1
|
Demin KA, Prazdnova EV, Minkina TM, Gorovtsov AV. Sulfate-reducing bacteria unearthed: ecological functions of the diverse prokaryotic group in terrestrial environments. Appl Environ Microbiol 2024; 90:e0139023. [PMID: 38551370 PMCID: PMC11022543 DOI: 10.1128/aem.01390-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
Sulfate-reducing prokaryotes (SRPs) are essential microorganisms that play crucial roles in various ecological processes. Even though SRPs have been studied for over a century, there are still gaps in our understanding of their biology. In the past two decades, a significant amount of data on SRP ecology has been accumulated. This review aims to consolidate that information, focusing on SRPs in soils, their relation to the rare biosphere, uncultured sulfate reducers, and their interactions with other organisms in terrestrial ecosystems. SRPs in soils form part of the rare biosphere and contribute to various processes as a low-density population. The data reveal a diverse range of sulfate-reducing taxa intricately involved in terrestrial carbon and sulfur cycles. While some taxa like Desulfitobacterium and Desulfosporosinus are well studied, others are more enigmatic. For example, members of the Acidobacteriota phylum appear to hold significant importance for the terrestrial sulfur cycle. Many aspects of SRP ecology remain mysterious, including sulfate reduction in different bacterial phyla, interactions with bacteria and fungi in soils, and the existence of soil sulfate-reducing archaea. Utilizing metagenomic, metatranscriptomic, and culture-dependent approaches will help uncover the diversity, functional potential, and adaptations of SRPs in the global environment.
Collapse
|
2
|
He R, Hu S, Li Q, Zhao D, Wu QL, Zeng J. Greater transmission capacities and small-world characteristics of bacterial communities in the above- than those in the below- ground niches of a typical submerged macrophyte, Vallisneria natans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166229. [PMID: 37586539 DOI: 10.1016/j.scitotenv.2023.166229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Leaves and roots of submerged macrophytes provide extended surfaces and stable internal tissues for distinct microorganisms to rest, but how these microorganisms interact with each other across different niches and ultimately drive the distribution through horizontal and vertical transmissions remains largely undetermined. Knowledge of the mechanisms of assemblage and transmission in aquatic macrophytes-associated microbial communities will help to better understanding their important roles in plant fitness and benefit ecological functions. Here, we conducted a microcosmic experiment based on in situ lake samples to investigate the bacterial community assemblage, transmission, and co-occurrence patterns in different niches of a typical submerged macrophyte, Vallisneria natans (V. natans), including seed endosphere, as well as environmental (water and bulk sediment), epiphytic (phyllosphere and rhizosphere), and endophytic (leaf and root endosphere) microhabitats of both leaves and roots representatives of the above- and below- ground niches (AGNs and BGNs), respectively. We found the bacterial communities colonized in epiphytic niches not only exhibited the highest diversity compared to adjacent environmental and endophytic niches, but also dominated the interactions between those bacterial members of neighboring niches in both AGNs and BGNs. The host plants promoted niche specificity at bacterial community-level, as confirmed by the proportion of bacterial specialists increased with plant proximity, especially in the BGNs. Furthermore, the bacterial taxa colonized in the AGNs exhibited higher horizontal and vertical transmission capacities than those in the BGNs, especially in the vertical transmission from seeds to leaves (41.38 %) than roots (0.42 %). Meanwhile, the bacterial co-occurrence network in AGNs was shown to have stronger small-world characteristics but weaker stability than those in the BGNs. Overall, this study cast new light on the plant microbiome in the aquatic environment, thus better promoting the potential development of strategies for breeding aquatic macrophyte holobiont with enhanced water purification and pollutant removal capabilities in the future.
Collapse
Affiliation(s)
- Rujia He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwen Hu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qisheng Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
3
|
Reprint of: Contribution of enrichments and resampling for sulfate reducing bacteria diversity assessment by high-throughput cultivation. J Microbiol Methods 2017; 138:100-105. [PMID: 28571925 DOI: 10.1016/j.mimet.2017.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 11/20/2022]
Abstract
The development of new high-throughput cultivation methods aims to increase the isolation efficiency as compared to standard techniques that often require enrichment procedures to compensate the low microbial recovery. In the current study, estuarine sulfate-reducing bacteria were isolated using an anaerobic isolation procedure in 384-well microplates. Ninety-nine strains were recovered from initial sediments. Isolates were identified according to their partial 16S rRNA sequences and clustered into 13 phylotypes. Besides, the increase in species richness obtained through enrichments or resampling was investigated. Forty-four enrichment procedures were conducted and shifts in sulfate-reducing bacterial communities were investigated through dsrAB gene fingerprinting. Despite efforts in conducting numerous enrichment conditions only few of them were statistically different from initial sample. The cultural diversity obtained from 3 of the most divergent enrichments, as well as from resampled sediments equally contributed to raise the sulfate-reducing diversity up to 22 phylotypes. Enrichments (selection of metabolism) or resampling (transient populations and micro-heterogeneity) may still be helpful to assess new microbial phylotypes. Nevertheless, all the newly cultivated strains were all representatives of minor Operational Taxonomic Units and could eventually be recovered by maintaining high-throughput isolation effort from the initial sediments.
Collapse
|
4
|
Balk M, Keuskamp JA, Laanbroek HJ. Potential Activity, Size, and Structure of Sulfate-Reducing Microbial Communities in an Exposed, Grazed and a Sheltered, Non-Grazed Mangrove Stand at the Red Sea Coast. Front Microbiol 2016; 6:1478. [PMID: 26733999 PMCID: PMC4686736 DOI: 10.3389/fmicb.2015.01478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/08/2015] [Indexed: 12/02/2022] Open
Abstract
After oxygen, sulfate is the most important oxidant for the oxidation of organic matter in mangrove forest soils. As sulfate reducers are poor competitors for common electron donors, their relative success depends mostly on the surplus of carbon that is left by aerobic organisms due to oxygen depletion. We therefore hypothesized that sulfate-cycling in mangrove soils is influenced by the size of net primary production, and hence negatively affected by mangrove degradation and exploitation, as well as by carbon-exporting waves. To test this, we compared quantitative and qualitative traits of sulfate-reducing communities in two Saudi-Arabian mangrove stands near Jeddah, where co-occurring differences in camel-grazing pressure and tidal exposure led to a markedly different stand height and hence primary production. Potential sulfate reduction rates measured in anoxic flow-through reactors in the absence and presence of additional carbon sources were significantly higher in the samples from the non-grazed site. Near the surface (0–2 cm depth), numbers of dsrB gene copies and culturable cells also tended to be higher in the non-grazed sites, while these differences were not detected in the sub-surface (4–6 cm depth). It was concluded that sulfate-reducing microbes at the surface were indeed repressed at the low-productive site as could be expected from our hypothesis. At both sites, sulfate reduction rates as well as numbers of the dsrB gene copies and viable cells increased with depth suggesting repression of sulfate reduction near the surface in both irrespective of production level. Additionally, sequence analysis of DNA bands obtained from DGGE gels based on the dsrB gene, showed a clear difference in dominance of sulfate-reducing genera belonging to the Deltaproteobacteria and the Firmicutes between sampling sites and depths.
Collapse
Affiliation(s)
- Melike Balk
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands; Faculty of Geosciences, Utrecht UniversityUtrecht, Netherlands
| | - Joost A Keuskamp
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands; Ecology and Biodiversity, Department of Biology, Utrecht UniversityUtrecht, Netherlands
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands; Ecology and Biodiversity, Department of Biology, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
5
|
Subha B, Song YC, Woo JH. Optimization of biostimulant for bioremediation of contaminated coastal sediment by response surface methodology (RSM) and evaluation of microbial diversity by pyrosequencing. MARINE POLLUTION BULLETIN 2015; 98:235-246. [PMID: 26139459 DOI: 10.1016/j.marpolbul.2015.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
The present study aims to optimize the slow release biostimulant ball (BSB) for bioremediation of contaminated coastal sediment using response surface methodology (RSM). Different bacterial communities were evaluated using a pyrosequencing-based approach in contaminated coastal sediments. The effects of BSB size (1-5cm), distance (1-10cm) and time (1-4months) on changes in chemical oxygen demand (COD) and volatile solid (VS) reduction were determined. Maximum reductions of COD and VS, 89.7% and 78.8%, respectively, were observed at a 3cm ball size, 5.5cm distance and 4months; these values are the optimum conditions for effective treatment of contaminated coastal sediment. Most of the variance in COD and VS (0.9291 and 0.9369, respectively) was explained in our chosen models. BSB is a promising method for COD and VS reduction and enhancement of SRB diversity.
Collapse
Affiliation(s)
- Bakthavachallam Subha
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea
| | - Young Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea.
| | - Jung Hui Woo
- Nuclear Power Equipment Research Center, Korea Maritime and Ocean University, Busan, South Korea
| |
Collapse
|
6
|
Colin Y, Goñi-Urriza M, Caumette P, Guyoneaud R. Contribution of enrichments and resampling for sulfate reducing bacteria diversity assessment by high-throughput cultivation. J Microbiol Methods 2015; 110:92-7. [PMID: 25578508 DOI: 10.1016/j.mimet.2015.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
The development of new high-throughput cultivation methods aims to increase the isolation efficiency as compared to standard techniques that often require enrichment procedures to compensate the low microbial recovery. In the current study, estuarine sulfate-reducing bacteria were isolated using an anaerobic isolation procedure in 384-well microplates. Ninety-nine strains were recovered from initial sediments. Isolates were identified according to their partial 16S rRNA sequences and clustered into 13 phylotypes. Besides, the increase in species richness obtained through enrichments or resampling was investigated. Forty-four enrichment procedures were conducted and shifts in sulfate-reducing bacterial communities were investigated through dsrAB gene fingerprinting. Despite efforts in conducting numerous enrichment conditions only few of them were statistically different from initial sample. The cultural diversity obtained from 3 of the most divergent enrichments, as well as from resampled sediments equally contributed to raise the sulfate-reducing diversity up to 22 phylotypes. Enrichments (selection of metabolism) or resampling (transient populations and micro-heterogeneity) may still be helpful to assess new microbial phylotypes. Nevertheless, all the newly cultivated strains were all representatives of minor Operational Taxonomic Units and could eventually be recovered by maintaining high-throughput isolation effort from the initial sediments.
Collapse
Affiliation(s)
- Yannick Colin
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France
| | - Marisol Goñi-Urriza
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France
| | - Pierre Caumette
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France
| | - Rémy Guyoneaud
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| |
Collapse
|
7
|
Pester M, Knorr KH, Friedrich MW, Wagner M, Loy A. Sulfate-reducing microorganisms in wetlands - fameless actors in carbon cycling and climate change. Front Microbiol 2012; 3:72. [PMID: 22403575 PMCID: PMC3289269 DOI: 10.3389/fmicb.2012.00072] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/11/2012] [Indexed: 02/03/2023] Open
Abstract
Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM) in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point toward the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change.
Collapse
Affiliation(s)
- Michael Pester
- Department of Microbial Ecology, Vienna Ecology Center, Faculty of Life Sciences, University of Vienna Wien, Austria
| | | | | | | | | |
Collapse
|
8
|
Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers. Appl Environ Microbiol 2011; 77:6502-9. [PMID: 21764959 DOI: 10.1128/aem.00576-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that the transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate-reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to environmental perturbations.
Collapse
|