1
|
Yang R, Lin Y, Chen K, Huang J, Yang S, Yao A, Yang X, Lei D, Xiao J, Yang G, Pei Q. Establishing Virtual Bioequivalence and Clinically Relevant Specifications for Omeprazole Enteric-Coated Capsules by Incorporating Dissolution Data in PBPK Modeling. AAPS J 2024; 26:82. [PMID: 38997548 DOI: 10.1208/s12248-024-00956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Currently, Biopharmaceutics Classification System (BCS) classes I and III are the only biological exemptions of immediate-release solid oral dosage forms eligible for regulatory approval. However, through virtual bioequivalence (VBE) studies, BCS class II drugs may qualify for biological exemptions if reliable and validated modeling is used. Here, we sought to establish physiologically based pharmacokinetic (PBPK) models, in vitro-in vivo relationship (IVIVR), and VBE models for enteric-coated omeprazole capsules, to establish a clinically-relevant dissolution specification (CRDS) for screening BE and non-BE batches, and to ultimately develop evaluation criteria for generic omeprazole enteric-coated capsules. To establish omeprazole's IVIVR based on the PBPK model, we explored its in vitro dissolution conditions and then combined in vitro dissolution profile studies with in vivo clinical trials. The predicted omeprazole pharmacokinetics (PK) profiles and parameters closely matched the observed PK data. Based on the VBE results, the bioequivalence study of omeprazole enteric-coated capsules required at least 48 healthy Chinese subjects. Based on the CRDS, the capsules' in vitro dissolution should not be < 28%-54%, < 52%, or < 80% after two, three, and six hours, respectively. Failure to meet these dissolution criteria may result in non-bioequivalence. Here, PBPK modeling and IVIVR methods were used to bridge the in vitro dissolution of the drug with in vivo PK to establish the BE safety space of omeprazole enteric-coated capsules. The strategy used in this study can be applied in BE studies of other BCS II generics to obtain biological exemptions and accelerate drug development.
Collapse
Affiliation(s)
- Ruwei Yang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaqi Lin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kaifeng Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - An Yao
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Deqing Lei
- Changsha Institute for Food and Drug Control of Hunan Province, Changsha, China
| | - Jing Xiao
- Hunan Institute for Drug Control, Changsha, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| |
Collapse
|
2
|
Venkatakrishnan K, Gupta N, Smith PF, Lin T, Lineberry N, Ishida T, Wang L, Rogge M. Asia-Inclusive Clinical Research and Development Enabled by Translational Science and Quantitative Clinical Pharmacology: Toward a Culture That Challenges the Status Quo. Clin Pharmacol Ther 2023; 113:298-309. [PMID: 35342942 PMCID: PMC10083990 DOI: 10.1002/cpt.2591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/17/2022] [Indexed: 01/27/2023]
Abstract
Access lag to innovative therapies in Asian populations continues to present a challenge to global health. Recent progressive changes in the global regulatory landscape, including newer guidelines, are enabling simultaneous global drug development and near-simultaneous global drug registration. The International Conference on Harmonization (ICH) E17 guideline outlines general principles for the design and analysis of multiregional clinical trials (MRCTs). We posit that translational research and quantitative clinical pharmacology tools are core enablers for Asia-inclusive global drug development aligned with ICH E17 principles. Assessment of ethnic sensitivity should be initiated early in the development lifecycle to inform the need for, and extent of, Asian phase I ethno-bridging data. Relevant ethno-bridging data may be generated as standalone Asian phase I trials, as part of Western First-In-Human trials, or under accelerated development settings as a lead-in phase in an MRCT. Quantitative understanding of human clearance mechanisms and pharmacogenetic factors is vital to forecasting ethnic sensitivity in drug exposure using physiologically-based pharmacokinetic models. Stratification factors to control heterogeneity in MRCTs can be identified by reverse translational research incorporating pharmacometric disease models and model-based meta-analyses. Because epidemiological variations can extend to the molecular level, quantitative systems pharmacology models may be useful in forecasting how molecular variation in therapeutic targets or pathway proteins across populations might impact treatment outcomes. Through prospective evaluation of conservation in drug- and disease-related intrinsic and extrinsic factors, a pooled East Asian region can be implemented in Asia-inclusive MRCTs to maximize efficiency in substantiating evidence of benefit-risk for the region at-large with a Totality of Evidence approach.
Collapse
Affiliation(s)
- Karthik Venkatakrishnan
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA.,EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| | - Neeraj Gupta
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | | | | | - Neil Lineberry
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Tatiana Ishida
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Lin Wang
- Takeda Development Center Asia, Shanghai, China
| | - Mark Rogge
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA.,Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA
| |
Collapse
|
3
|
Chen K, Luo P, Yang G, Zhu S, Deng C, Ding J, Lin Y, Zhu L, Pei Q. Population pharmacokinetics of omeprazole in obese and normal-weight adults. Expert Rev Clin Pharmacol 2022; 15:461-471. [PMID: 35522794 DOI: 10.1080/17512433.2022.2075343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is related to many pathophysiological changes that may result in altered drug disposition. Omeprazole is the most common option utilized for acid-related disorders treatment; however, the pharmacokinetic (PK) and dosing recommendations for the obese patient population are lacking. METHODS Data from 40 healthy subjects with normal weights and data from 61 obese subjects were included. The subjects all received a single dose of 20 mg of omeprazole. Nonlinear mixed effects modeling were performed to characterize the effect of obesity on omeprazole PK. RESULTS A one-compartment model with twelve transit absorption compartments and linear elimination described the data best. A lower clearance was observed in the obese patient population than in the normal-weight subjects, which was opposite to the well-known allometric effect of body weight on drug clearance. Moreover, the CYP2C19 genotype was identified as a significant covariate for clearance. CONCLUSION Given the potential adverse events related to high exposure to proton pump inhibitors over time, obese patients may require a lower dose of omeprazole for long-term treatment. Further studies in obese individuals into other drugs metabolized by CYP2C19 are warranted, especially those with a narrow therapeutic window. CLINICAL TRIAL REGISTRATION www.chictr.org.cn identifier is ChiCTR2100046578; www.chinadrugtrials.org.cn identifier is CTR20190175.
Collapse
Affiliation(s)
- Kaifeng Chen
- Department of Pharmacy,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Luo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoping Yang
- Linking Truth Technology co., Ltd., Shanghai, China
| | - Shaihong Zhu
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenhui Deng
- Nuffield Department of Clinical Medicine, Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Junjie Ding
- Nuffield Department of Clinical Medicine, Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Yaqi Lin
- Department of Pharmacy,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyong Zhu
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Pei
- Department of Pharmacy,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Linking Truth Technology co., Ltd., Shanghai, China
| |
Collapse
|
4
|
Duong JK, Nand RA, Patel A, Della Pasqua O, Gross AS. A physiologically based pharmacokinetic model of clopidogrel in populations of European and Japanese ancestry: An evaluation of CYP2C19 activity. Pharmacol Res Perspect 2022; 10:e00946. [PMID: 35307978 PMCID: PMC8934724 DOI: 10.1002/prp2.946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Treatment response to clopidogrel is associated with CYP2C19 activity through the formation of the active H4 metabolite. The aims of this study were to develop a physiologically based pharmacokinetic (PBPK) model of clopidogrel and its metabolites for populations of European ancestry, to predict the pharmacokinetics in the Japanese population by CYP2C19 phenotype, and to investigate the effect of clinical and demographic factors. A PBPK model was developed and verified to describe the two metabolic pathways of clopidogrel (H4 metabolite, acyl glucuronide metabolite) for a population of European ancestry using plasma data from published studies. Subsequently, model predictions in the Japanese population were evaluated. The effects of CYP2C19 activity, fluvoxamine coadministration (CYP2C19 inhibitor), and population-specific factors (age, sex, BMI, body weight, cancer, hepatic, and renal dysfunction) on the pharmacokinetics of clopidogrel and its metabolites were then characterized. The predicted/observed ratios for clopidogrel and metabolite exposure parameters were acceptable (twofold acceptance criteria). For all CYP2C19 phenotypes, steady-state AUC0-τ of the H4 metabolite was lower for the Japanese (e.g., EM, 7.69 [6.26-9.45] ng·h/ml; geometric mean [95% CI]) than European (EM, 24.8 [20.4-30.1] ng·h/ml, p < .001) population. In addition to CYP2C19-poor metabolizer phenotype, fluvoxamine coadministration, hepatic, and renal dysfunction were found to reduce H4 metabolite but not acyl glucuronide metabolite concentrations. This is the first PBPK model describing the two major metabolic pathways of clopidogrel, which can be applied to populations of European and Japanese ancestry by CYP2C19 phenotype. The differences between the two populations appear to be determined primarily by the effect of varying CYP2C19 liver activity.
Collapse
Affiliation(s)
- Janna K. Duong
- Clinical Pharmacology Modelling and SimulationGlaxoSmithKline R&DErmingtonAustralia
| | - Romina A. Nand
- Clinical Pharmacology Modelling and SimulationGlaxoSmithKline R&DErmingtonAustralia
| | - Aarti Patel
- Drug Metabolism and PharmacokineticsGlaxoSmithKline R&DStevenageUK
| | - Oscar Della Pasqua
- Clinical Pharmacology Modelling and SimulationGlaxoSmithKline R&DBrentfordUK
| | - Annette S. Gross
- Clinical Pharmacology Modelling and SimulationGlaxoSmithKline R&DErmingtonAustralia
| |
Collapse
|
5
|
Lenoir C, Niederer A, Rollason V, Desmeules JA, Daali Y, Samer CF. Prediction of cytochromes P450 3A and 2C19 modulation by both inflammation and drug interactions using physiologically based pharmacokinetics. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 11:30-43. [PMID: 34791831 PMCID: PMC8752107 DOI: 10.1002/psp4.12730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022]
Abstract
Xenobiotics can interact with cytochromes P450 (CYPs), resulting in drug-drug interactions, but CYPs can also contribute to drug-disease interactions, especially in the case of inflammation, which downregulates CYP activities through pretranscriptional and posttranscriptional mechanisms. Interleukin-6 (IL-6), a key proinflammatory cytokine, is mainly responsible for this effect. The aim of our study was to develop a physiologically based pharmacokinetic (PBPK) model to foresee the impact of elevated IL-6 levels in combination with drug interactions with esomeprazole on CYP3A and CYP2C19. Data from a cohort of elective hip surgery patients whose CYP3A and CYP2C19 activities were measured before and after surgery were used to validate the accurate prediction of the developed models. Successive steps were to fit models for IL-6, esomeprazole, and omeprazole and its metabolite from the literature and to validate them. The models for midazolam and its metabolite were obtained from the literature. When appropriate, a correction factor was applied to convert drug concentrations from whole blood to plasma. Mean ratios between simulated and observed areas under the curve for omeprazole/5-hydroxy omeprazole, esomeprazole, and IL-6 were 1.53, 1.06, and 0.69, respectively, indicating an accurate prediction of the developed models. The impact of IL-6 and esomeprazole on the exposure to CYP3A and CYP2C19 probe substrates and respective metabolites were correctly predicted. Indeed, the ratio between predicted and observed mean concentrations were <2 for all observations (ranging from 0.51 to 1.7). The impact of IL-6 and esomeprazole on CYP3A and CYP2C19 activities after a hip surgery were correctly predicted with the developed PBPK models.
Collapse
Affiliation(s)
- Camille Lenoir
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Amine Niederer
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Victoria Rollason
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jules Alexandre Desmeules
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Caroline Flora Samer
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Yu Y, Lin J, Muto C, Li Y, Mori Y, Mittapalli RK, Tse S, Liu J, Ge BK, Liu J. Assessment of the Utility of Physiologically-based Pharmacokinetic Model for prediction of Pharmacokinetics in Chinese and Japanese Populations. Int J Med Sci 2021; 18:3718-3727. [PMID: 34790045 PMCID: PMC8579302 DOI: 10.7150/ijms.65040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 11/05/2022] Open
Abstract
The objective for the present analyses was to evaluate the utility of physiologically-based pharmacokinetic (PBPK) modeling for prediction of the pharmacokinetics (PK) in Chinese and Japanese populations with a panel of Pfizer internal compounds. Twelve compounds from Pfizer internal development pipeline with available Westerner PK data and available PK data in at least one of the subpopulations of Japanese and Chinese populations were identified and included in the current analysis. These selected compounds represent various elimination pathways across different therapeutic areas. The Simcyp® PBPK simulator was used to develop and verify the PBPK models of individual compounds. The developed models for these compounds were verified by using the clinical PK data in Westerners. The verified PBPK models were further used to predict the PK of these compounds in Chinese and Japanese populations and the predicted PK parameters were compared with the observed PK parameters. Ten of the 12 compounds had PK data in Chinese, and all the 12 compounds had PK data in Japanese. In general, the PBPK models performed well in predicting PK in Chinese and Japanese, with 8 of 10 drugs in Chinese and 7 of 12 drugs in Japanese has AAFE values less than 1.25-fold. PBPK-guided predictions of the relative PK difference were successful for 75% and 50%, respectively, between Chinese and Western and between Japanese and Western of the tested drugs using 0.8-1.25 as criteria. In conclusion, well verified PBPK models developed using data from Westerners can be used to predict the PK in Chinese and Japanese populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian Liu
- Pfizer Investment Co., LTD, China
| | | | | |
Collapse
|
7
|
Adiwidjaja J, Gross AS, Boddy AV, McLachlan AJ. Physiologically-based pharmacokinetic model predictions of inter-ethnic differences in imatinib pharmacokinetics and dosing regimens. Br J Clin Pharmacol 2021; 88:1735-1750. [PMID: 34535920 DOI: 10.1111/bcp.15084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/28/2021] [Accepted: 09/04/2021] [Indexed: 01/06/2023] Open
Abstract
AIMS This study implements a physiologically-based pharmacokinetic (PBPK) modelling approach to investigate inter-ethnic differences in imatinib pharmacokinetics and dosing regimens. METHODS A PBPK model of imatinib was built in the Simcyp Simulator (version 17) integrating in vitro drug metabolism and clinical pharmacokinetic data. The model accounts for ethnic differences in body size and abundance of drug-metabolising enzymes and proteins involved in imatinib disposition. Utility of this model for prediction of imatinib pharmacokinetics was evaluated across different dosing regimens and ethnic groups. The impact of ethnicity on imatinib dosing was then assessed based on the established range of trough concentrations (Css,min ). RESULTS The PBPK model of imatinib demonstrated excellent predictive performance in describing pharmacokinetics and the attained Css,min in patients from different ethnic groups, shown by prediction differences that were within 1.25-fold of the clinically-reported values in published studies. PBPK simulation suggested a similar dose of imatinib (400-600 mg/d) to achieve the desirable range of Css,min (1000-3200 ng/mL) in populations of European, Japanese and Chinese ancestry. The simulation indicated that patients of African ancestry may benefit from a higher initial dose (600-800 mg/d) to achieve imatinib target concentrations, due to a higher apparent clearance (CL/F) of imatinib compared to other ethnic groups; however, the clinical data to support this are currently limited. CONCLUSION PBPK simulations highlighted a potential ethnic difference in the recommended initial dose of imatinib between populations of European and African ancestry, but not populations of Chinese and Japanese ancestry.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - Annette S Gross
- Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline R&D, Sydney, NSW, Australia
| | - Alan V Boddy
- UniSA Cancer Research Institute and UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Andrew J McLachlan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Interaction between Omeprazole and Gliclazide in Relation to CYP2C19 Phenotype. J Pers Med 2021; 11:jpm11050367. [PMID: 34063566 PMCID: PMC8147656 DOI: 10.3390/jpm11050367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
The antidiabetic drug gliclazide is partly metabolized by CYP2C19, the main enzyme involved in omeprazole metabolism. The aim of the study was to explore the interaction between omeprazole and gliclazide in relation to CYP2C19 phenotype using physiologically based pharmacokinetic (PBPK) modeling approach. Developed PBPK models were verified using in vivo pharmacokinetic profiles obtained from a clinical trial on omeprazole-gliclazide interaction in healthy volunteers, CYP2C19 normal/rapid/ultrarapid metabolizers (NM/RM/UM). In addition, the association of omeprazole cotreatment with gliclazide-induced hypoglycemia was explored in 267 patients with type 2 diabetes (T2D) from the GoDARTS cohort, Scotland. The PBPK simulations predicted 1.4–1.6-fold higher gliclazide area under the curve (AUC) after 5-day treatment with 20 mg omeprazole in all CYP2C19 phenotype groups except in poor metabolizers. The predicted gliclazide AUC increased 2.1 and 2.5-fold in intermediate metabolizers, and 2.6- and 3.8-fold in NM/RM/UM group, after simulated 20-day dosing with 40 mg omeprazole once and twice daily, respectively. The predicted results were corroborated by findings in patients with T2D which demonstrated 3.3-fold higher odds of severe gliclazide-induced hypoglycemia in NM/RM/UM patients concomitantly treated with omeprazole. Our results indicate that omeprazole may increase exposure to gliclazide and thus increase the risk of gliclazide-associated hypoglycemia in the majority of patients.
Collapse
|
9
|
Zhou L, Sharma P, Yeo KR, Higashimori M, Xu H, Al-Huniti N, Zhou D. Assessing pharmacokinetic differences in Caucasian and East Asian (Japanese, Chinese and Korean) populations driven by CYP2C19 polymorphism using physiologically-based pharmacokinetic modelling. Eur J Pharm Sci 2019; 139:105061. [DOI: 10.1016/j.ejps.2019.105061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
|
10
|
Kim Y, Hatley O, Rhee SJ, Yi S, Lee HA, Yoon S, Chung JY, Yu KS, Lee H. Development of a Korean-specific virtual population for physiologically based pharmacokinetic modelling and simulation. Biopharm Drug Dispos 2019; 40:135-150. [PMID: 30921829 DOI: 10.1002/bdd.2178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 01/19/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) modelling and simulation is a useful tool in predicting the PK profiles of a drug, assessing the effects of covariates such as demographics, ethnicity, genetic polymorphisms and disease status on the PK, and evaluating the potential of drug-drug interactions. We developed a Korean-specific virtual population for the SimCYP® Simulator (version 15 used) and evaluated the population's predictive performance using six substrate drugs (midazolam, S-warfarin, metoprolol, omeprazole, lorazepam and rosuvastatin) of five major drug metabolizing enzymes (DMEs) and two transporters. Forty-three parameters including the proportion of phenotypes in DMEs and transporters were incorporated into the Korean-specific virtual population. The simulated concentration-time profiles in Koreans were overlapped with most of the observed concentrations for the selected substrate drugs with a < 2-fold difference in clearance. Furthermore, we found some drug models within the SimCYP® library can be improved, e.g., the minor allele frequency of ABCG2 and the fraction metabolized by UGT2B15 should be incorporated for rosuvastatin and lorazepam, respectively. The Korean-specific population can be used to evaluate the impact of ethnicity on the PKs of a drug, particularly in various stages of drug development.
Collapse
Affiliation(s)
- Yun Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | | | - Su-Jin Rhee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - Sojeong Yi
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - Hyun A Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Sumin Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, South Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
van Hoogdalem EJ, Jones Iii JP, Constant J, Achira M. Science-based Ethnic Bridging in Drug Development; Review of Recent Precedence and Suggested Steps Forward. ACTA ACUST UNITED AC 2019; 14:197-207. [PMID: 30961506 DOI: 10.2174/1574884714666190408125206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/01/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure, safety and/or efficacy of drugs are subject to potential differences between human races or ethnicities, as acknowledged by regulatory guidance and by label texts of various, but not all approved drugs. OBJECTIVE The objective of the present review was to assess recent regulatory precedence on drug use and race or ethnicity, with the goal of identifying opportunities for increasing the informative value of clinical ethnic or racial bridging in drug development. METHODS Recently, (January 2014-July 2018) FDA approved drug product label texts and approval packages were reviewed for claims, comments and underlying data on use of the product in specific ethnic or racial groups. RESULTS Among the 266 FDA-approved products, no product with unambiguous race- or ethnicity specific dosing instructions was retrieved. A small majority (55%) was approved with a claim or comment on race or ethnicity, and of these, a large majority (87%) was based on population pharmacokinetic data analysis. Statements were often related to incidence of a genotype for drug metabolizing enzyme or for other risk factors, or were related to body weight. Absence of clinically relevant exposure differences were often justified in terms of exposure ratios that notably exceeded the typical 0.80-1.25 no-effect boundary. CONCLUSIONS Recent precedence reflected a pragmatic, descriptive approach of racial or ethnic bridging, apparently meeting current regulatory expectations, whilst not resulting in strict guidance to prescribers. We recommend further work on defining the objectives of bridging studies, as well as criteria for their design and data analysis. Regarding the latter, we recommend investigating the value of prospectively defined tests for similarity with appropriate follow-up analysis in the case where the test has failed.
Collapse
Affiliation(s)
| | - John P Jones Iii
- PRA Health Sciences, Scientific Affairs - Clinical Pharmacology, Blue Bell, PA, United States
| | - John Constant
- PRA Health Sciences, Scientific Affairs, Victoria, BC, Canada
| | - Meguru Achira
- Clinical Pharmacology, Takeda PRA Development Center KK, Osaka 540-8645, Japan
| |
Collapse
|
12
|
Matsumoto Y, Cabalu T, Sandhu P, Hartmann G, Iwasa T, Yoshitsugu H, Gibson C, Uemura N. Application of Physiologically Based Pharmacokinetic Modeling to Predict Pharmacokinetics in Healthy Japanese Subjects. Clin Pharmacol Ther 2018; 105:1018-1030. [PMID: 30252941 PMCID: PMC6587435 DOI: 10.1002/cpt.1240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/15/2018] [Indexed: 11/25/2022]
Abstract
Pharmacokinetics (PKs) in Japanese healthy subjects were simulated for nine compounds using physiologically based PK (PBPK) models parameterized with physicochemical properties, preclinical absorption, distribution, metabolism, and excretion (ADME) data, and clinical PK data from non‐Japanese subjects. For each dosing regimen, 100 virtual trials were simulated and predicted/observed ratios for peak plasma concentration (Cmax) and area under the curve (AUC) were calculated. As qualification criteria, it was prespecified that >80% of simulated trials should demonstrate ratios to observed data ranging from 0.5–2.0. Across all compounds and dose regimens studied, 93% of simulated Cmax values in Japanese subjects fulfilled the criteria. Similarly, for AUC, 77% of single‐dosing regimens and 100% of multiple‐dosing regimens fulfilled the criteria. In summary, mechanistically incorporating the appropriate ADME properties into PBPK models, followed by qualification using non‐Japanese clinical data, can predict PKs in the Japanese population and lead to efficient trial design and conduct of Japanese phase I studies.
Collapse
Affiliation(s)
- Yuki Matsumoto
- Clinical Pharmacokinetics and Pharmacometrics Group, Clinical Pharmacology, Clinical Research Division, Japan Development, MSD K.K., Tokyo, Japan.,Faculty of Medicine, Graduate School of Medicine, Oita University, Oita, Japan
| | - Tamara Cabalu
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Punam Sandhu
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Georgy Hartmann
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Takashi Iwasa
- Clinical Pharmacokinetics and Pharmacometrics Group, Clinical Pharmacology, Clinical Research Division, Japan Development, MSD K.K., Tokyo, Japan
| | - Hiroyuki Yoshitsugu
- Clinical Pharmacokinetics and Pharmacometrics Group, Clinical Pharmacology, Clinical Research Division, Japan Development, MSD K.K., Tokyo, Japan
| | - Christopher Gibson
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Naoto Uemura
- Faculty of Medicine, Graduate School of Medicine, Oita University, Oita, Japan
| |
Collapse
|
13
|
Clopidogrel Pharmacokinetics in Malaysian Population Groups: The Impact of Inter-Ethnic Variability. Pharmaceuticals (Basel) 2018; 11:ph11030074. [PMID: 30049953 PMCID: PMC6161187 DOI: 10.3390/ph11030074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022] Open
Abstract
Malaysia is a multi-ethnic society whereby the impact of pharmacogenetic differences between ethnic groups may contribute significantly to variability in clinical therapy. One of the leading causes of mortality in Malaysia is cardiovascular disease (CVD), which accounts for up to 26% of all hospital deaths annually. Clopidogrel is used as an adjunct treatment in the secondary prevention of cardiovascular events. CYP2C19 plays an integral part in the metabolism of clopidogrel to the active metabolite clopi-H4. However, CYP2C19 genetic polymorphism, prominent in Malaysians, could influence target clopi-H4 plasma concentrations for clinical efficacy. This study addresses how inter-ethnicity variability within the Malaysian population impacts the attainment of clopi-H4 target plasma concentration under different CYP2C19 polymorphisms through pharmacokinetic (PK) modelling. We illustrated a statistically significant difference (P < 0.001) in the clopi-H4 Cmax between the extensive metabolisers (EM) and poor metabolisers (PM) phenotypes with either Malay or Malaysian Chinese population groups. Furthermore, the number of PM individuals with peak clopi-H4 concentrations below the minimum therapeutic level was partially recovered using a high-dose strategy (600 mg loading dose followed by a 150 mg maintenance dose), which resulted in an approximate 50% increase in subjects attaining the minimum clopi-H4 plasma concentration for a therapeutic effect.
Collapse
|
14
|
Gong J, Iacono L, Iyer RA, Humphreys WG, Zheng M. Physiologically-based pharmacokinetic modelling of a CYP2C19 substrate, BMS-823778, utilizing pharmacogenetic data. Br J Clin Pharmacol 2018; 84:1335-1345. [PMID: 29469197 DOI: 10.1111/bcp.13565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS Previous studies demonstrated direct correlation between CYP2C19 genotype and BMS-823778 clearance in healthy volunteers. The objective of the present study was to develop a physiologically-based pharmacokinetic (PBPK) model for BMS-823778 and use the model to predict PK and drug-drug interaction (DDI) in virtual populations with multiple polymorphic genes. METHODS The PBPK model was built and verified using existing clinical data. The verified model was simulated to predict PK of BMS-823778 and significance of DDI with a strong CYP3A4 inhibitor in subjects with various CYP2C19 and UGT1A4 genotypes. RESULTS The verified PBPK model of BMS-823778 accurately recovered observed PK in different populations. In addition, the model was able to capture the exposure differences between subjects with different CYP2C19 genotypes. PK simulation indicated higher exposures of BMS-823778 in CYP2C19 poor metabolizers who were also devoid of UGT1A4 activity, compared to those with normal UGT1A4 functionality. Moderate DDI with itraconazole was predicted in subjects with wild-type CYP2C19 or UGT1A4. However, in subjects without CYP2C19 or UGT1A4 functionality, significant DDI was predicted when BMS-823778 was coadministered with itraconazole. CONCLUSIONS A PBPK model was developed using clinical data that accurately predicted human PK in different population with various CYP2C19 phenotypes. Simulations with the verified PBPK model indicated that UGT1A4 was probably an important clearance pathway in CYP2C19 poor metabolizers. DDI with itraconazole is likely to be dependent on the genotypes of CYP2C19 and UGT1A4.
Collapse
Affiliation(s)
- Jiachang Gong
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, 08543, USA
| | - Lisa Iacono
- Global Regulatory Safety & Biometrics, Bristol-Myers Squibb, Princeton, NJ, 08543, USA
| | - Ramaswamy A Iyer
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, 08543, USA
| | - William G Humphreys
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, 08543, USA
| | - Ming Zheng
- Clinical Pharmacology and Pharmacometrics, Bristol-Myers Squibb, Princeton, NJ, 08543, USA
| |
Collapse
|
15
|
Gong J, Hansen L, Iacono L. Clinical Pharmacokinetics and the Impact of Genetic Polymorphism on a CYP2C19 Substrate, BMS-823778, in Healthy Subjects. Drug Metab Dispos 2018; 46:316-325. [DOI: 10.1124/dmd.117.078824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/29/2017] [Indexed: 01/03/2023] Open
|
16
|
Pharmacokinetics of CYP2C9, CYP2C19, and CYP2D6 substrates in healthy Chinese and European subjects. Eur J Clin Pharmacol 2017; 74:285-296. [PMID: 29181698 DOI: 10.1007/s00228-017-2375-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/08/2017] [Indexed: 01/16/2023]
Abstract
PURPOSE The aim of this analysis is to compare the pharmacokinetics of drug substrates in healthy Chinese and European subjects of aligned CYP2C9, CYP2C19, or CYP2D6 enzyme activity, providing further insight into drivers of interethnic differences in pharmacokinetics. METHODS Following identification of appropriate drug substrates, a comprehensive and structured literature search was conducted to identify single-dose pharmacokinetic data in healthy Chinese or European subjects with reported CYP2C9, CYP2C19, or CYP2D6 activity (genotype or phenotype). The ratio of drug AUC in the Chinese and European subjects classified with aligned enzyme activity was calculated (ethnicity ratio (ER)). RESULTS For 22/25 drugs identified, the ERs calculated indicated no or only limited interethnic differences in exposure (<twofold) in Chinese and European subjects with aligned polymorphic enzyme activity. The interethnic differences observed can reflect differences across populations in additional determinants of pharmacokinetics, although the notable between study variation and change over time in methods used to assign enzyme activity may also be contributing factors. There was no association between drug substrate fraction metabolized (fm) for CYP2C9, CYP2C19, or CYP2D6 and the ERs calculated. CONCLUSION The spectrum of pharmacokinetic determinants for each drug substrate and their differences across ethnic groups must be considered on a case-by-case basis in addition to metabolism by CYP2C9, CYP2C19, or CYP2D6. This analysis has also highlighted the challenges which arise when comparing published datasets if consistent methods to assign polymorphic enzyme activity have not been used.
Collapse
|
17
|
Sun LN, Cao Y, Li YQ, Fang YQ, Zhang HW, Wang MF, Xie LJ, Chen J, Yang ZC, Bian ML, Li H, Zhang PP, Wei JF, Meng L, Zhang XH, Zhao P, Wang YQ. Impact of Gastric H+/K+-ATPase rs2733743 on the Intragastric pH-Values of Dexlansoprazole Injection in Chinese Subjects. Front Pharmacol 2017; 8:670. [PMID: 29018343 PMCID: PMC5614982 DOI: 10.3389/fphar.2017.00670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Not all patients with acid-related disorders receiving proton pump inhibitor (PP) treatment get adequate gastric pH control. The genetic variation of receptors, metabolic enzymes, and transporters are known to cause failures of therapies. We have conducted a study to evaluate the influence of gastric H+/K+-ATPase, CYP2C19, and ABCB1 polymorphisms on the pharmacokinetic and pharmacodynamic profiles of dexlansoprazole injection in healthy Chinese subjects. Methods: A total of 51 subjects were enrolled for pharmacokinetic and pharmacodynamic study after a single intravenous administration of 20 or 30 mg dexlansoprazole. Plasma concentrations were determined using a chiral liquid chromatography-mass spectrometry method. The intragastric pH and baseline-adjusted intragastric pH parameters were introduced to evaluate the pharmacodynamic characters. Genotyping was performed by polymerase chain reaction. Results: The pharmacokinetic parameters were significantly influenced by CYP2C19 phenotypes, and gastric acid secretion inhibition were affected by both gastric H+/K+-ATPase and CYP2C19 polymorphisms. Gastric H+/K+-ATPase genotypes had greater effects than CYP2C19 genotypes on the suppression of gastric acid secretion. Conclusion: Gastric H+/K+-ATPase polymorphism may be one of the main reasons that cause insufficient gastric acid inhibition.
Collapse
Affiliation(s)
- Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Yang Cao
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Yue-Qi Li
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Yun-Qian Fang
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Hong-Wen Zhang
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Mei-Feng Wang
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Li-Jun Xie
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Juan Chen
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Zhi-Cheng Yang
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Ming-Liang Bian
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Hao Li
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Pei-Pei Zhang
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Ling Meng
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China
| | - Xue-Hui Zhang
- Department of Pharmacy, Jiangsu Shengze HospitalSuzhou, China
| | - Ping Zhao
- Department of Pharmacy, Jiangsu Shengze HospitalSuzhou, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical UniversityNanjing, China.,Department of Pharmacy, Jiangsu Shengze HospitalSuzhou, China
| |
Collapse
|
18
|
Feng S, Shi J, Parrott N, Hu P, Weber C, Martin-Facklam M, Saito T, Peck R. Combining 'Bottom-Up' and 'Top-Down' Methods to Assess Ethnic Difference in Clearance: Bitopertin as an Example. Clin Pharmacokinet 2017; 55:823-832. [PMID: 26715215 PMCID: PMC4916198 DOI: 10.1007/s40262-015-0356-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background and Objectives We propose a strategy for studying ethnopharmacology by conducting sequential physiologically based pharmacokinetic (PBPK) prediction (a ‘bottom-up’ approach) and population pharmacokinetic (popPK) confirmation (a ‘top-down’ approach), or in reverse order, depending on
whether the purpose is ethnic effect assessment for a new molecular entity under development or a tool for ethnic sensitivity prediction for a given pathway. The strategy is exemplified with bitopertin. Methods A PBPK model was built using Simcyp® to simulate the pharmacokinetics of bitopertin and to predict the ethnic sensitivity in clearance, given pharmacokinetic data in just one ethnicity. Subsequently, a popPK model was built using NONMEM® to assess the effect of ethnicity on clearance, using human data from multiple ethnic groups. A comparison was made to confirm the PBPK-based ethnic sensitivity prediction, using the results of the popPK analysis. Results PBPK modelling predicted that the bitopertin geometric mean clearance values after 20 mg oral administration in Caucasians would be 1.32-fold and 1.27-fold higher than the values in Chinese and Japanese, respectively. The ratios of typical clearance in Caucasians to the values in Chinese and Japanese estimated by popPK analysis were 1.20 and 1.17, respectively. The popPK analysis results were similar to the PBPK modelling results. Conclusion As a general framework, we propose that PBPK modelling should be considered to predict ethnic sensitivity of pharmacokinetics prior to any human data and/or with data in only one ethnicity. In some cases, this will be sufficient to guide initial dose selection in different ethnicities. After clinical trials in different ethnicities, popPK analysis can be used to confirm ethnic differences and to support dose justification and labelling. PBPK modelling prediction and popPK analysis confirmation can complement each other to assess ethnic differences in pharmacokinetics at different drug development stages. Electronic supplementary material The online version of this article (doi:10.1007/s40262-015-0356-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng Feng
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Building 6, Lane 917, Ha Lei Road, Pudong, Shanghai, China
| | - Jun Shi
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Building 6, Lane 917, Ha Lei Road, Pudong, Shanghai, China.
| | - Neil Parrott
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Pei Hu
- Peking Union Medical College Hospital, Beijing, China
| | - Cornelia Weber
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Meret Martin-Facklam
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Richard Peck
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
19
|
Yu LY, Sun LN, Zhang XH, Li YQ, Yu L, Yuan ZQY, Meng L, Zhang HW, Wang YQ. A Review of the Novel Application and Potential Adverse Effects of Proton Pump Inhibitors. Adv Ther 2017; 34:1070-1086. [PMID: 28429247 PMCID: PMC5427147 DOI: 10.1007/s12325-017-0532-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 02/07/2023]
Abstract
Proton pump inhibitors (PPIs) are known as a class of pharmaceutical agents that target H+/K+-ATPase, which is located in gastric parietal cells. PPIs are widely used in the treatment of gastric acid-related diseases including peptic ulcer disease, erosive esophagitis and gastroesophageal reflux disease, and so on. These drugs present an excellent safety profile and have become one of the most commonly prescribed drugs in primary and specialty care. Except for gastric acid-related diseases, PPIs can also be used in the treatment of Helicobacter pylori infection, viral infections, respiratory system diseases, cancer and so on. Although PPIs are mainly used short term in patients with peptic ulcer disease, nowadays these drugs are increasingly used long term, and frequently for a lifetime, for instance in patients with typical or atypical symptoms of gastroesophageal reflux disease and in NSAID or aspirin users at risk of gastrotoxicity and related complications including hemorrhage, perforation and gastric outlet obstruction. Long-term use of PPIs may lead to potential adverse effects, such as osteoporotic fracture, renal damage, infection (pneumonia and clostridium difficile infection), rhabdomyolysis, nutritional deficiencies (vitamin B12, magnesium and iron), anemia and thrombocytopenia. In this article, we will review some novel uses of PPIs in other fields and summarize the underlying adverse reactions.
Collapse
|
20
|
Patel C, Rathi C, Venkatakrishnan K. Should Race-Genotype Interactions Be Considered in the Global Development of CYP2C19 Substrates? A Proposed Framework Using Physiologically Based Pharmacokinetic Modeling. J Clin Pharmacol 2016; 57:417-421. [PMID: 28004391 DOI: 10.1002/jcph.859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/19/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Chirag Patel
- Takeda Pharmaceuticals International Company, Cambridge, MA, USA
| | - Chetan Rathi
- University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
21
|
Wang HY, Chen X, Jiang J, Shi J, Hu P. Evaluating a physiologically based pharmacokinetic model for predicting the pharmacokinetics of midazolam in Chinese after oral administration. Acta Pharmacol Sin 2016; 37:276-84. [PMID: 26592516 PMCID: PMC4753367 DOI: 10.1038/aps.2015.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/12/2015] [Indexed: 11/09/2022] Open
Abstract
AIM To evaluate the SimCYP simulator ethnicity-specific population model for predicting the pharmacokinetics of midazolam, a typical CYP3A4/5 substrate, in Chinese after oral administration. METHODS The physiologically based pharmacokinetic (PBPK) model for midazolam was developed using a SimCYP population-based simulator incorporating Chinese population demographic, physiological and enzyme data. A clinical trial was conducted in 40 Chinese subjects (the half was females) receiving a single oral dose of 15 mg midazolam. The subjects were separated into 4 groups based on age (20-50, 51-65, 66-75, and above 76 years), and the pharmacokinetics profiles of each age- and gender-group were determined, and the results were used to verify the PBPK model. RESULTS Following oral administration, the simulated profiles of midazolam plasma concentrations over time in virtual Chinese were in good agreement with the observed profiles, as were AUC and Cmax. Moreover, for subjects of varying ages (20-80 years), the ratios of predicted to observed clearances were between 0.86 and 1.12. CONCLUSION The SimCYP PBPK model accurately predicted the pharmacokinetics of midazolam in Chinese from youth to old age. This study may provide novel insight into the prediction of CYP3A4/5-mediated pharmacokinetics in the Chinese population relative to Caucasians and other ethnic groups, which can support the rational design of bridging clinical trials.
Collapse
Affiliation(s)
- Hong-yun Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| | - Xia Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| | - Ji Jiang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jun Shi
- Clinical Pharmacology Department, Roche pRED China, Shanghai 201203, China
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|