1
|
Verschuur AS, Tax CMW, Boomsma MF, Carlson HL, van Wezel-Meijler G, King R, Leemans A, Leijser LM. Feasibility study to unveil the potential: considerations of constrained spherical deconvolution tractography with unsedated neonatal diffusion brain MRI data. FRONTIERS IN RADIOLOGY 2024; 4:1416672. [PMID: 39007078 PMCID: PMC11239519 DOI: 10.3389/fradi.2024.1416672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/12/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Purpose The study aimed to (1) assess the feasibility constrained spherical deconvolution (CSD) tractography to reconstruct crossing fiber bundles with unsedated neonatal diffusion MRI (dMRI), and (2) demonstrate the impact of spatial and angular resolution and processing settings on tractography and derived quantitative measures. Methods For the purpose of this study, the term-equivalent dMRIs (single-shell b800, and b2000, both 5 b0, and 45 gradient directions) of two moderate-late preterm infants (with and without motion artifacts) from a local cohort [Brain Imaging in Moderate-late Preterm infants (BIMP) study; Calgary, Canada] and one infant from the developing human connectome project with high-quality dMRI (using the b2600 shell, comprising 20 b0 and 128 gradient directions, from the multi-shell dataset) were selected. Diffusion tensor imaging (DTI) and CSD tractography were compared on b800 and b2000 dMRI. Varying image resolution modifications, (pre-)processing and tractography settings were tested to assess their impact on tractography. Each experiment involved visualizing local modeling and tractography for the corpus callosum and corticospinal tracts, and assessment of morphological and diffusion measures. Results Contrary to DTI, CSD enabled reconstruction of crossing fibers. Tractography was susceptible to image resolution, (pre-) processing and tractography settings. In addition to visual variations, settings were found to affect streamline count, length, and diffusion measures (fractional anisotropy and mean diffusivity). Diffusion measures exhibited variations of up to 23%. Conclusion Reconstruction of crossing fiber bundles using CSD tractography with unsedated neonatal dMRI data is feasible. Tractography settings affected streamline reconstruction, warranting careful documentation of methods for reproducibility and comparison of cohorts.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital, Zwolle, Netherlands
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, AB, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital, Zwolle, Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Helen L Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, AB, Canada
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Becker D, Scherer M, Neher P, Jungk C, Jesser J, Pflüger I, Bendszus M, Maier-Hein K, Unterberg A. Q-ball high-resolution fiber tractography of language associated tracts: quantitative evaluation of applicability for glioma resections. J Neurosurg Sci 2024; 68:1-12. [PMID: 31680507 DOI: 10.23736/s0390-5616.19.04782-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To date, fiber tractography (FT) is predominantly based on diffusion tensor imaging (DTI). High angular resolution diffusion imaging (HARDI)-based reconstructions have become a focus of interest, enabling the resolution of intravoxel fiber crossing. However, experience with high resolution tractography (HRFT) for neurosurgical applications is still limited to a few reports. This prospectively designed feasibility study shares our initial experience using an analytical q-ball approach (QBI) for FT of language-associated pathways in comparison with DTI-FT, focussing on a quantitative analysis and evaluation of its applicability in clinical routine. METHODS Probabilistic QBI-, and DTI-FT were performed for the major components of the language-associated fiber bundles (superior longitudinal fasciculus, inferior fronto-occipital fasciculus, medial/inferior longitudinal faciculus) in 11 patients with eloquent gliomas. The data was derived from a routine DWI sequence (b=1000s/mm2, 64 gradient directions). Quantitative analysis evaluated tract volume (TV), tract length (TL) and tract density (TD). Results were correlated to tumor and edema size. RESULTS Quantitative analysis showed larger TV and TL of the overall fiber object using QBI-FT compared with DTI-FT (TV: 16.45±1.85 vs. 10.07±1.15cm3; P<0.0001; TL: 81.95±6.14 vs. 72.06±6.92 mm; P=0.0011). Regarding overall TD, DTI delivered significantly higher values (40.57±6.59 vs. 60.98±15.94 points/voxel; P=0.0118). Bland-Altman analysis illustrated a systematic advantage to yield lager TV and TL via QBI compared with DTI for all reconstructed pathways. The results were independent of tumor or edema volume. CONCLUSIONS QBI proved to be suitable for an application in the neurosurgical setting without additional expense for the patient. Quantitative analysis of FT reveals larger overall TV, longer TL with lower TD using QBI compared with DTI, suggesting the better depiction of marginal and terminal fibers according to neuroanatomical knowledge. This emphasizes the known limitation of DTI to underestimate the dimensions of a pathway. Rather than relying on DTI, sophisticated HRFT techniques should be considered for preoperative planning and intraoperative guidance in selected cases of eloquent glioma surgery.
Collapse
Affiliation(s)
- Daniela Becker
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany -
| | - Moritz Scherer
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Peter Neher
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Jessica Jesser
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Irada Pflüger
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Klaus Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Lenga P, Scherer M, Peretzke R, Neher P, Jesser J, Beisse C, Unterberg AW, Daniela B. Correlation of visual field deficits and q-ball high-resolution fiber tractography of the optic radiation for adjacently located intracerebral lesions: preliminary results from a single-center prospective study. Neurosurg Rev 2024; 47:31. [PMID: 38177718 PMCID: PMC10766805 DOI: 10.1007/s10143-023-02278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2023] [Revised: 12/01/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Visual field deficits (VFDs) are common in patients with temporal and occipital lobe lesions. Diffusion tensor fiber tractography (DTI-FT) is widely used for surgery planning to reduce VFDs. Q-ball high-resolution fiber tractography (QBI-HRFT) improves upon DTI. This study aims to evaluate the effectiveness of DTI-FT and QBI-HRFT for surgery planning near the optic radiation (OR) as well as the correlation between VFDs, the nearest distance from the lesion to the OR fiber bundle (nD-LOR), and the lesion volume (LV). This ongoing prospective clinical trial collects clinical and imaging data of patients with lesions in deterrent areas. The present subanalysis included eight patients with gliomas near the OR. Probabilistic HRFT based on QBI-FT and conventional DTI-FT were performed for OR reconstruction based on a standard diffusion-weighted magnetic resonance imaging sequence in clinical use. Quantitative analysis was used to evaluate the lesion volume (LV) and nD-LOR. VFDs were determined based on standardized automated perimetry. We included eight patients (mean age 51.7 years [standard deviation (SD) 9.5]) with lesions near the OR. Among them, five, two, and one patients had temporodorsal, occipital, and temporal lesions, respectively. Four patients had normal vision preoperatively, while four patients had preexisting VFD. QBI-FT analysis indicated that patients with VFD exhibited a significantly smaller median nD-LOR (mean, -4.5; range -7.0; -2.3) than patients without VFD (mean, 7.4; range -4.3; 27.2) (p = 0.050). There was a trend towards a correlation between tumor volume and nD-LOR when QBI-FT was used (rs = -0.6; p = 0.056). A meticulous classification of the spatial relationship between the lesions and OR according to DTI-FT and QBI-FT was performed. The results indicated that the most prevalent orientations were the FT bundles located laterally and intrinsically in relation to the tumor. Compared with conventional DTI-FT, QBI-FT suggests reliable and more accurate results when correlated to preoperative VFDs and might be preferred for preoperative planning and intraoperative use of nearby lesions, particularly for those with larger volumes. A detailed analysis of localization, surgical approach together with QBI-FT and DTI-FT could reduce postoperative morbidity regarding VFDs. The display of HRFT techniques intraoperatively within the navigation system should be pursued for this issue.
Collapse
Affiliation(s)
- Pavlina Lenga
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Moritz Scherer
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Robin Peretzke
- German Cancer Research Center, Division of Medical Image Computing, Heidelberg, Germany
| | - Peter Neher
- German Cancer Research Center, Division of Medical Image Computing, Heidelberg, Germany
| | - Jessica Jesser
- Department of Ophthalmology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christina Beisse
- Department of Ophthalmology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Becker Daniela
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- IU International University of Applied Sciences, University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
4
|
Tallus J, Mohammadian M, Kurki T, Roine T, Posti JP, Tenovuo O. A comparison of diffusion tensor imaging tractography and constrained spherical deconvolution with automatic segmentation in traumatic brain injury. Neuroimage Clin 2023; 37:103284. [PMID: 36502725 PMCID: PMC9758569 DOI: 10.1016/j.nicl.2022.103284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Detection of microstructural white matter injury in traumatic brain injury (TBI) requires specialised imaging methods, of which diffusion tensor imaging (DTI) has been extensively studied. Newer fibre alignment estimation methods, such as constrained spherical deconvolution (CSD), are better than DTI in resolving crossing fibres that are ubiquitous in the brain and may improve the ability to detect microstructural injuries. Furthermore, automatic tract segmentation has the potential to improve tractography reliability and accelerate workflow compared to the manual segmentation commonly used. In this study, we compared the results of deterministic DTI based tractography and manual tract segmentation with CSD based probabilistic tractography and automatic tract segmentation using TractSeg. 37 participants with a history of TBI (with Glasgow Coma Scale 13-15) and persistent symptoms, and 41 healthy controls underwent deterministic DTI-based tractography with manual tract segmentation and probabilistic CSD-based tractography with TractSeg automatic segmentation.Fractional anisotropy (FA) and mean diffusivity of corpus callosum and three bilateral association tracts were measured. FA and MD values derived from both tractography methods were generally moderately to strongly correlated. CSD with TractSeg differentiated the groups based on FA, while DTI did not. CSD and TractSeg-based tractography may be more sensitive in detecting microstructural changes associated with TBI than deterministic DTI tractography. Additionally, CSD with TractSeg was found to be applicable at lower b-value and number of diffusion-encoding gradients data than previously reported.
Collapse
Affiliation(s)
- Jussi Tallus
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland.
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Kurki
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Roine
- Turku Brain and Mind Center, University of Turku, Turku FI-20014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2 C, Espoo 02150, Finland
| | - Jussi P Posti
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, Hämeentie 11, Turku FI-20521, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| |
Collapse
|
5
|
Yang X, Li P, Lei J, Feng Y, Tang L, Guo J. Integrated Application of Low-Intensity Pulsed Ultrasound in Diagnosis and Treatment of Atrophied Skeletal Muscle Induced in Tail-Suspended Rats. Int J Mol Sci 2022; 23:10369. [PMID: 36142280 PMCID: PMC9498990 DOI: 10.3390/ijms231810369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term exposure to microgravity leads to muscle atrophy, which is primarily characterized by a loss of muscle mass and strength and reduces one′s functional capability. A weightlessness-induced muscle atrophy model was established using the tail suspension test to evaluate the intervention or therapeutic effect of low-intensity pulsed ultrasound (LIPUS) on muscle atrophy. The rats were divided into five groups at random: the model group (B), the normal control group (NC), the sham-ultrasound control group (SUC), the LIPUS of 50 mW/cm2 radiation group (50 UR), and the LIPUS of 150 mW/cm2 radiation group (150 UR). Body weight, gastrocnemius weight, muscle force, and B-ultrasound images were used to evaluate muscle atrophy status. Results showed that the body weight, gastrocnemius weight, and image entropy of the tail suspension group were significantly lower than those of the control group (p < 0.01), confirming the presence of muscle atrophy. Although the results show that the muscle force and two weights of the rats stimulated by LIPUS are still much smaller than those of the NC group, they are significantly different from those of the pure tail suspension B group (p < 0.01). On day 14, the gastrocnemius forces of the rats exposed to 50 mW/cm2 and 150 mW/cm2 LIPUS were 150% and 165% of those in the B group. The gastrocnemius weights were both 135% of those in the B group. This suggests that ultrasound can, to a certain extent, prevent muscular atrophy.
Collapse
Affiliation(s)
- Xuebing Yang
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Pan Li
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Jiying Lei
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
- Junior Middle Department, Shanxi Modern Bilingual School, Taiyuan 030031, China
| | - Yichen Feng
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi’an 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
6
|
Giannitto N, Militi A, Sapienza D, Scurria S, Gualniera P, Mondello C, Spagnolo EV, Terranova A, Portelli M, Cervino G, Fiorillo L, Meto A, Alibrandi A, Asmundo A. Application of Third Molar Maturity Index (I3M) for Assessing Adult Age of 18 Years in a Southern Italian Population Sample. Eur J Dent 2022; 17:200-209. [PMID: 35760359 PMCID: PMC9949984 DOI: 10.1055/s-0042-1744373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE Age estimation of living or dead individuals has a strategic importance in medicine, anthropology, and forensic science, in the context of mass disasters and in civil or criminal matters such as adoption or asylum. Teeth play a major role in this context in particular, the third molars are useful for determining whether an individual has reached the legal age of 18 years because they are still in development from the age of 14. MATERIALS AND METHODS In this study, a sample of 307 panoramic radiographs performed on healthy subjects aged between 13 and 23 was analyzed to consider the correlation between the maturity index of the third molar (I3M) and age to verify the reliability of the cutoff 0.08 indicated by Cameriere et al in a sample of Italian subjects living in the Province of Messina (Sicily, South Italy) to discern the adult subjects from the minors. STATISTICAL ANALYSIS The analysis of 307 panoramic radiographs resulted in a sensitivity of 89.2% with a confidence interval of 95%, a specificity of 96.5% with a confidence interval of 95%, and a positive predictive value of 96.7%. RESULTS The method proved itself reliable in estimating adulthood in the population of the Messina- Sicily, but the I3M should not be used as the sole indicator to determine whether a person is younger or older than 18 years because age estimation based on dental methods alone has limitations as the third molars suffer from many variations related to their morphology, their location, and their development. CONCLUSION We recommend a combination of several methods that are available to increase accuracy of age estimation, depending on the different legal requirements in civil or criminal cases.
Collapse
Affiliation(s)
- Nino Giannitto
- School of Legal Medicine, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Angela Militi
- School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Daniela Sapienza
- School of Legal Medicine, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Serena Scurria
- School of Legal Medicine, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Patrizia Gualniera
- School of Legal Medicine, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Cristina Mondello
- School of Legal Medicine, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Elvira Ventura Spagnolo
- School of Legal Medicine, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Antonella Terranova
- School of Legal Medicine, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Marco Portelli
- School of Legal Medicine, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| | - Gabriele Cervino
- School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy,Gabriele Cervino School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messinavia Consolare Valeria, 1, 98125 MessinaItaly
| | - Luca Fiorillo
- School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy,Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli,” Naples, Italy,Department of Dentistry, University of Aldent, Tirana, Albania,Address for correspondence Luca Fiorillo School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messinavia Consolare Valeria, 1, 98125 MessinaItaly
| | - Aida Meto
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy
| | - Angela Alibrandi
- Department of Economics, University of Messina, Piazza Pugliatti, Messina, Italy
| | - Alessio Asmundo
- School of Legal Medicine, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, Messina, Italy
| |
Collapse
|
7
|
Zhylka A, Sollmann N, Kofler F, Radwan A, De Luca A, Gempt J, Wiestler B, Menze B, Krieg SM, Zimmer C, Kirschke JS, Sunaert S, Leemans A, Pluim JPW. Tracking the Corticospinal Tract in Patients With High-Grade Glioma: Clinical Evaluation of Multi-Level Fiber Tracking and Comparison to Conventional Deterministic Approaches. Front Oncol 2021; 11:761169. [PMID: 34970486 PMCID: PMC8712728 DOI: 10.3389/fonc.2021.761169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
While the diagnosis of high-grade glioma (HGG) is still associated with a considerably poor prognosis, neurosurgical tumor resection provides an opportunity for prolonged survival and improved quality of life for affected patients. However, successful tumor resection is dependent on a proper surgical planning to avoid surgery-induced functional deficits whilst achieving a maximum extent of resection (EOR). With diffusion magnetic resonance imaging (MRI) providing insight into individual white matter neuroanatomy, the challenge remains to disentangle that information as correctly and as completely as possible. In particular, due to the lack of sensitivity and accuracy, the clinical value of widely used diffusion tensor imaging (DTI)-based tractography is increasingly questioned. We evaluated whether the recently developed multi-level fiber tracking (MLFT) technique can improve tractography of the corticospinal tract (CST) in patients with motor-eloquent HGGs. Forty patients with therapy-naïve HGGs (mean age: 62.6 ± 13.4 years, 57.5% males) and preoperative diffusion MRI [repetition time (TR)/echo time (TE): 5000/78 ms, voxel size: 2x2x2 mm3, one volume at b=0 s/mm2, 32 volumes at b=1000 s/mm2] underwent reconstruction of the CST of the tumor-affected and unaffected hemispheres using MLFT in addition to deterministic DTI-based and deterministic constrained spherical deconvolution (CSD)-based fiber tractography. The brain stem was used as a seeding region, with a motor cortex mask serving as a target region for MLFT and a region of interest (ROI) for the other two algorithms. Application of the MLFT method substantially improved bundle reconstruction, leading to CST bundles with higher radial extent compared to the two other algorithms (delineation of CST fanning with a wider range; median radial extent for tumor-affected vs. unaffected hemisphere - DTI: 19.46° vs. 18.99°, p=0.8931; CSD: 30.54° vs. 27.63°, p=0.0546; MLFT: 81.17° vs. 74.59°, p=0.0134). In addition, reconstructions by MLFT and CSD-based tractography nearly completely included respective bundles derived from DTI-based tractography, which was however favorable for MLFT compared to CSD-based tractography (median coverage of the DTI-based CST for affected vs. unaffected hemispheres - CSD: 68.16% vs. 77.59%, p=0.0075; MLFT: 93.09% vs. 95.49%; p=0.0046). Thus, a more complete picture of the CST in patients with motor-eloquent HGGs might be achieved based on routinely acquired diffusion MRI data using MLFT.
Collapse
Affiliation(s)
- Andrey Zhylka
- Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Florian Kofler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Ahmed Radwan
- Department of Imaging and Pathology, Translational MRI, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Alberto De Luca
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
- Neurology Department, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jens Gempt
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Bjoern Menze
- Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich (UZ), Zurich, Switzerland
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Sunaert
- Department of Imaging and Pathology, Translational MRI, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Department of Radiology, Universitair Ziekenhuis (UZ) Leuven, Leuven, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Josien P. W. Pluim
- Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
8
|
Comparison of diffusion signal models for fiber tractography in eloquent glioma surgery - determination of accuracy under awake craniotomy conditions. World Neurosurg 2021; 158:e429-e440. [PMID: 34767992 DOI: 10.1016/j.wneu.2021.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Fiber tractography(FT) has become an important non-invasive tool to ensure maximal safe tumor resection in eloquent glioma surgery. Intraoperatively applied FT is still predominantly based on Diffusion Tensor Imaging(DTI). However, reconstruction schemes of high angular resolution diffusion imaging(HARDI) data for high resolution fiber tractography(HRFT) are gaining increasing attention. The aim of this prospective study was to compare the accuracy of sophisticated HRFT-models compared with DTI-FT. METHODS Ten patients with eloquent gliomas underwent surgery under awake craniotomy conditions. The localization of acquisition points(AP), representing deteriorations during intraoperative electrostimulation(IOM) and neuropsychological mapping, were documented. The offsets of AP to the respective fiber bundle were calculated. Probabilistic QBI- and CSD-FT were compared to DTI-FT for the major language-associated fiber bundles (superior longitudinal fasciclus (SLF) II-IV, inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus/medial longitudinal fasciculus (ILF/MLF). RESULTS Among 186 offset values, 46% were located closer than 10mm to the estimated fiber bundle (CSD:36%; DTI:40% and QBI:60%). Moreover, only 10 offsets were further away than 30mm (5%). Lowest mean min-offsets (SLF: 7.7±7.9mm; IFOF: 12.7±8.3mm; ILF/MLF: 17.7±6.7mm) were found for QBI, indicating a significant advantage compared with CSD or DTI (p<0.001), respectively. No significant differences were found between CSD-, and DTI-FT offsets (p=0.105), albeit for the compound SLF exclusively (p<0.001). CONCLUSIONS Comparing HRFT techniques QBI and CSD with DTI, QBI delivered significantly better results with lowest offsets and good correlation to IOM results. Besides, QBI-FT was feasible for neurosurgical pre- and intraoperative applications. Our findings suggest that a combined approach of QBI-FT and IOM under awake craniotomy is considerable for best preservation of neurological function in the presented setting. Overall, the implementation of selected HRFT models into neuronavigation systems seems to be a promising tool in glioma surgery.
Collapse
|
9
|
Morales H. Current and Future Challenges of Functional MRI and Diffusion Tractography in the Surgical Setting: From Eloquent Brain Mapping to Neural Plasticity. Semin Ultrasound CT MR 2021; 42:474-489. [PMID: 34537116 DOI: 10.1053/j.sult.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Decades ago, Spetzler (1986) and Sawaya (1998) provided a rough brain segmentation of the eloquent areas of the brain, aimed to help surgical decisions in cases of vascular malformations and tumors, respectively. Currently in clinical use, their criteria are in need of revision. Defining functions (eg, sensorimotor, language and visual) that should be preserved during surgery seems a straightforward task. In practice, locating the specific areas that could cause a permanent vs transient deficit is not an easy task. This is particularly true for the associative cortex and cognitive domains such as language. The old model, with Broca's and Wernicke's areas at the forefront, has been superseded by a dual-stream model of parallel language processing; named ventral and dorsal pathways. This complicated network of cortical hubs and subcortical white matter pathways needing preservation during surgery is a work in progress. Preserving not only cortical regions but most importantly preserving the connections, or white matter fiber bundles, of core regions in the brain is the new paradigm. For instance, the arcuate fascicululs and inferior fronto-occipital fasciculus are key components of the dorsal and ventral language pathways, respectively; and their damage result in permanent language deficits. Interestedly, the damage of the temporal portions of these bundles -where there is a crossroad with other multiple bundles-, appears to be more important (permanent) than the damage of the frontal portions - where plasticity and contralateral activation could help. Although intraoperative direct cortical and subcortical stimulation have contributed largely, advanced MR techniques such as functional MRI (fMRI) and diffusion tractography (DT), are at the epi-center of our current understanding. Nevertheless, these techniques posse important challenges: such as neurovascular uncoupling or venous bias on fMRI; and appropriate anatomical validation or accurate representation of crossing fibers on DT. These limitations should be well understood and taken into account in clinical practice. Unifying multidisciplinary research and clinical efforts is desirable, so these techniques could contribute more efficiently not only to locate eloquent areas but to improve outcomes and our understanding of neural plasticity. Finally, although there are constant anatomical and functional regions at the individual level, there is a known variability at the inter-individual level. This concept should strengthen the importance of a personalized approach when evaluating these regions on fMRI and DT. It should strengthen the importance of personalized treatments as well, aimed to meet tailored needs and expectations.
Collapse
Affiliation(s)
- Humberto Morales
- Section of Neuroradiology, University of Cincinnati Medical Center, Cincinnati, OH.
| |
Collapse
|
10
|
Tanaka T, Takei J, Teshigawara A, Yamamoto Y, Akasaki Y, Hasegawa Y, Murayama Y. Avoidance and Improvement in Visual Field Defect After Surgery for Metastatic Brain Tumors in the Parietal and the Occipital Lobe. World Neurosurg 2021; 155:e847-e857. [PMID: 34530147 DOI: 10.1016/j.wneu.2021.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Visual field defects occasionally occur secondary to tumors in the parietal and the occipital lobes. The aim of this study was to analyze the efficacy of improvement in hemianopsia after surgery for metastatic brain tumors involving or adjacent to the optic radiation (OR). METHODS The study included 49 patients with brain metastasis in the parietal and occipital lobes in the present study. Preoperative and postoperative neurological assessments included visual field, Mini-Mental State Examination, and Karnofsky performance scale. RESULTS Of 49 patients, 33 (67.3%) presented with preoperative homonymous hemianopsia. Of these 33 patients, the visual field was improved postoperatively in 17 patients (51.5%). In all patients regardless of preoperative hemianopsia, postoperative visual fields did not deteriorate. Tractography demonstrated that the OR was split by the tumor (n = 6) and fanning of fibers expanded along the lateral side of the tumor (n = 11). All tumors were removed via surgical access toward the medial side of the tumor. Gross total resection was achieved in most tumors in the group with visual improvement (n = 16/17; 94.1%). Improvement in the visual field was attributed to tumor location in the subcortical white matter, removal rate of the tumor, and higher postoperative Karnofsky performance scale score. CONCLUSIONS The OR tended to deviate to the lateral side of the tumor in the parieto-occipital junction. The postoperative visual field improved even in cases of an occipital tumor. Based on the present study, total resection via an appropriate surgical route should be considered to preserve the OR, leading to improvement in the postoperative visual field.
Collapse
Affiliation(s)
- Toshihide Tanaka
- Department of Neurosurgery, Kashiwa Hospital, Jikei University School of Medicine, Kashiwa, Japan.
| | - Jun Takei
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Akihiko Teshigawara
- Department of Neurosurgery, Kashiwa Hospital, Jikei University School of Medicine, Kashiwa, Japan
| | - Yohei Yamamoto
- Department of Neurosurgery, Jikei University School of Medicine, Daisan Hospital, Tokyo, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Yuzuru Hasegawa
- Department of Neurosurgery, Kashiwa Hospital, Jikei University School of Medicine, Kashiwa, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Yang JYM, Yeh CH, Poupon C, Calamante F. Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges. Phys Med Biol 2021; 66. [PMID: 34157706 DOI: 10.1088/1361-6560/ac0d90] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is currently the only imaging technique that allows for non-invasive delineation and visualisation of white matter (WM) tractsin vivo,prompting rapid advances in related fields of brain MRI research in recent years. One of its major clinical applications is for pre-surgical planning and intraoperative image guidance in neurosurgery, where knowledge about the location of WM tracts nearby the surgical target can be helpful to guide surgical resection and optimise post-surgical outcomes. Surgical injuries to these WM tracts can lead to permanent neurological and functional deficits, making the accuracy of tractography reconstructions paramount. The quality of dMRI tractography is influenced by many modifiable factors, ranging from MRI data acquisition through to the post-processing of tractography output, with the potential of error propagation based on decisions made at each and subsequent processing steps. Research over the last 25 years has significantly improved the anatomical accuracy of tractography. An updated review about tractography methodology in the context of neurosurgery is now timely given the thriving research activities in dMRI, to ensure more appropriate applications in the clinical neurosurgical realm. This article aims to review the dMRI physics, and tractography methodologies, highlighting recent advances to provide the key concepts of tractography-informed neurosurgery, with a focus on the general considerations, the current state of practice, technical challenges, potential advances, and future demands to this field.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fernando Calamante
- The University of Sydney, Sydney Imaging, Sydney, Australia.,The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| |
Collapse
|
12
|
Zoli M, Talozzi L, Martinoni M, Manners DN, Badaloni F, Testa C, Asioli S, Mitolo M, Bartiromo F, Rochat MJ, Fabbri VP, Sturiale C, Conti A, Lodi R, Mazzatenta D, Tonon C. From Neurosurgical Planning to Histopathological Brain Tumor Characterization: Potentialities of Arcuate Fasciculus Along-Tract Diffusion Tensor Imaging Tractography Measures. Front Neurol 2021; 12:633209. [PMID: 33716935 PMCID: PMC7952864 DOI: 10.3389/fneur.2021.633209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Tractography has been widely adopted to improve brain gliomas' surgical planning and guide their resection. This study aimed to evaluate state-of-the-art of arcuate fasciculus (AF) tractography for surgical planning and explore the role of along-tract analyses in vivo for characterizing tumor histopathology. Methods: High angular resolution diffusion imaging (HARDI) images were acquired for nine patients with tumors located in or near language areas (age: 41 ± 14 years, mean ± standard deviation; five males) and 32 healthy volunteers (age: 39 ± 16 years; 16 males). Phonemic fluency task fMRI was acquired preoperatively for patients. AF tractography was performed using constrained spherical deconvolution diffusivity modeling and probabilistic fiber tracking. Along-tract analyses were performed, dividing the AF into 15 segments along the length of the tract defined using the Laplacian operator. For each AF segment, diffusion tensor imaging (DTI) measures were compared with those obtained in healthy controls (HCs). The hemispheric laterality index (LI) was calculated from language task fMRI activations in the frontal, parietal, and temporal lobe parcellations. Tumors were grouped into low/high grade (LG/HG). Results: Four tumors were LG gliomas (one dysembryoplastic neuroepithelial tumor and three glioma grade II) and five HG gliomas (two grade III and three grade IV). For LG tumors, gross total removal was achieved in all but one case, for HG in two patients. Tractography identified the AF trajectory in all cases. Four along-tract DTI measures potentially discriminated LG and HG tumor patients (false discovery rate < 0.1): the number of abnormal MD and RD segments, median AD, and MD measures. Both a higher number of abnormal AF segments and a higher AD and MD measures were associated with HG tumor patients. Moreover, correlations (unadjusted p < 0.05) were found between the parietal lobe LI and the DTI measures, which discriminated between LG and HG tumor patients. In particular, a more rightward parietal lobe activation (LI < 0) correlated with a higher number of abnormal MD segments (R = −0.732) and RD segments (R = −0.724). Conclusions: AF tractography allows to detect the course of the tract, favoring the safer-as-possible tumor resection. Our preliminary study shows that along-tract DTI metrics can provide useful information for differentiating LG and HG tumors during pre-surgical tumor characterization.
Collapse
Affiliation(s)
- Matteo Zoli
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Martinoni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Badaloni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Micaela Mitolo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Magali Jane Rochat
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmelo Sturiale
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
13
|
Pieri V, Sanvito F, Riva M, Petrini A, Rancoita PMV, Cirillo S, Iadanza A, Bello L, Castellano A, Falini A. Along-tract statistics of neurite orientation dispersion and density imaging diffusion metrics to enhance MR tractography quantitative analysis in healthy controls and in patients with brain tumors. Hum Brain Mapp 2020; 42:1268-1286. [PMID: 33274823 PMCID: PMC7927309 DOI: 10.1002/hbm.25291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Along‐tract statistics analysis enables the extraction of quantitative diffusion metrics along specific white matter fiber tracts. Besides quantitative metrics derived from classical diffusion tensor imaging (DTI), such as fractional anisotropy and diffusivities, new parameters reflecting the relative contribution of different diffusion compartments in the tissue can be estimated through advanced diffusion MRI methods as neurite orientation dispersion and density imaging (NODDI), leading to a more specific microstructural characterization. In this study, we extracted both DTI‐ and NODDI‐derived quantitative microstructural diffusion metrics along the most eloquent fiber tracts in 15 healthy subjects and in 22 patients with brain tumors. We obtained a robust intraprotocol reference database of normative along‐tract microstructural metrics, and their corresponding plots, from healthy fiber tracts. Each diffusion metric of individual patient's fiber tract was then plotted and statistically compared to the normative profile of the corresponding metric from the healthy fiber tracts. NODDI‐derived metrics appeared to account for the pathological microstructural changes of the peritumoral tissue more accurately than DTI‐derived ones. This approach may be useful for future studies that may compare healthy subjects to patients diagnosed with other pathological conditions.
Collapse
Affiliation(s)
- Valentina Pieri
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Sanvito
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Alessandro Petrini
- Department of Computer Science, Università degli Studi di Milano, Milan, Italy
| | - Paola M V Rancoita
- University Centre for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Cirillo
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Iadanza
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Antonella Castellano
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
De Luca A, Guo F, Froeling M, Leemans A. Spherical deconvolution with tissue-specific response functions and multi-shell diffusion MRI to estimate multiple fiber orientation distributions (mFODs). Neuroimage 2020; 222:117206. [DOI: 10.1016/j.neuroimage.2020.117206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
|
15
|
Ashmore J, Pemberton HG, Crum WD, Jarosz J, Barker GJ. Implementation of clinical tractography for pre-surgical planning of space occupying lesions: An investigation of common acquisition and post-processing methods compared to dissection studies. PLoS One 2020; 15:e0231440. [PMID: 32287298 PMCID: PMC7156092 DOI: 10.1371/journal.pone.0231440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022] Open
Abstract
Background and purpose There is limited standardization of acquisition and processing methods in diffusion tractography for pre-surgical planning, leading to a range of approaches. In this study, a number of representative acquisition variants and post processing methods are considered, to assess their importance when implementing a clinical tractography program. Methods Diffusion MRI was undertaken in ten healthy volunteers, using protocols typical of clinical and research scanning: a 32-direction diffusion acquisition with and without peripheral gating, and a non-gated 64 diffusion direction acquisition. All datasets were post-processed using diffusion tensor reconstruction with streamline tractography, and with constrained spherical deconvolution (CSD) with both streamline and probabilistic tractography, to delineate the cortico-spinal tract (CST) and optic radiation (OR). The accuracy of tractography results was assessed against a histological atlas using a novel probabilistic Dice overlap technique, together with direct comparison to tract volumes and distance of Meyer’s loop to temporal pole (ML-TP) from dissections studies. Three clinical case studies of patients with space occupying lesions were also investigated. Results Tracts produced by CSD with probabilistic tractography provided the greatest overlap with the histological atlas (overlap scores of 44% and 52% for the CST and OR, respectively) and best matched tract volume and ML-TP distance from dissection studies. The acquisition protocols investigated had limited impact on the accuracy of the tractography. In all patients, the CSD based probabilistic tractography created tracts with greatest anatomical plausibility, although in one case anatomically plausible pathways could not be reconstructed without reducing the probabilistic threshold, leading to an increase in false positive tracts. Conclusions Advanced post processing techniques such as CSD with probabilistic tractography are vital for pre-surgical planning. However, overall accuracy relative to dissection studies remains limited.
Collapse
Affiliation(s)
- Jonathan Ashmore
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, England, United Kingdom
- * E-mail:
| | - Hugh G. Pemberton
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
| | - William D. Crum
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
| | - Jozef Jarosz
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, England, United Kingdom
| | - Gareth J. Barker
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, England, United Kingdom
| |
Collapse
|
16
|
Sanvito F, Caverzasi E, Riva M, Jordan KM, Blasi V, Scifo P, Iadanza A, Crespi SA, Cirillo S, Casarotti A, Leonetti A, Puglisi G, Grimaldi M, Bello L, Gorno-Tempini ML, Henry RG, Falini A, Castellano A. fMRI-Targeted High-Angular Resolution Diffusion MR Tractography to Identify Functional Language Tracts in Healthy Controls and Glioma Patients. Front Neurosci 2020; 14:225. [PMID: 32296301 PMCID: PMC7136614 DOI: 10.3389/fnins.2020.00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MR Tractography enables non-invasive preoperative depiction of language subcortical tracts, which is crucial for the presurgical work-up of brain tumors; however, it cannot evaluate the exact function of the fibers. PURPOSE A systematic pipeline was developed to combine tractography reconstruction of language fiber bundles, based on anatomical landmarks (Anatomical-T), with language fMRI cortical activations. A fMRI-targeted Tractography (fMRI-T) was thus obtained, depicting the subsets of the anatomical tracts whose endpoints are located inside a fMRI activation. We hypothesized that fMRI-T could provide additional functional information regarding the subcortical structures, better reflecting the eloquent white matter structures identified intraoperatively. METHODS Both Anatomical-T and fMRI-T of language fiber tracts were performed on 16 controls and preoperatively on 16 patients with left-hemisphere brain tumors, using a q-ball residual bootstrap algorithm based on High Angular Resolution Diffusion Imaging (HARDI) datasets (b = 3000 s/mm2; 60 directions); fMRI ROIs were obtained using picture naming, verbal fluency, and auditory verb generation tasks. In healthy controls, normalized MNI atlases of fMRI-T and Anatomical-T were obtained. In patients, the surgical resection of the tumor was pursued by identifying eloquent structures with intraoperative direct electrical stimulation mapping and extending surgery to the functional boundaries. Post-surgical MRI allowed to identify Anatomical-T and fMRI-T non-eloquent portions removed during the procedure. RESULTS MNI Atlases showed that fMRI-T is a subset of Anatomical-T, and that different task-specific fMRI-T involve both shared subsets and task-specific subsets - e.g., verbal fluency fMRI-T strongly involves dorsal frontal tracts, consistently with the phonogical-articulatory features of this task. A quantitative analysis in patients revealed that Anatomical-T removed portions of AF-SLF and IFOF were significantly greater than verbal fluency fMRI-T ones, suggesting that fMRI-T is a more specific approach. In addition, qualitative analyses showed that fMRI-T AF-SLF and IFOF predict the exact functional limits of resection with increased specificity when compared to Anatomical-T counterparts, especially the superior frontal portion of IFOF, in a subcohort of patients. CONCLUSION These results suggest that performing fMRI-T in addition to the 'classic' Anatomical-T may be useful in a preoperative setting to identify the 'high-risk subsets' that should be spared during the surgical procedure.
Collapse
Affiliation(s)
- Francesco Sanvito
- Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Eduardo Caverzasi
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- Neurosurgical Oncology Unit, Humanitas Clinical and Research Center – IRCCS, Rozzano, Italy
| | - Kesshi M. Jordan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | | | - Paola Scifo
- Nuclear Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Iadanza
- Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Sofia Allegra Crespi
- Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Cirillo
- Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Casarotti
- Neurosurgical Oncology Unit, Humanitas Clinical and Research Center – IRCCS, Rozzano, Italy
| | - Antonella Leonetti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Guglielmo Puglisi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Marco Grimaldi
- Neuroradiology Unit, Humanitas Clinical and Research Center – IRCCS, Rozzano, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Humanitas Clinical and Research Center – IRCCS, Rozzano, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Maria Luisa Gorno-Tempini
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Roland G. Henry
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Going Beyond Diffusion Tensor Imaging Tractography in Eloquent Glioma Surgery–High-Resolution Fiber Tractography: Q-Ball or Constrained Spherical Deconvolution? World Neurosurg 2020; 134:e596-e609. [DOI: 10.1016/j.wneu.2019.10.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
|
18
|
Integration of Diffusion Magnetic Resonance Tractography into tomotherapy radiation treatment planning for high-grade gliomas. Phys Med 2018; 55:127-134. [DOI: 10.1016/j.ejmp.2018.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/15/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 01/23/2023] Open
|
19
|
Calamuneri A, Arrigo A, Mormina E, Milardi D, Cacciola A, Chillemi G, Marino S, Gaeta M, Quartarone A. White Matter Tissue Quantification at Low b-Values Within Constrained Spherical Deconvolution Framework. Front Neurol 2018; 9:716. [PMID: 30210438 PMCID: PMC6122130 DOI: 10.3389/fneur.2018.00716] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
In the last decades, a number of Diffusion Weighted Imaging (DWI) based techniques have been developed to study non-invasively human brain tissues, especially white matter (WM). In this context, Constrained Spherical Deconvolution (CSD) is recognized as being able to accurately characterize water molecules displacement, as they emerge from the observation of MR diffusion weighted (MR-DW) images. CSD is suggested to be applied on MR-DW datasets consisting of b-values around 3,000 s/mm2 and at least 45 unique diffusion weighting directions. Below such technical requirements, Diffusion Tensor Imaging (DT) remains the most widely accepted model. Unlike CSD, DTI is unable to resolve complex fiber geometries within the brain, thus affecting related tissues quantification. In addition, thanks to CSD, an index called Apparent Fiber Density (AFD) can be measured to estimate intra-axonal volume fraction within WM. In standard clinical settings, diffusion based acquisitions are well below such technical requirements. Therefore, in this study we wanted to extensively compare CSD and DTI model outcomes on really low demanding MR-DW datasets, i.e., consisting of a single shell (b-value = 1,000 s/mm2) and only 30 unique diffusion encoding directions. To this end, we performed deterministic and probabilistic tractographic reconstruction of two major WM pathways, namely the Corticospinal Tract and the Arcuate Fasciculus. We estimated and analyzed tensor based features as well as, for the first time, AFD interpretability in our data. By performing multivariate statistics and tract-based ROI analysis, we demonstrate that WM quantification is affected by both the diffusion model and threshold applied to noisy tractographic maps. Consistently with existing literature, we showed that CSD outperforms DTI even in our scenario. Most importantly, for the first time we address the problem of accuracy and interpretation of AFD in a low-demanding DW setup, and show that it is still a biological meaningful measure for the analysis of intra-axonal volume even in clinical settings.
Collapse
Affiliation(s)
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS Ospedale San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Enricomaria Mormina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy.,Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy.,Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Silvia Marino
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Michele Gaeta
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy.,Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,Fresco Institute for Parkinson's & Movement Disorders, NYU-Langone School of Medicine, New York, NY, United States
| |
Collapse
|
20
|
Hales PW, Smith V, Dhanoa-Hayre D, O'Hare P, Mankad K, d'Arco F, Cooper J, Kaur R, Phipps K, Bowman R, Hargrave D, Clark C. Delineation of the visual pathway in paediatric optic pathway glioma patients using probabilistic tractography, and correlations with visual acuity. NEUROIMAGE-CLINICAL 2017. [PMID: 29527480 PMCID: PMC5842647 DOI: 10.1016/j.nicl.2017.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
Background Radiological biomarkers which correlate with visual function are needed to improve the clinical management of optic pathway glioma (OPG) patients. Currently, these are not available using conventional magnetic resonance imaging (MRI) sequences. The aim of this study was to determine whether diffusion MRI could be used to delineate the entire optic pathway in OPG patients, and provide imaging biomarkers within this pathway which correlate with a patient's visual acuity (VA). Methods Multi-shell diffusion MRI data were acquired in a cohort of paediatric OPG patients, along with VA measurements in each eye. Diffusion MRI data were processed using constrained spherical deconvolution and probabilistic fibre tractography, to delineate the white matter bundles forming the optic pathway in each patient. Median fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured in the optic nerves, tracts, and radiations, and correlated against each patient's VA. Results In the optic nerves, median FA significantly correlated with VA (R2adj = 0.31, p = 0.0082), with lower FA associated with poorer vision. In the optic radiations, both lower FA and higher ADC were significantly associated with poorer vision (R2adj = 0.52, p = 0.00075 and R2adj = 0.50, p = 0.0012 respectively). No significant correlations between VA and either FA or ADC were found in the optic tracts. Conclusions Multi-shell diffusion MRI provides in vivo delineation of the optic pathway in OPG patients, despite the presence of tumour invasion. This technique provides imaging biomarkers which are sensitive to microstructural damage to the underlying white matter in this pathway, which is not always visible on conventional MRI. Diffusion MRI can delineate the entire visual pathway in optic pathway glioma patients. Decreased FA in the optic nerves and radiations is associated with poorer vision. This provides sub-clinical biomarkers of structural damage to the visual pathway. These biomarkers correlate strongly with a patient's visual acuity.
Collapse
Affiliation(s)
- Patrick W Hales
- Developmental Imaging & Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - Victoria Smith
- Ophthalmology Department, Great Ormond Street Children's Hospital, London, UK
| | - Deepi Dhanoa-Hayre
- Ophthalmology Department, Great Ormond Street Children's Hospital, London, UK
| | - Patricia O'Hare
- Haematology and Oncology Department, Great Ormond Street Children's Hospital, London, UK
| | - Kshitij Mankad
- Radiology Department, Great Ormond Street Children's Hospital, London, UK
| | - Felice d'Arco
- Radiology Department, Great Ormond Street Children's Hospital, London, UK
| | - Jessica Cooper
- Radiology Department, Great Ormond Street Children's Hospital, London, UK
| | - Ramneek Kaur
- Developmental Imaging & Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Kim Phipps
- Haematology and Oncology Department, Great Ormond Street Children's Hospital, London, UK
| | - Richard Bowman
- Ophthalmology Department, Great Ormond Street Children's Hospital, London, UK
| | - Darren Hargrave
- Haematology and Oncology Department, Great Ormond Street Children's Hospital, London, UK
| | - Christopher Clark
- Developmental Imaging & Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Advanced neuroimaging techniques such as functional MRI (fMRI) and diffusion MR tractography have been increasingly used at every stage of the surgical management of brain gliomas, as a means to improve tumor resection while preserving brain functions. This review provides an overview of the last advancements in the field of functional MRI techniques, with a particular focus on their current clinical use and reliability in the preoperative and intraoperative setting, as well as their future perspectives for personalized multimodal management of patients with gliomas. RECENT FINDINGS fMRI and diffusion MR tractography give relevant insights on the anatomo-functional organization of eloquent cortical areas and subcortical connections near or inside a tumor. Task-based fMRI and diffusion tensor imaging (DTI) tractography have proven to be valid and highly sensitive tools for localizing the distinct eloquent cortical and subcortical areas before surgery in glioma patients; they also show good accuracy when compared with intraoperative stimulation mapping data. Resting-state fMRI functional connectivity as well as new advanced HARDI (high angular resolution diffusion imaging) tractography methods are improving and reshaping the role of functional MRI for surgery of gliomas, with potential benefit for personalized treatment strategies. Noninvasive functional MRI techniques may offer the opportunity to perform a multimodal assessment in brain tumors, to be integrated with intraoperative mapping and clinical data for improving surgical management and oncological and functional outcome in patients affected by gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy.
| | - Sara Cirillo
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.,Unit of Oncological Neurosurgery, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Riva
- Unit of Oncological Neurosurgery, Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy
| |
Collapse
|
22
|
Arrigo A, Gaeta M, Calamuneri A, Mormina E, Marino S, Stagno d'Alcontres F, Longo M, Granata F. Lipofibromatous hamartoma of the median nerve: 3T MRI evaluation by constrained spherical deconvolution analysis. Neuroradiol J 2017; 31:445-448. [PMID: 28541095 DOI: 10.1177/1971400917709622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
In this study we described a case of lipofibromatous hamartoma involving the median nerve. We adopted diffusion tensor imaging and constrained spherical deconvolution-based tractography to reconstruct the affected median nerve. Moreover, we extracted diffusion-based parameters reflecting axonal integrity loss of median nerve fibres. Our data showed that constrained spherical deconvolution-based tractography outperformed the diffusion tensor imaging-based method, allowing the detection of the entire median nerve, including its branches, thus offering a robust method to investigate the involvement of the median nerve in pathological conditions. All clinical and technical implications are extensively described.
Collapse
Affiliation(s)
- Alessandro Arrigo
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| | - Michele Gaeta
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| | - Alessandro Calamuneri
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| | - Enricomaria Mormina
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| | | | | | - Marcello Longo
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| | - Francesca Granata
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| |
Collapse
|