term training may contribute positively to reaching performance, it is unlikely to have a significant impact on the differences observed between the dominant and nondominant arms. This unique characteristics of dominant and nondominant arm should be taken into consideration when developing targeted sports and rehabilitation programs for athletes or individuals with acute or chronic motor deficits.
Collapse
Affiliation(s)
- Ozkan Beyaz
- Department of Physical Education and Sports, Faculty of Sport Science, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Virginie Eyraud
- Department of Physical Therapy, University of North Georgia, Dahlonega, Georgia, USA
| | - Gıyasettin Demirhan
- Department of Physical Education and Sports, Faculty of Sport Science, Hacettepe University, Ankara, Turkey
| | - Selcuk Akpinar
- Department of Physical Education and Sports, Faculty of Sport Science, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, Georgia, USA
| |
Collapse
|
6
|
Monfredini CFP, Coelho DB, Marcori AJ, Teixeira LA. Control of interjoint coordination in the performance of manual circular movements can explain lateral specialization. Hum Mov Sci 2023; 90:103102. [PMID: 37236120 DOI: 10.1016/j.humov.2023.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Between-arm performance asymmetry can be seen in different arm movements requiring specific interjoint coordination to generate the desired hand trajectory. In the current investigation, we assessed between-arm asymmetry of shoulder-elbow coordination and its stability in the performance of circular movements. Participants were 16 healthy right-handed university students. The task consisted of performing cyclic circular movements with either the dominant right arm or the nondominant left arm at movement frequencies ranging from 40% of maximum to maximum frequency in steps of 15%. Kinematic analysis of shoulder and elbow motions was performed through an optoelectronic system in the three-dimensional space. Results showed that as movement frequency increased circularity of left arm movements diminished, taking an elliptical shape, becoming significantly different from the right arm at higher movement frequencies. Shoulder-elbow coordination was found to be asymmetric between the two arms across movement frequencies, with lower shoulder-elbow angle coefficients and higher relative phase for the left compared to the right arm. Results also revealed greater variability of left arm movements in all variables assessed, an outcome observed from low to high movement frequencies. From these findings, we propose that specialization of the left cerebral hemisphere for motor control resides in its higher capacity to generate appropriate and stable interjoint coordination leading to the planned hand trajectory.
Collapse
Affiliation(s)
| | - Daniel Boari Coelho
- University of São Paulo, Human Motor Systems Laboratory, São Paulo, Brazil; Biomedical Engineering, Federal University of ABC, São Paulo, Brazil.
| | | | | |
Collapse
|
7
|
Yamagami M, Peterson LN, Howell D, Roth E, Burden SA. Effect of Handedness on Learned Controllers and Sensorimotor Noise During Trajectory-Tracking. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:2039-2050. [PMID: 34587106 DOI: 10.1109/tcyb.2021.3110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In human-in-the-loop control systems, operators can learn to manually control dynamic machines with either hand using a combination of reactive (feedback) and predictive (feedforward) control. This article studies the effect of handedness on learned controllers and performance during a trajectory-tracking task. In an experiment with 18 participants, subjects perform an assay of unimanual trajectory-tracking and disturbance-rejection tasks through second-order machine dynamics, first with one hand then the other. To assess how hand preference (or dominance) affects learned controllers, we extend, validate, and apply a nonparametric modeling method to estimate the concurrent feedback and feedforward controllers. We find that performance improves because feedback adapts, regardless of the hand used. We do not detect statistically significant differences in performance or learned controllers between hands. Adaptation to reject disturbances arising exogenously (i.e., applied by the experimenter) and endogenously (i.e., generated by sensorimotor noise) explains observed performance improvements.
Collapse
|
8
|
Dexheimer B, Przybyla A, Murphy TE, Akpinar S, Sainburg R. Reaction time asymmetries provide insight into mechanisms underlying dominant and non-dominant hand selection. Exp Brain Res 2022; 240:2791-2802. [PMID: 36066589 PMCID: PMC10130955 DOI: 10.1007/s00221-022-06451-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Handedness is often thought of as a hand "preference" for specific tasks or components of bimanual tasks. Nevertheless, hand selection decisions depend on many factors beyond hand dominance. While these decisions are likely influenced by which hand might show performance advantages for the particular task and conditions, there also appears to be a bias toward the dominant hand, regardless of performance advantage. This study examined the impact of hand selection decisions and workspace location on reaction time and movement quality. Twenty-six neurologically intact participants performed targeted reaching across the horizontal workspace in a 2D virtual reality environment, and we compared reaction time across two groups: those selecting which hand to use on a trial-by-trial basis (termed the choice group) and those performing the task with a preassigned hand (the no-choice group). Along with reaction time, we also compared reach performance for each group across two ipsilateral workspaces: medial and lateral. We observed a significant difference in reaction time between the hands in the choice group, regardless of workspace. In contrast, both hands showed shorter but similar reaction times and differences between the lateral and medial workspaces in the no-choice group. We conclude that the shorter reaction times of the dominant hand under choice conditions may be due to dominant hand bias in the selection process that is not dependent upon interlimb performance differences.
Collapse
Affiliation(s)
- Brooke Dexheimer
- Department of Kinesiology, The Pennsylvania State University, PA, 16802, University Park, USA.
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Terrence E Murphy
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Selcuk Akpinar
- Department of Physical Education and Sport, Nevsehir Bektas Veli University, Nevsehir, Turkey
| | - Robert Sainburg
- Department of Kinesiology, The Pennsylvania State University, PA, 16802, University Park, USA.,Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
9
|
Perez NP, Eden J, Burdet E, Farkhatdinov I, Takagi A. Lateralization of Impedance Control in Dynamic Versus Static Bimanual Tasks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:785-789. [PMID: 36086395 DOI: 10.1109/embc48229.2022.9871013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In activities of daily living that require bimanual coordination, humans often assign a role to each hand. How do task requirements affect this role assignment? To address this question, we investigated how healthy right-handed participants bimanually manipulated a static or dynamic virtual object using wrist flexion/extension while receiving haptic feedback through the interacting object's torque. On selected trials, the object shook strongly to destabilize the bimanual grip. Our results show that participants reacted to the shaking by increasing their wrist co-contraction. Unlike in previous work, handedness was not the determining factor in choosing which wrist to co-contract to stabilize the object. However, each participant preferred to co-contract one hand over the other, a choice that was consistent for both the static and dynamic objects. While role allocation did not seem to be affected by task requirements, it may have resulted in different motor behaviours as indicated by the changes in the object torque. Further investigation is needed to elucidate the factors that determine the preference in stabilizing with either the dominant or non-dominant hand.
Collapse
|
10
|
Jayasinghe SAL, Scheidt RA, Sainburg RL. Neural Control of Stopping and Stabilizing the Arm. Front Integr Neurosci 2022; 16:835852. [PMID: 35264934 PMCID: PMC8899537 DOI: 10.3389/fnint.2022.835852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
Stopping is a crucial yet under-studied action for planning and producing meaningful and efficient movements. In this review, we discuss classical human psychophysics studies as well as those using engineered systems that aim to develop models of motor control of the upper limb. We present evidence for a hybrid model of motor control, which has an evolutionary advantage due to division of labor between cerebral hemispheres. Stopping is a fundamental aspect of movement that deserves more attention in research than it currently receives. Such research may provide a basis for understanding arm stabilization deficits that can occur following central nervous system (CNS) damage.
Collapse
Affiliation(s)
- Shanie A. L. Jayasinghe
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Robert A. Scheidt
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert L. Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Kinesiology, Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| |
Collapse
|
11
|
Dexheimer B, Sainburg R. When the non-dominant arm dominates: the effects of visual information and task experience on speed-accuracy advantages. Exp Brain Res 2021; 239:655-665. [PMID: 33388816 PMCID: PMC8063124 DOI: 10.1007/s00221-020-06011-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Speed accuracy trade-off, the inverse relationship between movement speed and task accuracy, is a ubiquitous feature of skilled motor performance. Many previous studies have focused on the dominant arm, unimanual performance in both simple tasks, such as target reaching, and complex tasks, such as overarm throwing. However, while handedness is a prominent feature of human motor performance, the effect of limb dominance on speed-accuracy relationships is not well-understood. Based on previous research, we hypothesize that dominant arm skilled performance should depend on visual information and prior task experience, and that the non-dominant arm should show greater skill when no visual information nor prior task information is available. Forty right-handed young adults reached to 32 randomly presented targets across a virtual reality workspace with either the left or the right arm. Half of the participants received no visual feedback about hand position throughout each reach. Sensory information and task experience were lowest during the first cycle of exposure (32 reaches) in the no-vision condition, in which visual information about motion was not available. Under this condition, we found that the left arm group showed greater skill, measured in terms of position error normalized to speed, and by error variability. However, as task experience and sensory information increased, the right arm group showed substantial improvements in speed-accuracy relations, while the left arm group maintained, but did not improve, speed-accuracy relations throughout the task. These differences in performance between dominant and non-dominant arm groups during the separate stages of the task are consistent with complimentary models of lateralization, which propose different proficiencies of each hemisphere for different features of control. Our results are incompatible with global dominance models of handedness that propose dominant arm advantages under all performance conditions.
Collapse
Affiliation(s)
- Brooke Dexheimer
- Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA.
| | - Robert Sainburg
- Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA
- Department of Neurology, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
12
|
Are the predictions of the dynamic dominance model of laterality applicable to the lower limbs? Hum Mov Sci 2020; 73:102684. [DOI: 10.1016/j.humov.2020.102684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/22/2022]
|
13
|
Differential Changes in Early Somatosensory Evoked Potentials between the Dominant and Non-Dominant Hand, Following a Novel Motor Tracing Task. Brain Sci 2020; 10:brainsci10050290. [PMID: 32422867 PMCID: PMC7287782 DOI: 10.3390/brainsci10050290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023] Open
Abstract
During training in a novel dynamic environment, the non-dominant upper limb favors feedback control, whereas the dominant limb favors feedforward mechanisms. Early somatosensory evoked potentials (SEPs) offer a means to explore differences in cortical regions involved in sensorimotor integration (SMI). This study sought to compare differences in SMI between the right (Dom) and left (Non-Dom) hand in healthy right-handed participants. SEPs were recorded in response to median nerve stimulation, at baseline and post, a motor skill acquisition-tracing task. One group (n = 12) trained with their Dom hand and the other group (n = 12), with their Non-Dom hand. The Non-Dom hand was significantly more accurate at baseline (p < 0.0001) and both groups improved with time (p < 0.0001), for task accuracy, with no significant interaction effect between groups for both post-acquisition and retention. There were significant group interactions for the N24 (p < 0.001) and the N30 (p < 0.0001) SEP peaks. Post motor acquisition, the Dom hand had a 28.9% decrease in the N24 and a 23.8% increase in the N30, with opposite directional changes for the Non-Dom hand; 22.04% increase in N24 and 24% decrease in the N30. These SEP changes reveal differences in early SMI between Dom and Non-Dom hands in response to motor acquisition, providing objective, temporally sensitive measures of differences in neural mechanisms between the limbs.
Collapse
|
14
|
Schaffer JE, Sainburg RL. Interlimb Responses to Perturbations of Bilateral Movements are Asymmetric. J Mot Behav 2020; 53:217-233. [PMID: 32375601 DOI: 10.1080/00222895.2020.1760196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Previous research has revealed rapid feedback mediated responses in one arm to mechanical perturbations applied to the other arm during shared bimanual tasks. We now ask whether these interlimb responses are expressed symmetrically. We tested this question in a virtual reality environment: a cursor representing each hand was used to 'pick up' each end of a virtual bar and place it into a target trough. Near the onset of occasional, unpredictable trials, one arm was perturbed. Regardless of which arm was perturbed, ipsilateral responses were significant during the perturbation. However, responses in the arm contralateral to the perturbation were asymmetric. While the non-dominant arm showed a significant kinematic response to correct the bar orientation when the dominant arm was mechanically perturbed, the dominant arm did not respond when the non-dominant arm was perturbed. We also saw an asymmetric response in early EMG activity, in which only the non-dominant anterior deltoid showed a significant reflex response within 100 milliseconds of perturbation onset in response to dominant arm. This response was consistent with correcting the bar position, but not with correcting its orientation. We conclude that responses to perturbations during bilateral movements are expressed asymmetrically, such that non-dominant arm responses to perturbations to the dominant arm are stronger than dominant arm responses to non-dominant arm perturbations.
Collapse
Affiliation(s)
- Jacob E Schaffer
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Robert L Sainburg
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.,Department of Neurology, Penn State Milton S. Hershey College of Medicine, University Park, USA
| |
Collapse
|
15
|
Takagi A, Maxwell S, Melendez-Calderon A, Burdet E. The dominant limb preferentially stabilizes posture in a bimanual task with physical coupling. J Neurophysiol 2020; 123:2154-2160. [PMID: 32348682 DOI: 10.1152/jn.00047.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Humans are endowed with an ability to skillfully handle objects, like when holding a jar with the nondominant hand while opening the lid with the dominant hand. Dynamic dominance, a prevailing theory in handedness research, proposes that the nondominant hand is specialized for postural stability, which would explain why right-handed people hold the jar steady using the left hand. However, the underlying specialization of the nondominant hand has only been tested unimanually, or in a bimanual task where the two hands had different functions. Using a dedicated dual-wrist robotic interface, we tested the dynamic dominance hypothesis in a bimanual task where both hands carry out the same function. We examined how left- and right-handed subjects held onto a vibrating virtual object using their wrists, which were physically coupled by the object. Muscular activity of the wrist flexors and extensors revealed a preference for cocontracting the dominant hand during both holding and transport of the object, which suggests proficiency in the dominant hand for stabilization, contradicting the dynamic dominance hypothesis. While the reliance on the dominant hand was partially explained by its greater strength, the Edinburgh inventory was a better predictor of the difference in the cocontraction between the dominant and nondominant hands. When provided with redundancy to stabilize the task, the dominant hand preferentially cocontracts to absorb perturbing forces.NEW & NOTEWORTHY We found that subjects prefer to stabilize a bimanually held object by cocontracting their dominant limb, contradicting the established view that the nondominant limb is specialized toward stabilization.
Collapse
Affiliation(s)
- A Takagi
- NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan.,Imperial College of Science, Technology and Medicine, London, United Kingdom.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - S Maxwell
- Imperial College of Science, Technology and Medicine, London, United Kingdom
| | - A Melendez-Calderon
- School of Information Technology and Electronic Engineering, University of Queensland, St Lucia, Queensland, Australia.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - E Burdet
- Imperial College of Science, Technology and Medicine, London, United Kingdom
| |
Collapse
|
16
|
Albert ST, Hadjiosif AM, Jang J, Zimnik AJ, Soteropoulos DS, Baker SN, Churchland MM, Krakauer JW, Shadmehr R. Postural control of arm and fingers through integration of movement commands. eLife 2020; 9:e52507. [PMID: 32043973 PMCID: PMC7062460 DOI: 10.7554/elife.52507] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Every movement ends in a period of stillness. Current models assume that commands that hold the limb at a target location do not depend on the commands that moved the limb to that location. Here, we report a surprising relationship between movement and posture in primates: on a within-trial basis, the commands that hold the arm and finger at a target location depend on the mathematical integration of the commands that moved the limb to that location. Following damage to the corticospinal tract, both the move and hold period commands become more variable. However, the hold period commands retain their dependence on the integral of the move period commands. Thus, our data suggest that the postural controller possesses a feedforward module that uses move commands to calculate a component of hold commands. This computation may arise within an unknown subcortical system that integrates cortical commands to stabilize limb posture.
Collapse
Affiliation(s)
- Scott T Albert
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Alkis M Hadjiosif
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Jihoon Jang
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Andrew J Zimnik
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
| | | | - Stuart N Baker
- Institute of Neuroscience, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Mark M Churchland
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
| | - John W Krakauer
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
17
|
Witkowski M, Tomczak M, Karpowicz K, Solnik S, Przybyla A. Effects of Fencing Training on Motor Performance and Asymmetry Vary With Handedness. J Mot Behav 2019; 52:50-57. [PMID: 30849297 DOI: 10.1080/00222895.2019.1579167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies showed that motor asymmetries are reduced in left-handers and after a long-term fencing training in right-handers. Interestingly, left-handed athletes are substantially over-represented in elite fencing. These findings have been speculatively explained by imbalance in experience of fighting opposite handedness opponents resulted from skewed distribution of handedness, i.e. lefties encounter more righties than righties encounter lefties. Whereas these assumptions could be accurate, the underlying mechanisms remain ambiguous. In this study, we investigated effects of fencing training on motor performance and asymmetry with respect to handedness. We compared fencing performance of left- and right-handed fencers in both training and combat conditions. In the combat condition, left-handers won seven out of twelve matches consisted of twelve bouts each. They also showed a significantly longer hit detection time, a measure indicating better quality of fencing attack. In the training condition, left-handed fencers completed fencing board tests significantly faster than right-handers. These findings provide additional factor of superior motor performance to be considered when interpreting over-representation of lefties in elite fencing. Furthermore, our left-handers were less lateralized, which could explain that superior motor performance. This idea is consistent with previous findings of reduced asymmetry in right-handed fencers when comparing to non-athletes.
Collapse
Affiliation(s)
- Mateusz Witkowski
- School of Physical Education and Sport, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Maciej Tomczak
- Department of Psychology, Poznan University of Physical Education, Poznan, Poland
| | - Krzysztof Karpowicz
- Department of Theory of Sport, Poznan University of Physical Education, Poznan, Poland
| | - Stanislaw Solnik
- Department of Team Sports Games, University School of Physical Education, Wroclaw, Poland.,Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| |
Collapse
|
18
|
Woytowicz EJ, Westlake KP, Whitall J, Sainburg RL. Handedness results from complementary hemispheric dominance, not global hemispheric dominance: evidence from mechanically coupled bilateral movements. J Neurophysiol 2018; 120:729-740. [PMID: 29742023 PMCID: PMC7132323 DOI: 10.1152/jn.00878.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/13/2018] [Accepted: 05/06/2018] [Indexed: 11/22/2022] Open
Abstract
Two contrasting views of handedness can be described as 1) complementary dominance, in which each hemisphere is specialized for different aspects of motor control, and 2) global dominance, in which the hemisphere contralateral to the dominant arm is specialized for all aspects of motor control. The present study sought to determine which motor lateralization hypothesis best predicts motor performance during common bilateral task of stabilizing an object (e.g., bread) with one hand while applying forces to the object (e.g., slicing) using the other hand. We designed an experimental equivalent of this task, performed in a virtual environment with the unseen arms supported by frictionless air-sleds. The hands were connected by a spring, and the task was to maintain the position of one hand while moving the other hand to a target. Thus the reaching hand was required to take account of the spring load to make smooth and accurate trajectories, while the stabilizer hand was required to impede the spring load to keep a constant position. Right-handed subjects performed two task sessions (right-hand reach and left-hand stabilize; left-hand reach and right-hand stabilize) with the order of the sessions counterbalanced between groups. Our results indicate a hand by task-component interaction such that the right hand showed straighter reaching performance whereas the left hand showed more stable holding performance. These findings provide support for the complementary dominance hypothesis and suggest that the specializations of each cerebral hemisphere for impedance and dynamic control mechanisms are expressed during bilateral interactive tasks. NEW & NOTEWORTHY We provide evidence for interlimb differences in bilateral coordination of reaching and stabilizing functions, demonstrating an advantage for the dominant and nondominant arms for distinct features of control. These results provide the first evidence for complementary specializations of each limb-hemisphere system for different aspects of control within the context of a complementary bilateral task.
Collapse
Affiliation(s)
- Elizabeth J Woytowicz
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Health Sciences, University of Southampton , Southampton , United Kingdom
| | - Robert L Sainburg
- Department of Kinesiology, Penn State University , University Park, Pennsylvania
- Department of Neurology, Penn State Milton S. Hershey Medical Center and College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
19
|
Poindexter SA, Reinhardt KD, Nijman V, Nekaris KAI. Slow lorises (Nycticebus spp.) display evidence of handedness in the wild and in captivity. Laterality 2018; 23:705-721. [PMID: 29607706 DOI: 10.1080/1357650x.2018.1457046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been suggested that strepsirrhines (lemurs, lorises, and galagos) retain the more primitive left-hand preference, whilst monkeys and apes more regularly display a right-hand preference at the individual-level. We looked to address questions of laterality in the slow loris (Nycticebus spp.) using spontaneous observations of 7 wild individuals, unimanual tests in 6 captive individuals, and photos of 42 individuals in a bilateral posture assessing handedness at the individual- and group-level. During the unimanual reach task, we found at the individual-level, only 4 slow lorises showed a hand use bias (R: 3, L: 1), Handedness index (HI) ranged from -0.57 to 1.00. In the wild unimanual grasp task, we found at the individual-level two individual showed a right-hand bias, the HI ranged from -0.19 to 0.70. The bilateral venom pose showed a trend toward a right-hand dominant grip in those photographed in captivity, but an ambiguous difference in wild individuals. There are many environmental constraints in captivity that wild animals do not face, thus data collected in wild settings are more representative of their natural state. The presence of right-handedness in these species suggests that there is a need to re-evaluate the evolution of handedness in primates.
Collapse
Affiliation(s)
- Stephanie A Poindexter
- a Department of Social Sciences , Oxford Brookes University , Oxford , UK.,b Nocturnal Primate Research Group , Oxford , UK.,c The Little Fireface Project , West Java , Indonesia
| | - Kathleen D Reinhardt
- a Department of Social Sciences , Oxford Brookes University , Oxford , UK.,b Nocturnal Primate Research Group , Oxford , UK.,c The Little Fireface Project , West Java , Indonesia
| | - Vincent Nijman
- a Department of Social Sciences , Oxford Brookes University , Oxford , UK.,b Nocturnal Primate Research Group , Oxford , UK
| | - K A I Nekaris
- a Department of Social Sciences , Oxford Brookes University , Oxford , UK.,b Nocturnal Primate Research Group , Oxford , UK.,c The Little Fireface Project , West Java , Indonesia
| |
Collapse
|
20
|
Right cerebral hemisphere specialization for quiet and perturbed body balance control: Evidence from unilateral stroke. Hum Mov Sci 2018; 57:374-387. [DOI: 10.1016/j.humov.2017.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 01/11/2023]
|
21
|
Ittyerah M. Emerging Trends in the Multimodal Nature of Cognition: Touch and Handedness. Front Psychol 2017; 8:844. [PMID: 28603509 PMCID: PMC5445134 DOI: 10.3389/fpsyg.2017.00844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/09/2017] [Indexed: 01/24/2023] Open
Abstract
Advances in tactile cognition and haptics have increased our understanding of the multimodal nature of touch. Haptic data is mostly confined to human performance arising from the flexibility and dexterity of the fingers used to discriminate shapes and objects. Studies with infants indicate that recognition of objects either seen or held in the hand is possible during early periods of infancy. Evidence indicates performance differences between the hands decrease over periods of development, reflecting maturation of the cortical brain system supporting motor skills. Thus ability is not confined to the preferred hand. Tactile process and haptic cognition reflect hand ability. Studies examining manual performance must consider the relevance of haptics in research. Knowing about the evolution of the hands controlled by the cerebral hemispheres is of interest because it is a major contribution to the repertoire of human hand actions. The emergence of RDBM (role differentiated bimanual manipulation) is an important shift in the development of infant manual skills. Between 4 and 7 months of age, infants begin to manipulate objects using RDBM where one hand stabilized an object while the other hand manipulated the object. Understanding the affordance of a tool is an important cognitive milestone in early sensorimotor period that develops during the second year in full-term infants. This ability has also been demonstrated in preterm infants indicating the emergence of handedness during prenatal periods. Thus a multimodal approach that incorporates studies of tactile processes and hand actions may reveal their interactions with task demands and haptic ability.
Collapse
Affiliation(s)
- Miriam Ittyerah
- Department of Psychology, University of DelhiNew Delhi, India
| |
Collapse
|
22
|
Melendez-Calderon A, Tan M, Bittmann MF, Burdet E, Patton JL. Transfer of dynamic motor skills acquired during isometric training to free motion. J Neurophysiol 2017; 118:219-233. [PMID: 28356476 DOI: 10.1152/jn.00614.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 11/22/2022] Open
Abstract
Recent studies have explored the prospects of learning to move without moving, by displaying virtual arm movement related to exerted force. However, it has yet to be tested whether learning the dynamics of moving can transfer to the corresponding movement. Here we present a series of experiments that investigate this isometric training paradigm. Subjects were asked to hold a handle and generate forces as their arms were constrained to a static position. A precise simulation of reaching was used to make a graphic rendering of an arm moving realistically in response to the measured interaction forces and simulated environmental forces. Such graphic rendering was displayed on a horizontal display that blocked their view to their actual (statically constrained) arm and encouraged them to believe they were moving. We studied adaptation of horizontal, planar, goal-directed arm movements in a velocity-dependent force field. Our results show that individuals can learn to compensate for such a force field in a virtual environment and transfer their new skills to the actual free motion condition, with performance comparable to practice while moving. Such nonmoving techniques should impact various training conditions when moving may not be possible.NEW & NOTEWORTHY This study provided early evidence supporting that training movement skills without moving is possible. In contrast to previous studies, our study involves 1) exploiting cross-modal sensory interactions between vision and proprioception in a motionless setting to teach motor skills that could be transferable to a corresponding physical task, and 2) evaluates the movement skill of controlling muscle-generated forces to execute arm movements in the presence of external forces that were only virtually present during training.
Collapse
Affiliation(s)
- Alejandro Melendez-Calderon
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois; .,Rehabilitation Institute of Chicago, Chicago, Illinois
| | - Michael Tan
- Rehabilitation Institute of Chicago, Chicago, Illinois.,University of Illinois at Chicago, Chicago, Illinois; and
| | - Moria Fisher Bittmann
- Rehabilitation Institute of Chicago, Chicago, Illinois.,University of Illinois at Chicago, Chicago, Illinois; and
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK
| | - James L Patton
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois.,Rehabilitation Institute of Chicago, Chicago, Illinois.,University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
23
|
Reuter EM, Cunnington R, Mattingley JB, Riek S, Carroll TJ. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms. J Neurophysiol 2016; 116:2260-2271. [PMID: 27582293 DOI: 10.1152/jn.00425.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022] Open
Abstract
There are well-documented differences in the way that people typically perform identical motor tasks with their dominant and the nondominant arms. According to Yadav and Sainburg's (Neuroscience 196: 153-167, 2011) hybrid-control model, this is because the two arms rely to different degrees on impedance control versus predictive control processes. Here, we assessed whether differences in limb control mechanisms influence the rate of feedforward compensation to a novel dynamic environment. Seventy-five healthy, right-handed participants, divided into four subsamples depending on the arm (left, right) and direction of the force field (ipsilateral, contralateral), reached to central targets in velocity-dependent curl force fields. We assessed the rate at which participants developed predictive compensation for the force field using intermittent error-clamp trials and assessed both kinematic errors and initial aiming angles in the field trials. Participants who were exposed to fields that pushed the limb toward ipsilateral space reduced kinematic errors more slowly, built up less predictive field compensation, and relied more on strategic reaiming than those exposed to contralateral fields. However, there were no significant differences in predictive field compensation or kinematic errors between limbs, suggesting that participants using either the left or the right arm could adapt equally well to novel dynamics. It therefore appears that the distinct preferences in control mechanisms typically observed for the dominant and nondominant arms reflect a default mode that is based on habitual functional requirements rather than an absolute limit in capacity to access the controller specialized for the opposite limb.
Collapse
Affiliation(s)
- Eva-Maria Reuter
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia; .,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Ross Cunnington
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; and.,School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; and.,School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephan Riek
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Timothy J Carroll
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Sainburg RL, Schaefer SY, Yadav V. Lateralized motor control processes determine asymmetry of interlimb transfer. Neuroscience 2016; 334:26-38. [PMID: 27491479 DOI: 10.1016/j.neuroscience.2016.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 02/02/2023]
Abstract
This experiment tested the hypothesis that interlimb transfer of motor performance depends on recruitment of motor control processes that are specialized to the hemisphere contralateral to the arm that is initially trained. Right-handed participants performed a single-joint task, in which reaches were targeted to 4 different distances. While the speed and accuracy was similar for both hands, the underlying control mechanisms used to vary movement speed with distance were systematically different between the arms: the amplitude of the initial acceleration profiles scaled greater with movement speed for the right-dominant arm, while the duration of the initial acceleration profile scaled greater with movement speed for the left-non-dominant arm. These two processes were previously shown to be differentially disrupted by left and right hemisphere damage, respectively. We now hypothesize that task practice with the right arm might reinforce left-hemisphere mechanisms that vary acceleration amplitude with distance, while practice with the left arm might reinforce right-hemisphere mechanisms that vary acceleration duration with distance. We thus predict that following right arm practice, the left arm should show increased contributions of acceleration amplitude to peak velocities, and following left arm practice, the right arm should show increased contributions of acceleration duration to peak velocities. Our findings support these predictions, indicating that asymmetry in interlimb transfer of motor performance, at least in the task used here, depends on recruitment of lateralized motor control processes.
Collapse
Affiliation(s)
- Robert L Sainburg
- The Pennsylvania State University, Department of Kinesiology, United States; Penn State College of Medicine, Department of Neurology, United States.
| | - Sydney Y Schaefer
- Arizona State University, School of Biological and Health Systems Engineering, United States
| | - Vivek Yadav
- Stony Brook University, Department of Mechanical Engineering, United States
| |
Collapse
|
25
|
Menychtas D, Sullins T, Rigsby B, Carey S, Reed KB. Assessing the role of preknowledge in force compensation during a tracking task. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:4581-4584. [PMID: 28269295 DOI: 10.1109/embc.2016.7591747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Considerable research has been done looking at the asymmetries between the dominant and nondominant arms. However, one area that has received less attention is how information about a perturbation affects these upper limb asymmetries. Our study sought to determine whether foreknowledge of a perturbation can affect the compensation from each arm. In addition, we examined the differences in compensation for perturbations parallel with the line of action and perpendicular to it. Results showed that the nondominant arm was largely unaffected by the visual condition. The dominant arm showed a comparatively smaller improvement between visible and invisible forces.
Collapse
|
26
|
Stockinger C, Thürer B, Focke A, Stein T. Intermanual transfer characteristics of dynamic learning: direction, coordinate frame, and consolidation of interlimb generalization. J Neurophysiol 2015; 114:3166-76. [PMID: 26424581 DOI: 10.1152/jn.00727.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/23/2015] [Indexed: 11/22/2022] Open
Abstract
Intermanual transfer, i.e., generalization of motor learning across hands, is a well-accepted phenomenon of motor learning. Yet, there are open questions regarding the characteristics of this transfer, particularly the intermanual transfer of dynamic learning. In this study, we investigated intermanual transfer in a force field adaptation task concerning the direction and the coordinate frame of transfer as well as the influence of a 24-h consolidation period on the transfer. We tested 48 healthy human subjects for transfer from dominant to nondominant hand, and vice versa. We considered two features of transfer. First, we examined transfer to the untrained hand using force channel trials that suppress error feedback and learning mechanisms to assess intermanual transfer in the form of a practice-dependent bias. Second, we considered transfer by exposing the subjects to the force field with the untrained hand to check for faster learning of the dynamics (interlimb savings). Half of the subjects were tested for transfer immediately after adaptation, whereas the other half were tested after a 24-h consolidation period. Our results showed intermanual transfer both from dominant to nondominant hand and vice versa in extrinsic coordinates. After the consolidation period, transfer effects were weakened. Moreover, the transfer effects were negligible compared with the subjects' ability to rapidly adapt to the force field condition. We conclude that intermanual transfer is a bidirectional phenomenon that vanishes with time. However, the ability to transfer motor learning seems to play a minor role compared with the rapid adaptation processes.
Collapse
Affiliation(s)
- Christian Stockinger
- Young Investigator Group "Computational Motor Control and Learning," BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benjamin Thürer
- Young Investigator Group "Computational Motor Control and Learning," BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne Focke
- Young Investigator Group "Computational Motor Control and Learning," BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Thorsten Stein
- Young Investigator Group "Computational Motor Control and Learning," BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
27
|
Yoo I. Specialization in interlimb transfer between dominant and non-dominant hand skills. J Phys Ther Sci 2015; 27:1731-3. [PMID: 26180308 PMCID: PMC4499971 DOI: 10.1589/jpts.27.1731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/14/2015] [Indexed: 11/24/2022] Open
Abstract
[Purpose] This study aimed to confirm the specialization of interlimb transfer in
occupationally embedded tasks between dominant and non-dominant hands. [Subjects] Twelve
neurologically intact participants were recruited. [Methods] The participants were divided
into two training groups and performed training with their dominant or non-dominant hand.
Three subtests of the Jebsen-Taylor Hand Function Test were used to practice interlimb
transfer training in each group. All Jebsen-Taylor Hand Function Test subtests were
evaluated using the untrained hand before and after 5 days of training. [Results] The
dominant hand group showed significant differences after training when using the untrained
hand in the simulated feeding and lifting large heavy objects subtests. Meanwhile, the
non-dominant hand group showed significant differences after training when using the
untrained hand in the turning cards, simulated feeding, stacking checkers, and lifting
large heavy objects subtests. [Conclusion] When performing occupationally embedded tasks,
the dominant hand has interlimb transfer advantages with respect to predictable dynamic
movements, while the non-dominant hand has interlimb transfer advantages in
stabilization.
Collapse
Affiliation(s)
- Ingyu Yoo
- Department of Occupational Therapy, College of Medical Sciences, Jeonju University, Republic of Korea
| |
Collapse
|
28
|
Erden MS, Billard A. End-point impedance measurements across dominant and nondominant hands and robotic assistance with directional damping. IEEE TRANSACTIONS ON CYBERNETICS 2015; 45:1146-1157. [PMID: 25148680 DOI: 10.1109/tcyb.2014.2346021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The goal of this paper is to perform end-point impedance measurements across dominant and nondominant hands while doing airbrush painting and to use the results for developing a robotic assistance scheme. We study airbrush painting because it resembles in many ways manual welding, a standard industrial task. The experiments are performed with the 7 degrees of freedom KUKA lightweight robot arm. The robot is controlled in admittance using a force sensor attached at the end-point, so as to act as a free-mass and be passively guided by the human. For impedance measurements, a set of nine subjects perform 12 repetitions of airbrush painting, drawing a straight-line on a cartoon horizontally placed on a table, while passively moving the airbrush mounted on the robot's end-point. We measure hand impedance during the painting task by generating sudden and brief external forces with the robot. The results show that on average the dominant hand displays larger impedance than the nondominant in the directions perpendicular to the painting line. We find the most significant difference in the damping values in these directions. Based on this observation, we develop a "directional damping" scheme for robotic assistance and conduct a pilot study with 12 subjects to contrast airbrush painting with and without robotic assistance. Results show significant improvement in precision with both dominant and nondominant hands when using robotic assistance.
Collapse
|
29
|
Kasuga S, Matsushika Y, Kasashima-Shindo Y, Kamatani D, Fujiwara T, Liu M, Ushiba J. Transcranial direct current stimulation enhances mu rhythm desynchronization during motor imagery that depends on handedness. Laterality 2015; 20:453-68. [PMID: 25599261 DOI: 10.1080/1357650x.2014.998679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Transcranial direct current stimulation (tDCS) can modulate the amplitude of event-related desynchronization (ERD) that appears on the electroencephalogram (EEG) during motor imagery. To study the effect of handedness on the modulating effect of tDCS, we compared the difference in tDCS-boosted ERD during dominant and non-dominant hand motor imagery. EEGs were recorded over the left sensorimotor cortex of seven healthy right-handed volunteers, and we measured ERD induced either by dominant or non-dominant hand motor imagery. Ten minutes of anodal tDCS was then used to increase the cortical excitability of the contralateral primary motor cortex (M1), and ERD was measured again. With anodal tDCS, we observed only a small increase in ERD during non-dominant hand motor imagery, whereas the same stimulation induced a prominent increase in ERD during dominant hand motor imagery. This trend was most obvious in the participants who used their dominant hand more frequently. Although our study is preliminary because of a small sample size, these results suggest that the increase in ERD by applying anodal tDCS was stronger on the dominant side than on the non-dominant side. The background excitability of M1 may determine the strength of the effect of anodal tDCS on ERD by hand motor imagery.
Collapse
Affiliation(s)
- Shoko Kasuga
- a Department of Biosciences and Informatics, Faculty of Science and Technology , Keio University , Yokohama , Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The purpose of this commentary is to discuss factors that limit consideration of the equilibrium point hypothesis as a scientific theory. The EPH describes control of motor neuron threshold through the variable lambda, which corresponds to a unique referent configuration for a muscle, joint, or combination of joints. One of the most compelling features of the equilibrium point hypothesis is the integration of posture and movement control into a single mechanism. While the essential core of the hypothesis is based upon spinal circuitry interacting with peripheral mechanics, the proponents have extended the theory to include the higher-level processes that generate lambda, and in doing so, imposed an injunction against the supraspinal nervous system modeling, computing, or predicting dynamics. This limitation contradicts evidence that humans take account of body and environmental dynamics in motor selection, motor control, and motor adaptation processes. A number of unresolved limitations to the EPH have been debated in the literature for many years, including whether muscle resistance to displacement, measured during movement, is adequate to support this form of control, violations in equifinality predictions, spinal circuits that alter the proposed invariant characteristic for muscles, and limitations in the description of how the complexity of spinal circuitry might be integrated to yield a unique and stable equilibrium position for a given motor neuron threshold. In addition, an important empirical limitation of EPH is the measurement of the invariant characteristic, which needs to be done under a constant central state. While there is no question that the EPH is an elegant and generative hypothesis for motor control research, the claim that this hypothesis has reached the status of a scientific theory is premature.
Collapse
|
31
|
Sainburg RL. Convergent models of handedness and brain lateralization. Front Psychol 2014; 5:1092. [PMID: 25339923 PMCID: PMC4189332 DOI: 10.3389/fpsyg.2014.01092] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 12/05/2022] Open
Abstract
The pervasive nature of handedness across human history and cultures is a salient consequence of brain lateralization. This paper presents evidence that provides a structure for understanding the motor control processes that give rise to handedness. According to the Dynamic Dominance Model, the left hemisphere (in right handers) is proficient for processes that predict the effects of body and environmental dynamics, while the right hemisphere is proficient at impedance control processes that can minimize potential errors when faced with unexpected mechanical conditions, and can achieve accurate steady-state positions. This model can be viewed as a motor component for the paradigm of brain lateralization that has been proposed by Rogers et al. (MacNeilage et al., 2009) that is based upon evidence from a wide range of behaviors across many vertebrate species. Rogers proposed a left-hemisphere specialization for well-established patterns of behavior performed in familiar environmental conditions, and a right hemisphere specialization for responding to unforeseen environmental events. The dynamic dominance hypothesis provides a framework for understanding the biology of motor lateralization that is consistent with Roger's paradigm of brain lateralization.
Collapse
Affiliation(s)
- Robert L Sainburg
- Department of Neurology, Penn State College of Medicine, The Pennsylvania State University University Park, PA, USA
| |
Collapse
|
32
|
Yadav V, Sainburg RL. Handedness can be explained by a serial hybrid control scheme. Neuroscience 2014; 278:385-96. [PMID: 25173152 DOI: 10.1016/j.neuroscience.2014.08.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
Abstract
Our previous studies on healthy individuals and stroke patients led us to propose that the dominant and nondominant arms are specialized for distinct motor control processes. We hypothesize that the dominant arm is specialized for predictive control of limb dynamics, and the nondominant arm is specialized for impedance control. We previously introduced a hybrid control scheme to explain lateralization of single-joint elbow movements. In this paper we apply a similar computational framework to explore interlimb differences in multi-joint reaching movements: the movements of both arms are initiated using predictive control mechanisms, and terminated using impedance mechanisms. Four parameters characterize predictive mechanisms, four parameters characterize impedance mechanisms, and the ninth parameter describes the instant of switch between the two modes of control. Based on our hypothesis of motor lateralization, we predict an early switch to impedance control for the nondominant arm, but a late switch, near the end of motion, for the dominant arm. We fit our model to multi-joint reaching movements of each arm, made in the horizontal plane. Our results reveal that the more curved trajectories of the nondominant arm are characterized by an early switch to impedance mechanisms, in the initial phase of motion near peak velocity. In contrast, the trajectories of the dominant arm were best fit, when the switch to impedance mechanisms occurred late in the deceleration phase of motion. These results support a model of motor lateralization in which the dominant controller is specialized for predictive control of task dynamics, while the nondominant arm is specialized for impedance control mechanisms. For the first time, we are able to operationally define handedness expressed during multi-joint movements by applying a computational control model.
Collapse
Affiliation(s)
- V Yadav
- Department of Kinesiology, Penn State University, University Park, PA, United States.
| | - R L Sainburg
- Department of Neurology, Penn State Milton S. Hershey Medical Center and College of Medicine, Hershey, PA, United States; Department of Kinesiology, Penn State University, University Park, PA, United States.
| |
Collapse
|
33
|
Stockinger C, Focke A, Stein T. Catch trials in force field learning influence adaptation and consolidation of human motor memory. Front Hum Neurosci 2014; 8:231. [PMID: 24795598 PMCID: PMC4001009 DOI: 10.3389/fnhum.2014.00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/31/2014] [Indexed: 11/13/2022] Open
Abstract
Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence of catch trials is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA). The control groups were not exposed to force field B (AA). To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0, 10, 20, 30, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects' motor performance decreased and subjects' ability to accurately predict the force field—and therefore internal model formation—was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance.
Collapse
Affiliation(s)
- Christian Stockinger
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Anne Focke
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Thorsten Stein
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, Germany
| |
Collapse
|
34
|
Limb dominance results from asymmetries in predictive and impedance control mechanisms. PLoS One 2014; 9:e93892. [PMID: 24695543 PMCID: PMC3973649 DOI: 10.1371/journal.pone.0093892] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/11/2014] [Indexed: 11/19/2022] Open
Abstract
Handedness is a pronounced feature of human motor behavior, yet the underlying neural mechanisms remain unclear. We hypothesize that motor lateralization results from asymmetries in predictive control of task dynamics and in control of limb impedance. To test this hypothesis, we present an experiment with two different force field environments, a field with a predictable magnitude that varies with the square of velocity, and a field with a less predictable magnitude that varies linearly with velocity. These fields were designed to be compatible with controllers that are specialized in predicting limb and task dynamics, and modulating position and velocity dependent impedance, respectively. Because the velocity square field does not change the form of the equations of motion for the reaching arm, we reasoned that a forward dynamic-type controller should perform well in this field, while control of linear damping and stiffness terms should be less effective. In contrast, the unpredictable linear field should be most compatible with impedance control, but incompatible with predictive dynamics control. We measured steady state final position accuracy and 3 trajectory features during exposure to these fields: Mean squared jerk, Straightness, and Movement time. Our results confirmed that each arm made straighter, smoother, and quicker movements in its compatible field. Both arms showed similar final position accuracies, which were achieved using more extensive corrective sub-movements when either arm performed in its incompatible field. Finally, each arm showed limited adaptation to its incompatible field. Analysis of the dependence of trajectory errors on field magnitude suggested that dominant arm adaptation occurred by prediction of the mean field, thus exploiting predictive mechanisms for adaptation to the unpredictable field. Overall, our results support the hypothesis that motor lateralization reflects asymmetries in specific motor control mechanisms associated with predictive control of limb and task dynamics, and modulation of limb impedance.
Collapse
|
35
|
Mutha PK, Haaland KY, Sainburg RL. The effects of brain lateralization on motor control and adaptation. J Mot Behav 2013; 44:455-69. [PMID: 23237468 DOI: 10.1080/00222895.2012.747482] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lateralization of mechanisms mediating functions such as language and perception is widely accepted as a fundamental feature of neural organization. Recent research has revealed that a similar organization exists for the control of motor actions, in that each brain hemisphere contributes unique control mechanisms to the movements of each arm. The authors review present research that addresses the nature of the control mechanisms that are lateralized to each hemisphere and how they impact motor adaptation and learning. In general, the studies suggest an enhanced role for the left hemisphere during adaptation, and the learning of new sequences and skills. The authors suggest that this specialization emerges from a left hemisphere specialization for predictive control-the ability to effectively plan and coordinate motor actions, possibly by optimizing certain cost functions. In contrast, right hemisphere circuits appear to be important for updating ongoing actions and stopping at a goal position, through modulation of sensorimotor stabilization mechanisms such as reflexes. The authors also propose that each brain hemisphere contributes its mechanism to the control of both arms. They also discuss the potential advantages of such a lateralized control system.
Collapse
Affiliation(s)
- Pratik K Mutha
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
36
|
Nguyen HB, Lum PS. Compensation for the intrinsic dynamics of the InMotion2 robot. J Neurosci Methods 2013; 214:15-20. [PMID: 23313756 DOI: 10.1016/j.jneumeth.2013.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/03/2013] [Accepted: 01/06/2013] [Indexed: 11/30/2022]
Abstract
The InMotion2 and other similarly designed robots, are commonly used for rehabilitation of neurological injuries and motor adaptation studies. These robots are used to simulate haptic environments; however, anisotropy in end-point impedance due to the intrinsic robot dynamics can compromise these experiments. The goal was to decrease the magnitude and anisotropy of the robot impedance using a dynamic compensation algorithm that reduces the forces normally felt by the user during rapid movements. We tested this algorithm with two different methods for real-time calculation of derivatives, a novel quadratic fit method (CQF) and the commonly used backward derivative method (CBD). Six subjects performed a series of point-to-point movements under three conditions (no compensation, CQF, CBD), in different directions at peak speeds of 50, 100 and 150 cm/s. Without compensation, tangential peak-to-peak forces were as large as 69 N in certain directions at the 150 cm/s speed. Both CQF and CBD significantly reduced tangential forces in all directions and speeds. CQF outperformed CBD in the directions with highest intrinsic impedance, reducing tangential forces by 64% in these directions. Compensation also significantly reduced forces normal to the movement direction, with CQF again outperforming CBD in several cases. Anisotropy was assessed by the range of tangential peak-to-peak forces across movement directions. In the no compensation condition, anisotropy was as high as 52.7 N at the 150 cm/s speed, but an average anisotropy reduction of 74% was achieved with CQF. The CQF method can significantly reduce impedance and anisotropy in this class of robot.
Collapse
Affiliation(s)
- Hoi B Nguyen
- Center for Applied Biomechanics and Rehabilitation Research at the National Rehabilitation Hospital, Washington, DC, USA
| | | |
Collapse
|
37
|
Przybyla A, Coelho CJ, Akpinar S, Kirazci S, Sainburg RL. Sensorimotor performance asymmetries predict hand selection. Neuroscience 2012; 228:349-60. [PMID: 23111126 DOI: 10.1016/j.neuroscience.2012.10.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 01/12/2023]
Abstract
Handedness is most often measured by questionnaires that assess an individual's preference for using a particular hand to perform a variety of tasks. While such assessments have proved reliable, they do not address the underlying neurobehavioral processes that give rise to the choice of which hand to use. Recent research has indicated that handedness is associated with hemispheric specializations for different aspects of sensorimotor performance. We now hypothesize that an individual's choice of which hand to use for a given task should result from an interaction between these underlying neurobehavioral asymmetries with task conditions. We test this hypothesis by manipulating two factors in targeted reaching movements: (1) region of workspace and (2) visual feedback conditions. The first manipulation modified the geometric and dynamic requirements of the task for each arm, whereas the second modified the sensorimotor performance asymmetries, an effect predicted by previous literature. We expected that arm choice would be reflected by an interaction between these factors. Our results indicated that removing visual feedback both improved the relative performance of the non-dominant arm and increased the choice to use this arm for targets near midline, an effect that was enhanced for targets requiring larger movement amplitudes. We explain these findings in the context of the dynamic dominance hypothesis of handedness and discuss their implications for the link between hemispheric asymmetries in neural control and hand preference.
Collapse
Affiliation(s)
- A Przybyla
- Department of Kinesiology, Pennsylvania State University, 29 Recreation Building, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
38
|
Schaefer SY, Mutha PK, Haaland KY, Sainburg RL. Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Cereb Cortex 2012; 22:1407-19. [PMID: 21878488 PMCID: PMC3357180 DOI: 10.1093/cercor/bhr237] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this study, we examine whether corrections made during an ongoing movement are differentially affected by left hemisphere damage (LHD) and right hemisphere damage (RHD). Our hypothesis of motor lateralization proposes that control mechanisms specialized to the right hemisphere rely largely on online processes, while the left hemisphere primarily utilizes predictive mechanisms to specify optimal coordination patterns. We therefore predict that RHD, but not LHD, should impair online correction when task goals are unexpectedly changed. Fourteen stroke subjects (7 LHD, 7 RHD) and 14 healthy controls reached to 1 of the 3 targets that unexpectedly "jumped" during movement onset. RHD subjects showed a considerable delay in initiating the corrective response relative to controls and LHD subjects. However, both stroke groups made large final position errors on the target jump trials. Position deficits following LHD were associated with poor intersegmental coordination, while RHD subjects had difficulty terminating their movements appropriately. These findings confirm that RHD, but not LHD, produces a deficit in the timing of online corrections and also indicate that both stroke groups show position deficits that are related to the specialization of their damaged hemisphere. Further research is needed to identify specific neural circuits within each hemisphere critical for these processes.
Collapse
Affiliation(s)
- Sydney Y. Schaefer
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Pratik K. Mutha
- Research Service 151, New Mexico Veterans Affairs Healthcare System, Albuquerque, NM 87108, USA
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kathleen Y. Haaland
- Research Service 151, New Mexico Veterans Affairs Healthcare System, Albuquerque, NM 87108, USA
- Department of Psychiatry and Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neurology, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Robert L. Sainburg
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurology, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
39
|
Przybyla A, Good DC, Sainburg RL. Dynamic dominance varies with handedness: reduced interlimb asymmetries in left-handers. Exp Brain Res 2011; 216:419-31. [PMID: 22113487 DOI: 10.1007/s00221-011-2946-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
Our previous studies of interlimb asymmetries during reaching movements have given rise to the dynamic-dominance hypothesis of motor lateralization. This hypothesis proposes that dominant arm control has become optimized for efficient intersegmental coordination, which is often associated with straight and smooth hand-paths, while non-dominant arm control has become optimized for controlling steady-state posture, which has been associated with greater final position accuracy when movements are mechanically perturbed, and often during movements made in the absence of visual feedback. The basis for this model of motor lateralization was derived from studies conducted in right-handed subjects. We now ask whether left-handers show similar proficiencies in coordinating reaching movements. We recruited right- and left-handers (20 per group) to perform reaching movements to three targets, in which intersegmental coordination requirements varied systematically. Our results showed that the dominant arm of both left- and right-handers were well coordinated, as reflected by fairly straight hand-paths and low errors in initial direction. Consistent with our previous studies, the non-dominant arm of right-handers showed substantially greater curvature and large errors in initial direction, most notably to targets that elicited higher intersegmental interactions. While the right, non-dominant, hand-paths of left-handers were slightly more curved than those of the dominant arm, they were also substantially more accurate and better coordinated than the non-dominant arm of right-handers. Our results indicate a similar pattern, but reduced lateralization for intersegmental coordination in left-handers. These findings suggest that left-handers develop more coordinated control of their non-dominant arms than right-handers, possibly due to environmental pressure for right-handed manipulations.
Collapse
Affiliation(s)
- Andrzej Przybyla
- Department of Kinesiology, Penn State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
40
|
Yadav V, Sainburg RL. Motor lateralization is characterized by a serial hybrid control scheme. Neuroscience 2011; 196:153-67. [PMID: 21889579 DOI: 10.1016/j.neuroscience.2011.08.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 01/24/2023]
Abstract
Our previous studies of limb coordination in healthy right- and left-handers led to the development of a theoretical model of motor lateralization, dynamic dominance, which was recently supported by studies in patients with unilateral stroke. One of our most robust findings was on single-joint movements in young healthy subjects [Sainburg and Schaefer (2004) J Neurophysiol 92:1374-1383]. In this study, subjects made elbow joint reaching movements toward four targets of different amplitudes with each arm. Although both arms achieved equivalent task performance, each did so through different strategies. The dominant arm strategy scaled peak acceleration with peak velocity and movement extent, while the nondominant strategy adjusted acceleration duration to achieve the different velocities and distances. We now propose that these observed interlimb differences can be explained using a serial hybrid controller in which movements are initiated using predictive control and terminated using impedance control. Further, we propose that the two arms should differ in the relative time that control switches from the predictive to the impedance mechanisms. We present a mathematical formulation of our hybrid controller and then test the plausibility of this control paradigm by investigating how well our model can explain interlimb differences in experimental data. Our findings confirm that the model predicts early shifts between controllers for left arm movements, which rely on impedance control mechanisms, and late shifts for right arm movements, which rely on predictive control mechanisms. This is the first computational model of motor lateralization and is consistent with our theoretical model that emerged from empirical findings. It represents a first step in consolidating our theoretical understanding of motor lateralization into an operational model of control.
Collapse
Affiliation(s)
- V Yadav
- Department of Kinesiology, Pennsylvania State University, PA, USA
| | | |
Collapse
|
41
|
Melendez-Calderon A, Masia L, Gassert R, Sandini G, Burdet E. Force Field Adaptation Can Be Learned Using Vision in the Absence of Proprioceptive Error. IEEE Trans Neural Syst Rehabil Eng 2011; 19:298-306. [DOI: 10.1109/tnsre.2011.2125990] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Panzer S, Gruetzmacher N, Fries U, Krueger M, Shea CH. Age-related effects in interlimb practice on coding complex movement sequences. Hum Mov Sci 2011; 30:459-74. [PMID: 21349597 DOI: 10.1016/j.humov.2010.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 09/21/2010] [Accepted: 11/23/2010] [Indexed: 11/15/2022]
Abstract
Hikosaka et al. (1999) proposed that sequential movements are acquired in independent visual-spatial and motor coordinate systems with coding initially represented in visual-spatial coordinates, and later after extended practice in motor coordinates. One aspect of sequence learning that has not been systematically studied, however, is the question of whether or not older adults show the same pattern of coding in inter-limb practice as younger learners. In the present experiment an inter-limb practice paradigm was designed to determine the role that visual-spatial (Cartesian) and motor (joint angles, activation patterns) coordinates play in the coding and learning of a complex movement sequence. Younger and older adults practiced a 16-element movement sequence with one limb on Day 1 and the contra-lateral limb on Day 2. Practice involved the same sequence with either the same visual-spatial or motor coordinates on the two days. Retention tests were conducted on Day 3. Results indicated that keeping the visual-spatial coordinates the same during acquisition resulted in superior retention only for younger adults. Results also indicated the overall slowing of sequential movement production for older adults which appears to result from these participants inability to impose a structure on the sequence. This provides strong evidence that the visual-spatial code plays a dominant role in complex movement sequences and this code is represented in an effector-independent manner for younger adults, but not for older adults.
Collapse
Affiliation(s)
- Stefan Panzer
- Department of Human Movement Science, Institute of Sport Sciences, Muenster University, Horstmarer Landweg 62b, 48149 Muenster, Germany.
| | | | | | | | | |
Collapse
|
43
|
Dounskaia N, Nogueira KG, Swinnen SP, Drummond E. Limitations on coupling of bimanual movements caused by arm dominance: when the muscle homology principle fails. J Neurophysiol 2010; 103:2027-38. [PMID: 20071629 DOI: 10.1152/jn.00778.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of bimanual movements typically report interference between motions of the two arms and preference to perform mirror-symmetrical patterns. However, recent studies have demonstrated that the two arms differ in the ability to control interaction torque (INT). This predicts limitations in the capability to perform mirror-symmetrical movements. Here, two experiments were performed to test this prediction. The first experiment included bimanual symmetrical and asymmetrical circle drawing at two frequency levels. Unimanual circle drawing was also recorded. The increases in cycling frequency caused differences between the two arms in movement trajectories in both bimanual modes, although the differences were more pronounced in the asymmetrical compared with the symmetrical mode. Based on torque analysis, the differences were attributed to the nondominant arm's decreased capability to control INT. The intraarm differences during the symmetrical pattern of bimanual movements were similar (although more pronounced) to those during unimanual movements. This finding was verified in the second experiment for symmetrical bimanual oval drawing. Four oval orientations were used to provide variations in INT. Similar to the first experiment, increases in cycling frequency caused spontaneous deviations from perfect bimanual symmetry associated with inefficient INT control in the nondominant arm. This finding supports the limitations in performing mirror-symmetrical bimanual movements due to differences in joint control between the arms. Based on our results and previous research, we argue that bimanual interference occurs during specification of characteristics of required motion, whereas lower-level generation of muscle forces is independent between the arms. A hierarchical model of bimanual control is proposed.
Collapse
Affiliation(s)
- Natalia Dounskaia
- Department of Kinesiology, Arizona State University, P.O. Box 870404, Tempe, AZ 85287-0404, USA.
| | | | | | | |
Collapse
|
44
|
Fries U, Panzer S, Shea CH, Grützmacher N, Krüger M. Intermanueller Transfer und Händigkeit. ZEITSCHRIFT FUR SPORTPSYCHOLOGIE 2010. [DOI: 10.1026/1612-5010/a000001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. In dem Experiment wurde der intermanuelle Transfer auf eine neue dynamische Anforderung und Händigkeit untersucht. Gegenstand ist das Lernen einer Bewegungssequenz. Die Aufgabe der Lerner bestand in dem Erwerb einer 16-Elementigen Bewegungssequenz. Nach einem anfänglichen Training einer Bewegungssequenz für Rechts- und Linkshänder in Abhängigkeit der Starthand (dominante, nicht-dominante Hand) wurden nach einem Intervall von 24 Stunden ein Behaltenstest und zwei Transfertests appliziert. In dem Behaltenstest musste die gelernte Sequenz mit der trainierten Hand ohne Zusatzlast (0 kg) reproduziert werden. In den beiden ausbalancierten Transfertests sollte sowohl mit der trainierten als auch mit der untrainierten kontralateralen Hand eine zusätzliche Masse von 1 kg bewegt werden. Die Ergebnisse zeigen, dass sowohl Rechts- als auch Linkshänder auf unterschiedliche dynamische Eigenschaften mit ihrer dominanten Hand transferieren können. Rechtshänder können sowohl mit der rechten als auch der linken Hand unabhängig von ihrer Starthand auf neue dynamische Anforderungen transferieren (Symmetrie). Eine Asymmetrie in dem Übertrag zeigt sich bei den Linkshändern, die unabhängig von ihrer trainierten Hand nicht auf ihre rechte Hand und auf eine veränderte dynamische Anforderung transferieren können.
Collapse
|
45
|
Panzer S, Krueger M, Muehlbauer T, Shea CH. Asymmetric effector transfer of complex movement sequences. Hum Mov Sci 2009; 29:62-72. [PMID: 19896230 DOI: 10.1016/j.humov.2009.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/16/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
Abstract
An experiment was designed to determine if the addition of a load altered the effector transfer profile observed in earlier experiments using multi-element movement sequences. The acquisition task required participants to move a horizontal lever (with 0.567kg load) to 16 sequentially projected targets. One group practiced the movement sequence with their right (dominant) limb and another group practiced with their left (non-dominant) limb. Approximately 24h after completion of the acquisition session both groups were administered test blocks (0kg, 0.567kg, and 1.134kg) using their practiced and unpracticed limbs. Decreased and increased loads had minimal effect on test performance. The results indicated that the group trained with their left limb were able to perform the right limb tests as well as the group that trained with the right limb. However, the group that trained with their right limb were significantly slower performing the tests with the left limb than the group that practiced with their left limb. Importantly, the left acquisition limb group maintained the pattern of element durations used during practice on the various tests including transfer to the dominant limb. However, the pattern of element durations for the right acquisition limb group on the left limb transfer tests was altered such that the production of only the fastest produced elements were disrupted. These results suggest that one of the reasons for poor sequence performance when transferring from the right to left is because the sequence structure developed during acquisition and used on the tests lacked access to the appropriate commands or the controller lacked the ability to implement codes that effectively manage the movement dynamics.
Collapse
Affiliation(s)
- Stefan Panzer
- Department of Human Movement Science, University of Leipzig, 04109 Leipzig 59, Germany
| | | | | | | |
Collapse
|
46
|
Schaefer SY, Haaland KY, Sainburg RL. Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy. Neuropsychologia 2009; 47:2953-66. [PMID: 19573544 PMCID: PMC2752301 DOI: 10.1016/j.neuropsychologia.2009.06.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 05/26/2009] [Accepted: 06/22/2009] [Indexed: 12/24/2022]
Abstract
Previous studies have demonstrated that following unilateral stroke, motor impairment occurs both contralateral, as well as ipsilateral, to the lesion. Although ipsilesional impairments can be functionally limiting, they can also provide important insight into the role of the ipsilateral hemisphere in controlling movement and the lateralization of specific motor control mechanisms, given that unilateral arm movements are thought to recruit processes in each hemisphere. The purpose of this study was to examine whether left and right hemisphere damage following stroke produces different ipsilesional deficits, and whether our dynamic dominance model of motor lateralization can predict such deficits. Specifically, the dynamic dominance model attributes control of multijoint dynamics to the left hemisphere, and control of steady-state position to the right hemisphere. Chronic stroke patients with either left or right hemisphere damage (LHD or RHD) used their ipsilesional arm, and the control subjects used either their left or right arm (LHC or RHC), to perform targeted reaching movements in different directions within the workspace ipsilateral to their reaching arm. We found that the LHD group showed deficits in controlling the arm's trajectory due to impaired multijoint coordination, but no deficits in achieving accurate final positions. In contrast, the RHD group showed deficits in final position accuracy but not in the ability to coordinate multiple joints during movement, thereby providing additional evidence for the hemisphere-specific nature of motor deficits. Furthermore, while both the LHD and RHD groups were functionally impaired to the same degree on the Jebsen Hand Function Test (JHFT), our results suggest that the underlying mechanisms for such impairment may be hemisphere-dependent.
Collapse
Affiliation(s)
- Sydney Y. Schaefer
- Department of Kinesiology, The Pennsylvania State University, University Park, PA
- The Gerontology Center, The Pennsylvania State University, University Park, PA
| | - Kathleen Y. Haaland
- Research Service, New Mexico Veterans Affairs Healthcare System, University of New Mexico, Albuquerque, NM
- Departments of Psychiatry and Neurology, University of New Mexico, Albuquerque, NM
| | - Robert L. Sainburg
- Department of Kinesiology, The Pennsylvania State University, University Park, PA
- Department of Neurology, The Pennsylvania State University, University Park, PA
- The Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA
- The Gerontology Center, The Pennsylvania State University, University Park, PA
| |
Collapse
|
47
|
Schaefer SY, Haaland KY, Sainburg RL. Dissociation of initial trajectory and final position errors during visuomotor adaptation following unilateral stroke. Brain Res 2009; 1298:78-91. [PMID: 19728993 DOI: 10.1016/j.brainres.2009.08.063] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have demonstrated that following stroke, motor impairment can occur ipsilateral to the lesion. Such impairments have provided insight into the contributions of each hemisphere to movement control, showing that left and right hemisphere damage produce different effects on movement: Left hemisphere damage produces deficits in specifying features of movement trajectory, while right hemisphere damage produces deficits in achieving an accurate and stable final position. We now propose that left and right hemisphere damage should also produce different deficits in the adaptation of trajectory and position. To test this idea, we examined adaptation to visuomotor rotations in the ipsilesional arms of hemiparetic stroke patients with left (LHD) and right hemisphere damage (RHD). We found that LHD interfered with adaptation of initial direction, but not with the ability to adapt the final position of the limb. In contrast, RHD interfered with online corrections to the final position during the course of adaptation. These findings support our hypothesis that the control of trajectory and steady-state position may be lateralized to the left and right hemispheres, respectively.
Collapse
Affiliation(s)
- Sydney Y Schaefer
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
48
|
Shapiro MB, Niu CM, Poon C, David FJ, Corcos DM. Proprioceptive feedback during point-to-point arm movements is tuned to the expected dynamics of the task. Exp Brain Res 2009; 195:575-91. [DOI: 10.1007/s00221-009-1827-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 04/23/2009] [Indexed: 11/28/2022]
|
49
|
Hunter T, Sacco P, Nitsche MA, Turner DL. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. J Physiol 2009; 587:2949-61. [PMID: 19403605 DOI: 10.1113/jphysiol.2009.169284] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human subjects can quickly adapt and maintain performance of arm reaching when experiencing novel physical environments such as robot-induced velocity-dependent force fields. Using anodal transcranial direct current stimulation (tDCS) this study showed that the primary motor cortex may play a role in motor adaptation of this sort. Subjects performed arm reaching movement trials in three phases: in a null force field (baseline), in a velocity-dependent force field (adaptation; 25 N s m(-1)) and once again in a null force field (de-adaptation). Active or sham tDCS was directed to the motor cortex representation of biceps brachii muscle during the adaptation phase of the motor learning protocol. During the adaptation phase, the global error in arm reaching (summed error from an ideal trajectory) was similar in both tDCS conditions. However, active tDCS induced a significantly greater global reaching (overshoot) error during the early stage of de-adaptation compared to the sham tDCS condition. The overshoot error may be representative of the development of a greater predictive movement to overcome the expected imposed force. An estimate of the predictive, initial movement trajectory (signed error in the first 150 ms of movement) was significantly augmented during the adaptation phase with active tDCS compared to sham tDCS. Furthermore, this increase was linearly related to the change of the overshoot summed error in the de-adaptation process. Together the results suggest that anodal tDCS augments the development of an internal model of the novel adapted movement and suggests that the primary motor cortex is involved in adaptation of reaching movements of healthy human subjects.
Collapse
Affiliation(s)
- Timothy Hunter
- The Brain Function and NeuRobotics Lab, School of Health and Bioscience, University of East London, London E15 4LZ, UK.
| | | | | | | |
Collapse
|
50
|
Shabbott BA, Sainburg RL. Differentiating between two models of motor lateralization. J Neurophysiol 2008; 100:565-75. [PMID: 18497366 PMCID: PMC2525729 DOI: 10.1152/jn.90349.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/19/2008] [Indexed: 11/22/2022] Open
Abstract
This study was designed to differentiate between two models of motor lateralization: "feedback corrections" and dynamic dominance. Whereas the feedback correction hypothesis suggests that handedness reflects a dominant hemisphere advantage for visual-mediated correction processes, dynamic dominance proposes that each hemisphere has become specialized for distinct aspects of control. This model suggests that the dominant hemisphere is specialized for controlling task dynamics, as required for coordinating efficient trajectories, and the nondominant hemisphere is specialized for controlling limb impedance, as required for maintaining stable postures. To differentiate between these two models, we examined whether visuomotor corrections are mediated differently for the nondominant and dominant arms. Participants performed targeted reaches in a virtual reality environment in which visuomotor rotations occurred in two directions that elicited corrections with different coordination requirements. The feedback correction model predicts a dominant arm advantage for the timing and accuracy of corrections in both directions. Dynamic dominance predicts that correction timing and accuracy will be similar for both arms, but that interlimb differences in the quality of corrections will depend on the coordination requirements, and thus, direction of corrections. Our results indicated that correction time and accuracy did not depend on arm. However, correction quality, as reflected by trajectory curvature, depended on both arm and rotation direction. Nondominant trajectories were systematically more curvilinear than dominant trajectories for corrections with the highest coordination requirement. These results support the dynamic dominance hypothesis.
Collapse
|