1
|
Tournebize C, Schleef M, De Mul A, Pacaud S, Derain-Dubourg L, Juillard L, Rouvière O, Lemoine S. Multiparametric MRI: can we assess renal function differently? Clin Kidney J 2025; 18:sfae365. [PMID: 40008350 PMCID: PMC11852294 DOI: 10.1093/ckj/sfae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2024] [Indexed: 02/27/2025] Open
Abstract
We are lacking tools to evaluate renal performance. In this review, we presented the current knowledge and potential future applications in nephrology of new magnetic resonance imaging (MRI) techniques, focusing on diffusion-weighted (DWI) MRI, blood oxygen level-dependent (BOLD) MRI, and magnetic resonance relaxometry (T1 and T2 mapping). These sequences are sensitive to early changes in biological processes such as perfusion, oxygenation, edema, or fibrosis without requiring contrast medium injection and avoids irradiation and nephrotoxicity. Combining these different sequences into the so-called "multiparametric MRI" enables noninvasive, repeated exploration of renal performance on each kidney separately. DWI MRI, which evaluates the movement of water molecules, is a promising tool for noninvasive assessment of interstitial fibrosis and the cortical restricted diffusion has a prognostic value for the deterioration of renal function in diabetic nephropathy. BOLD MRI is sensitive to changes in renal tissue oxygenation based on the paramagnetic properties of deoxyhemoglobin and is of particular interest in the setting of renal artery stenosis to assess tissue oxygenation in the post-stenotic kidney. This sequence can be used for predicting degradation of renal function in chronic kidney diseases (CKD) and might be useful in preclinical studies to assess nephroprotective and nephrotoxic effects of drugs in development. T1 and T2 relaxation times change with tissue water content and might help assessing renal fibrosis. A corticomedullary dedifferentiation in T1 has been observed in CKD and negatively correlates with glomerular filtration rate. Data on the significance of T2 values in renal imaging is more limited. Multiparametric MRI has the potential to provide a better understanding of renal physiology and pathophysiology, a better characterization of renal lesions, an earlier and more sensitive detection of renal disease, and an aid to personalized patient-centered therapeutic decision-making. Further data and clinical trials are needed to allow its routine application in clinical practice.
Collapse
Affiliation(s)
- Corentin Tournebize
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| | - Maxime Schleef
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| | - Aurélie De Mul
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
| | - Sophie Pacaud
- Service d'Imagerie Urinaire et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Laurence Derain-Dubourg
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
| | - Laurent Juillard
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| | - Olivier Rouvière
- Service d'Imagerie Urinaire et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- LabTau, INSERM U1052, Université de Lyon, Lyon, France
| | - Sandrine Lemoine
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| |
Collapse
|
2
|
Zhang L, Mo X, Jiang Z, Mai W, Su H, Zhang Z, Ye K, Fu D, Zhao S, Shi C. Contralateral renal change in a unilateral ureteral obstruction rat model using intravoxel incoherent motion diffusion-weighted imaging. Ren Fail 2024; 46:2359642. [PMID: 38860328 PMCID: PMC11168327 DOI: 10.1080/0886022x.2024.2359642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES Most functional magnetic resonance research has primarily examined alterations in the affected kidney, often neglecting the contralateral kidney. Our study aims to investigate whether imaging parameters accurately depict changes in both the renal cortex and medulla in a unilateral ureteral obstruction rat model, thereby showcasing the utility of intravoxel incoherent motion (IVIM) in evaluating contralateral renal changes. METHODS Six rats underwent MR scans and were subsequently sacrificed for baseline histological examination. Following the induction of left ureteral obstruction, 48 rats were scanned, and the histopathological examinations were conducted on days 3, 7, 10, 14, 21, 28, 35, and 42. The apparent diffusion coefficient (ADC), pure molecular diffusion (D), pseudodiffusion (D*), and perfusion fraction (f) values were measured using IVIM. RESULTS On the 10th day of obstruction, both cortical and medullary ADC values differed significantly between the UUO10 group and the sham group (p < 0.01). The cortical D values showed statistically significant differences between UUO3 group and sham group (p < 0.01) but not among UUO groups at other time point. Additionally, the cortical and medullary f values were statistically significant between the UUO21 group and the sham group (p < 0.01). Especially, the cortical f values exhibited significant differences between the UUO21 group and the UUO groups with shorter obstruction time (at time point of 3, 7, 10, 14 day) (p < 0.01). CONCLUSIONS Significant hemodynamic alterations were observed in the contralateral kidney following renal obstruction. IVIM accurately captures changes in the unobstructed kidney. Particularly, the cortical f value exhibits the highest potential for assessing contralateral renal modifications.
Collapse
Affiliation(s)
- Lingtao Zhang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xukai Mo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zijie Jiang
- Department of Medical Imaging Center, The Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Wenfeng Mai
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiwei Su
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhihua Zhang
- Department of Pediatric Surgery, Huizhou Central People’s Hospital, Huizhou, China
| | - Kunlin Ye
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dandan Fu
- Medical Imaging Center, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Shuangquan Zhao
- Medical Imaging Center, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Jin L, Zong Y, Pan Y, Hu Y, Xie Q, Wang Z. Application of functional magnetic resonance imaging to evaluate renal structure and function in type 2 cardiorenal syndrome. BMC Cardiovasc Disord 2024; 24:637. [PMID: 39538120 PMCID: PMC11562356 DOI: 10.1186/s12872-024-04324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2023] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND There is a lack of diagnostic non-invasive imaging technology for assessing the early structural and functional changes of the kidney in type 2 cardiorenal (CRS) patients. This study aims to explore the value of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for clinical application in type 2 CRS patients, to provide imaging markers for the assessment of kidney damage. METHODS This is a retrospective observational clinical study conducted in Nanjing, China. The clinical characteristics, including age, gender, medical history, laboratory results, and ultrasound and magnetic resonance imaging results were collected from the electronic medical record. Thirty-one patients with type 2 CRS, 20 patients with chronic heart failure (HF) and 20 healthy controls were enrolled and divided into type 2 CRS, HF and control groups. All the participants underwent magnetic resonance imaging (MRI) scanning. The apparent diffusion coefficient (ADC) value and IVIM-DWI parameters including true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) were obtained. The correlation between estimated glomerular filtration rate (eGFR), renal size and imaging parameters was evaluated by Spearman correlation analysis. RESULTS ADC and D of the renal cortex in patients with type 2 CRS were lower than those in the healthy control group. ADC and f in the HF group were lower than those in the control group. D was positively correlated with the length (r = 0.3752, P = 0.0013) and transverse diameter (r = 0.3258, P = 0.0056) of the kidney. ADC (r = 0.2964, P = 0.0121) and D (r = 0.3051, P = 0.0097) were positively correlated with eGFR. Renal cortical ADC and D values could distinguish type 2 CRS patients from the healthy controls with area under the curve (AUC) of 0.723 and 0.706, respectively. CONCLUSION The ADC and D values were not only correlated with renal function, but also had lower levels in type 2 CRS. The IVIM-DWI parameter D was also related to kidney size, but further research is needed to determine whether it can be used as a novel imaging marker for type 2 CRS.
Collapse
Affiliation(s)
- Liangli Jin
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiovascular Medicine, The First People's Hospital of Bengbu, Bengbu, China
| | - Yani Zong
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuexin Hu
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Xie
- Department of Imaging Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhi Wang
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Chen X, Ge C, Zhang Y, Ma Y, Zhang Y, Li B, Chu Z, Ji Q. Evaluation of Early Renal Changes in Type 2 Diabetes Mellitus Using Multiparametric MR Imaging. Magn Reson Med Sci 2024:mp.2023-0148. [PMID: 39370295 DOI: 10.2463/mrms.mp.2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/08/2024] Open
Abstract
PURPOSE To evaluate the clinical value of early renal changes in type 2 diabetes mellitus (T2DM) using multiparameter MRI. METHODS The study included 41 diabetics (normoalbuminuria: n = 23; microalbuminuria: n = 18) and 30 healthy controls. All subjects underwent intravoxel incoherent motion diffusion-weighted imaging (IVIM), blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) examinations. One-way analysis of variance was used to compare MRI parameters among the three groups. Pearson correlation analysis was used to evaluate the relationship between MRI parameters and estimated glomerular filtration rate (eGFR) and albumin-creatinine ratio (ACR). Receiver operating characteristic analysis was performed to assess the diagnostic performance. RESULTS There were statistical differences in cortical D, D*, f, renal blood flow (RBF) and medulla D, D*, f, R2* among the three groups (P < 0.05). The cortical or medullary D, cortical f, and RBF were significantly positively correlated with eGFR (all P < 0.01). The cortical or medullary D, D*, f, cortical RBF were negatively correlated with ACR (all P < 0.05).To evaluate early kidney changes and degree of diabetes, cortical combined D and RBF (AUC [area under the curve] = 0.796 and 0.947, respectively) was better than single D or RBF (all P > 0.05); medullary combined D and R2* (AUC = 0.899 and 0.923, respectively) was better than single D or R2* (all P > 0.05), except single D (P = 0.005) in differentiating normoalbuminuria group from control group. CONCLUSION The early changes of renal diffusion and perfusion, oxygenation level, and blood flow in T2DM could be evaluated noninvasively and quantitatively using IVIM, BOLD and ASL. Renal medullary combined IVIM-derived D and BOLD-derived R2* and cortical combined IVIM-derived D and ASL-derived RBF were better for evaluating early renal changes in T2DM.
Collapse
Affiliation(s)
- Xinyi Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Chao Ge
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Yuling Zhang
- Department of Radiology, Traditional Chinese Medicine Hospital of Gaoling District, Xi'an, Shaanxi, China
| | - Yajie Ma
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Yuling Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Bei Li
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Zhiqiang Chu
- Department of Nephrology, Tianjin Fourth Central Hospital, Tianjin, China
| | - Qian Ji
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
5
|
Song Y, Chen B, Zeng K, Cai K, Sun H, Liu D, Liu P, Xu G, Jiang G. Intravoxel incoherent motion diffusion-weighted imaging of pancreas: Probing evidence of β-cell dysfunction in asymptomatic adults with hyperglycemia in vivo. Magn Reson Imaging 2024; 108:161-167. [PMID: 38336114 DOI: 10.1016/j.mri.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE Early evaluation of β-cell dysfunction of hyperglycemic patients in asymptomatic adults would be valuable for timely prevention of the diabetes. This study aimed to evaluate functional changes in the pancreas using intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and determine whether it could be used as a non-invasive method of assessing β-cell dysfunction. METHODS This prospective cohort study was conducted from August 2022 to November 2022 in Jinan University Affiliated Guangdong Second General Hospital. Three groups were enrolled and underwent IVIM-DWI: confirmed patients with type 2 diabetes (T2DM); hyperglycemic patients in asymptomatic adults; and the volunteers with normal glucose tolerance (NGT). Imaging parameters were obtained: apparent diffusion coefficient (ADC), the true diffusion coefficient (Dt), the pseudo-diffusion coefficient (Dp), and the perfusion fraction (f). The β-cell function indexes were calculated from blood examinations: composite insulin sensitivity index (ISI), 60-min insulinogenic index (IGI60), and the disposition index (DI). We compared imaging parameters among three groups, calculated the diagnostic performance of them for differentiating different groups, and the reproducibility of them was evaluated using intraclass correlation coefficient (ICC). RESULTS The imaging parameters except f gradually decreased among the groups with significant differences for ADC (p < 0.0001), Dt (p < 0.0001), and Dp (p = 0.013). Dt demonstrated the best diagnostic performance for differentiating asymptomatic patients from NGT (Area Under Curve [AUC] = 0.815, p < 0.0001). IVIM-DWI parameters correlated with composite ISI and DI, of which, Dt has the highest correlation with DI (Pearson correlation coefficient [r] = 0.546, p < 0.0001). The ICC of IVIM-DWI parameters was very good, Dt was highest (Interobserver ICC = 0.938, 95% Confidence Interval [CI], 0.899-0.963; Intraobserver ICC = 0.941, 95% CI, 0.904-0.965). CONCLUSION IVIM-DWI is a non-invasive quantitative method that can identify β-cell dysfunction in the pancreas.
Collapse
Affiliation(s)
- Yingying Song
- Department of Medical Imaging, Jinan University Affiliated Guangdong Second General Hospital, College of Medicine, Haizhu District, Guangzhou 510317, PR China; Department of Radiology, Affiliated Hospital of Jianghan University, #168 Xianggang Road, Wuhan, Hubei 430015, PR China
| | - Bo Chen
- Department of Endocrinology, Department of diabetes and obesity reversal research center, Jinan University Affiliated Guangdong Second General Hospital, Guangzhou, Guangdong 510317, PR China
| | - Kejing Zeng
- Department of Endocrinology, Department of diabetes and obesity reversal research center, Jinan University Affiliated Guangdong Second General Hospital, Guangzhou, Guangdong 510317, PR China
| | - Kejia Cai
- Department of Radiology, College of Medicine, University of Illinois at Chicago, IL, USA
| | - Hui Sun
- Department of Medical Imaging, Jinan University Affiliated Guangdong Second General Hospital, College of Medicine, Haizhu District, Guangzhou 510317, PR China
| | - Deqing Liu
- Department of Endocrinology, Department of diabetes and obesity reversal research center, Jinan University Affiliated Guangdong Second General Hospital, Guangzhou, Guangdong 510317, PR China
| | - Ping Liu
- Department of Medical Imaging, Jinan University Affiliated Guangdong Second General Hospital, College of Medicine, Haizhu District, Guangzhou 510317, PR China.
| | - Gugen Xu
- Department of Endocrinology, Department of diabetes and obesity reversal research center, Jinan University Affiliated Guangdong Second General Hospital, Guangzhou, Guangdong 510317, PR China.
| | - Guihua Jiang
- Department of Medical Imaging, Jinan University Affiliated Guangdong Second General Hospital, College of Medicine, Haizhu District, Guangzhou 510317, PR China.
| |
Collapse
|
6
|
Zhao K, Seeliger E, Niendorf T, Liu Z. Noninvasive Assessment of Diabetic Kidney Disease With MRI: Hype or Hope? J Magn Reson Imaging 2024; 59:1494-1513. [PMID: 37675919 DOI: 10.1002/jmri.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Owing to the increasing prevalence of diabetic mellitus, diabetic kidney disease (DKD) is presently the leading cause of chronic kidney disease and end-stage renal disease worldwide. Early identification and disease interception is of paramount clinical importance for DKD management. However, current diagnostic, disease monitoring and prognostic tools are not satisfactory, due to their low sensitivity, low specificity, or invasiveness. Magnetic resonance imaging (MRI) is noninvasive and offers a host of contrast mechanisms that are sensitive to pathophysiological changes and risk factors associated with DKD. MRI tissue characterization involves structural and functional information including renal morphology (kidney volume (TKV) and parenchyma thickness using T1- or T2-weighted MRI), renal microstructure (diffusion weighted imaging, DWI), renal tissue oxygenation (blood oxygenation level dependent MRI, BOLD), renal hemodynamics (arterial spin labeling and phase contrast MRI), fibrosis (DWI) and abdominal or perirenal fat fraction (Dixon MRI). Recent (pre)clinical studies demonstrated the feasibility and potential value of DKD evaluation with MRI. Recognizing this opportunity, this review outlines key concepts and current trends in renal MRI technology for furthering our understanding of the mechanisms underlying DKD and for supplementing clinical decision-making in DKD. Progress in preclinical MRI of DKD is surveyed, and challenges for clinical translation of renal MRI are discussed. Future directions of DKD assessment and renal tissue characterization with (multi)parametric MRI are explored. Opportunities for discovery and clinical break-through are discussed including biological validation of the MRI findings, large-scale population studies, standardization of DKD protocols, the synergistic connection with data science to advance comprehensive texture analysis, and the development of smart and automatic data analysis and data visualization tools to further the concepts of virtual biopsy and personalized DKD precision medicine. We hope that this review will convey this vision and inspire the reader to become pioneers in noninvasive assessment and management of DKD with MRI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Zhang C, Zhu B, Feng Y, Cheng Z, Cai X, Feng L, Li J, Lu X. Assessing early tubular protective effects of SGLT2 inhibitor empagliflozin against type 2 diabetes mellitus using functional magnetic resonance imaging. Acta Diabetol 2024; 61:473-483. [PMID: 38117325 DOI: 10.1007/s00592-023-02220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/08/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
AIMS To observe the alterations in functional magnetic resonance imaging parameters in normoalbuminuric type 2 diabetic patients undergoing SGLT2 inhibitor empagliflozin treatment and investigate the early tubular protective effects of the inhibitor. METHODS This study was performed in normoalbuminuric type 2 diabetes mellitus patients (UACR < 30 mg/g, eGFR ≥ 60 ml/min/1.73 m2). The patients were divided into the intervention group (empagliflozin) and the control group (27 cases each). The intervention group was treated with 10 mg/day empagliflozin tablets orally, while the control group had adjustments to their basic treatment stage. The patients were treated for 6 weeks. RESULTS The baseline clinical data of the two groups were comparable (P˃0.05). The intervention group exhibited better improvements in blood lipid profiles and more significant reductions in blood uric acid levels compared to the control group (P < 0.05). The two groups had No significant difference in blood pressure changes (P˃0.05). Notably, the intervention group demonstrated a greater reduction in UACR and a more substantial decline in eGFR than the control group (P < 0.05). Regarding functional magnetic resonance imaging parameters, the MD value of the renal medulla region in the intervention group increased after treatment, while the MR2* value of the renal medulla region decreased (P < 0.05). CONCLUSIONS SGLT2 inhibitor empagliflozin can reduce UACR and eGFR levels in early type 2 diabetic patients with normal proteinuria. Moreover, empagliflozin therapy led to an increase in the MD value and a decrease in the MR2* value of the renal medulla, evidencing the early tubular protective effects of this therapy.
Collapse
Affiliation(s)
- Chuangbiao Zhang
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No.613, Huangpu Avenue West, Guangzhou, 510630, Guangdong Province, China
| | - Beibei Zhu
- Endoscopy Center, First Affiliated Hospital of Jinan University, No.613, Huangpu Avenue West, Guangzhou, 510630, Guangdong Province, China
| | - Youzhen Feng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613, Huangpu Avenue West, Guangzhou, 510630, Guangdong Province, China
| | - Zhongyuan Cheng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613, Huangpu Avenue West, Guangzhou, 510630, Guangdong Province, China
| | - Xiangran Cai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613, Huangpu Avenue West, Guangzhou, 510630, Guangdong Province, China
| | - Lie Feng
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No.613, Huangpu Avenue West, Guangzhou, 510630, Guangdong Province, China
| | - Jiaying Li
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No.613, Huangpu Avenue West, Guangzhou, 510630, Guangdong Province, China.
| | - Xiaohua Lu
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No.613, Huangpu Avenue West, Guangzhou, 510630, Guangdong Province, China
| |
Collapse
|
8
|
Liu J, Wang R, Qiu J, Su T. Investigation of renal perfusion and pathological changes in patients with acute kidney disease and tubulointerstitial nephritis using intravoxel incoherent motion and arterial spin labelling MRI: a prospective, observational study protocol. BMJ Open 2024; 14:e076488. [PMID: 38531564 PMCID: PMC10966823 DOI: 10.1136/bmjopen-2023-076488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/08/2023] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a critical condition with a complex aetiology and different outcomes, where haemodynamic dysfunction, renal hypoperfusion and inflammation serve as key contributors to its development and progression. Early and accurate diagnosis is vital for initiating targeted treatments like fluid resuscitation, vasoactive agents or steroid therapy, which are essential for improving patient outcomes. Intravoxel incoherent motion (IVIM) MRI assesses both capillary perfusion and tissue water diffusion, while arterial spin labelling (ASL) MRI measures renal blood flow without the need for contrast. Research on combined use of IVIM and ASL MRI in patients with AKI is rare. This study aims to investigate the MRI characteristics of IVIM and ASL in patients with tubulointerstitial nephritis (TIN) and to explore their relationship with pathological findings and renal recovery. METHODS AND ANALYSIS Single-centre, prospective, observational cohort study of 30 patients with biopsy-proven TIN. Participants will undergo renal IVIM and ASL MRI within 7 days post-biopsy. The pathological assessments of active and chronic tubulointerstitial injuries will be semiscored using modified Banff criteria. The estimated glomerular filtration rate (eGFR) during follow-up and prevalence of chronic kidney disease at 3 and 6 months will be reported. An eGFR below 45 mL/min is considered a poor renal outcome. ETHICS AND DISSEMINATION The study has been reviewed and approved by the Ethics Committee of Peking University First Hospital and written informed consent will be obtained from all participants (2022Y503). The study results will be disseminated through publication in a relevant peer-reviewed journal and presentation at academic meetings to increase awareness and share findings with the scientific community.
Collapse
Affiliation(s)
- Jiajia Liu
- Peking University First Hospital, Beijing, China
- Department of Nephrology, Peking University First Hospital, Beijing, China
| | - Rui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jianxing Qiu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Tao Su
- Peking University First Hospital, Beijing, China
- Department of Nephrology, Peking University First Hospital, Beijing, China
| |
Collapse
|
9
|
Gündoğdu H, Avcı U, Başaran M, Gürün E. The Role of Diffusion-Weighted Imaging in the Evaluation of Treatment of Newly Diagnosed Type 2 Diabetic Patients. Cureus 2023; 15:e50712. [PMID: 38234946 PMCID: PMC10792595 DOI: 10.7759/cureus.50712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
INTRODUCTION To compare the pre and post-treatment pancreatic apparent diffusion coefficient (ADC) values of type II diabetes patients with control subjects, and also to evaluate its effectiveness in evaluating the response to treatment. METHODS The study included 35 newly diagnosed type 2 diabetic patients and 35 non-diabetic participants, matched for sex and age. Insulin and metformin treatment was given to the patients. Abdominal diffusion-weighted MR imaging was performed before and after the treatment. ADCs of the control group and patients pre and post-treatment were compared. In addition, the clinical parameters of the patients related to diabetes were recorded. RESULTS There was a significant difference between the median pancreatic ADC values of the patients pre and post-treatment. While there was a significant difference between the median pancreatic ADC values of the patient and the control groups before the treatment, no significant difference after the treatment was observed. There was a positive correlation between mean pancreatic ADC values and age, as well as a negative correlation with Hb1Ac level and eGFR. CONCLUSION Pancreatic ADC values of newly diagnosed type II diabetes patients can be used as a marker of pancreatic function in the evaluation of response to treatment and clinical decisions.
Collapse
Affiliation(s)
| | - Uğur Avcı
- Endocrinology, Recep Tayyip Erdogan University, Rize, TUR
| | | | - Enes Gürün
- Radiology, Samsun University, Samsun, TUR
| |
Collapse
|
10
|
Zhang Z, Chen Y, Zhou X, Liu S, Yu J. The value of functional magnetic resonance imaging in the evaluation of diabetic kidney disease: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1226830. [PMID: 37484949 PMCID: PMC10360195 DOI: 10.3389/fendo.2023.1226830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background The diversity of clinical trajectories in diabetic kidney disease (DKD) has made blood and biochemical urine markers less precise, while renal puncture, the gold standard, is almost impossible in the assessment of diabetic kidney disease, and the value of functional magnetic resonance imaging in the evaluation of diabetic pathological alterations is increasingly recognized. Methods The literature on functional magnetic resonance imaging (fMRI) for the assessment of renal alterations in diabetic kidney disease was searched in PubMed, Web of Science, Cochrane Library, and Embase databases. The search time limit is from database creation to March 10, 2023. RevMan was used to perform a meta-analysis of the main parameters of fMRIs extracted from DKD patients and healthy volunteers (HV). Results 24 publications (1550 subjects) were included in this study, using five functional MRIs with seven different parameters. The renal blood flow (RBF) values on Arterial spin labeling magnetic resonance imaging (ASL-MRI) was significantly lower in the DKD group than in the HV group. The [WMD=-99.03, 95% CI (-135.8,-62.27), P<0.00001]; Diffusion tensor imaging magnetic resonance imaging (DTI-MRI) showed that the fractional anisotropy (FA) values in the DKD group were significantly lower than that in HV group [WMD=-0.02, 95%CI (-0.03,-0.01), P<0.0001]. And there were no statistically significant differences in the relevant parameters in Blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) or Intro-voxel incoherent movement magnetic resonance imaging (IVIM-DWI). Discussion ASL and DWI can identify the differences between DKD and HV. DTI has a significant advantage in assessing renal cortical changes; IVIM has some value in determining early diabetic kidney disease from the cortex or medulla. We recommend combining multiple fMRI parameters to assess structural or functional changes in the kidney to make the assessment more comprehensive. We did not observe a significant risk of bias in the present study. Systematic review registration https://www.crd.york.ac.uk, identifier CRD42023409249.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Su Liu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Intravoxel incoherent motion diffusion-weighted MRI of renal parenchyma and its clinical significance in patients with untreated acute leukemia: a pilot study. ABDOMINAL RADIOLOGY (NEW YORK) 2023; 48:1363-1371. [PMID: 36763120 DOI: 10.1007/s00261-023-03829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/25/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE To evaluate quantitative parameters derived from intravoxel incoherent motion diffusion-weighted MRI (IVIM) of renal parenchyma in patients with untreated acute leukemia (AL) and analyze its prognostic significance and probable pathological mechanism. METHODS From March 2019 to November 2021, 67 newly diagnosed AL patients and 67 healthy controls matched in age and sex were recruited. All participants underwent IVIM in the kidneys, and D, D*, f, standard ADC values were measured. The differences of all parameters between AL and controls were analyzed. The relationship between imaging parameters and estimated glomerular filtration rate (eGFR) was studied. Univariable and multivariable analyses were performed to investigate prognostic significance of possible indicators. RESULTS The f and D value of renal medulla and D value of renal cortex in AL patients were lower than those in the healthy control group (t = - 2.173, t = - 3.463, t = - 2.030, respectively, all P < 0.05). The cortical f, cortical standard ADC, medullary f, and medullary standard ADC were correlated with the eGFR (r = 0.524, r = 0.401, r = 0.415, r = 0.325, respectively, all P < 0.05) in patients with AL. A medullary f value ≤ 9.51% (hazard ratio: 0.282; 95% confidence interval: 0.110, 0.719; P = 0.008) was associated with overall survival in a multivariable analysis. CONCLUSION The f and standard ADC values in renal parenchyma were the probable imaging markers of renal function in patients with newly diagnosed de novo AL. Lower renal medullary f value was a potential independent predictor for overall survival.
Collapse
|
12
|
Liang P, Yuan G, Li S, He K, Peng Y, Hu D, Li Z, Ma Z, Xu C. Non-invasive evaluation of the pathological and functional characteristics of chronic kidney disease by diffusion kurtosis imaging and intravoxel incoherent motion imaging: comparison with conventional DWI. Br J Radiol 2023; 96:20220644. [PMID: 36400040 PMCID: PMC10997028 DOI: 10.1259/bjr.20220644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To explore the diagnostic performance of diffusion kurtosis imaging (DKI) and incoherent intravoxel movement (IVIM) in evaluating the clinical and pathological characteristics in chronic kidney disease (CKD) compared to conventional diffusion-weighted imaging (DWI). METHODS Forty-nine CKD patients and 24 healthy volunteers were included in this retrospective study from September 2020 to September 2021. All participants underwent MRI examinations before percutaneous renal biopsy. Coronal T2WI, axial T1WI and T2WI, and DWI (including IVIM and DKI) sequences obtained in one scan. We measured the apparent diffusion coefficient (ADC), true diffusion coefficient (Dt), pseudo-diffusion coefficient (Dp), perfusion fraction (fp), mean kurtosis (MK), and mean diffusivity (MD) values. One-way analysis of variance, correlation analysis, and receiver operating characteristic curve analysis were used in our study. RESULTS Cortex and medulla ADC, MK, Dt, fp were significantly different between the healthy volunteers and CKD stages 1-2 (all p < 0.05). All diffusion parameters showed significant differences between CKD stages 1-2 and CKD stages 3-5 (all p < 0.05). Except for the uncorrelation between MDMedulla and vascular lesion score, all other diffusion parameters were low-to-moderately related to clinical and pathological indicators. fpMedulla was the best parameter to differentiate healthy volunteers from CKD stages 1-2. MKCortex was the best parameter to differentiate CKD stages 1-2 from that CKD stages 3-5. CONCLUSION Renal cortex and medulla fp, Dt, and MK can provide more valuable information than ADC values for the evaluation of clinical and pathological characteristics of CKD patients, and thus can provide auxiliary diagnosis for fibrosis assessment and clinical management of CKD patients. ADVANCES IN KNOWLEDGE IVIM and DKI can provide more diagnostic valuable information for CKD patients than conventional DWI.
Collapse
Affiliation(s)
- Ping Liang
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Kangwen He
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Yang Peng
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Zufu Ma
- Department of Nephrology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Chuou Xu
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| |
Collapse
|
13
|
Pu J, Liang Y, He Q, Shao JW, Zhou MJ, Xiang ST, Li YW, Li JB, Ji SJ. Correlation Between IVIM-DWI Parameters and Pathological Classification of Idiopathic Orbital Inflammatory Pseudotumors: A Preliminary Study. Front Oncol 2022; 12:809430. [PMID: 35359367 PMCID: PMC8963367 DOI: 10.3389/fonc.2022.809430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate the correlation between intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and the pathological classification of idiopathic orbital inflammatory pseudotumors (IOIPs). Methods Nineteen patients who were diagnosed with IOIPs (a total of 24 affected eyes) between November 2018 and December 2020 were included in the study. All the patients underwent magnetic resonance imaging orbital plain scans and IVIM-DWI multiparameter scans before an operation. The true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) values were obtained. Based on histopathology, the lesions were divided into three types: lymphocytic infiltration, fibrosclerotic, and mixed. The correlation between IVIM-DWI parameters and pathological classification was tested with the histopathological results as the gold standard. The data were analyzed using SPSS version 17.0, with P < 0.05 defined as significant. Results Among the 19 patients (24 eyes) affected by IOIP, there were no significant differences between IOIP pathological classification and gender or age (P > 0.05). There were statistically significant differences between the D and f values for different pathological types of IOIP and IVIM parameters (P < 0.05), and there was no significant difference in D* value between the different pathological types (P > 0.05). Conclusion The D and f values showed correlation with different types of IOIP, and the sensitivity of the D value was higher than that of the f value. The D* value showed no significant distinction between pathological types of IOIP.
Collapse
Affiliation(s)
- Jian Pu
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Yi Liang
- Radiology Department, Shaanxi Province Tumor Hospital, Xi’an, China
| | - Qian He
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
- *Correspondence: Qian He,
| | - Ju-Wei Shao
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Min-Jie Zhou
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Shu-Tian Xiang
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ying-Wen Li
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Jian-Bo Li
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Shun-Jun Ji
- Medical Imaging, Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Yu B, Huang C, Fan X, Li F, Zhang J, Song Z, Zhi N, Ding J. Application of MR Imaging Features in Differentiation of Renal Changes in Patients With Stage III Type 2 Diabetic Nephropathy and Normal Subjects. Front Endocrinol (Lausanne) 2022; 13:846407. [PMID: 35600605 PMCID: PMC9114464 DOI: 10.3389/fendo.2022.846407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/31/2021] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The objective of the study was to explore the value of MRI texture features based on T1WI, T2-FS and diffusion-weighted imaging (DWI) in differentiation of renal changes in patients with stage III type 2 diabetic nephropathy (DN) and normal subjects. MATERIALS AND METHODS A retrospective analysis was performed to analyze 44 healthy volunteers (group A) and 40 patients with stage III type 2 diabetic nephropathy (group B) with microalbuminuria. Urinary albumin to creatinine ratio (ACR) <30 mg/g, estimated glomerular filtration rate (eGFR) in the range of 60-120 ml/(min 1.73 m2), and randomly divided into primary cohort and test cohort. Conventional MRI and DWI of kidney were performed using 1.5 T magnetic resonance imaging (MRI). The outline of the renal parenchyma was manually labeled in fat-suppressed T2-weighted imaging (FS-T2WI), and PyRadiomics was used to extract radiomics features. The radiomics features were then selected by the least absolute shrinkage and selection operator (LASSO) method. RESULTS There was a significant difference in sex and body mass index (BMI) (P <0.05) in the primary cohort, with no significant difference in age. In the final results, the wavelet and Laplacian-Gaussian filtering are used to extract 1,892 image features from the original T1WI image, and the LASSO algorithm is used for selection. One first-order feature and six texture features are selected through 10 cross-validations. In the mass, 1,638 imaging extracts features from the original T2WI image.1 first-order feature and 5 texture features were selected. A total of 1,241 imaging features were extracted from the original ADC images, and 5 texture features were selected. Using LASSO-Logistic regression analysis, 10 features were selected for modeling, and a combined diagnosis model of diabetic nephropathy based on texture features was established. The average unit cost in the logistic regression model was 0.98, the 95% confidence interval for the predictive efficacy was 0.9486-1.0, specificity 0.97 and precision 0.93, particularly. ROC curves also revealed that the model could distinguish with high sensitivity of at least 92%. CONCLUSION In consequence, the texture features based on MR have broad application prospects in the early detection of DN as a relatively simple and noninvasive tool without contrast media administration.
Collapse
Affiliation(s)
- Baoting Yu
- Department of Radiology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing, China
| | - Xiaofei Fan
- Department of Radiology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Li
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing, China
| | - Jianzhong Zhang
- Department of Radiology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Zihan Song
- Department of Radiology, Chang Chun Central Hospital, Changchun, China
| | - Nan Zhi
- Department of Radiology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Jun Ding
- Department of Radiology, China–Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Jun Ding,
| |
Collapse
|
15
|
Feng YZ, Dong XN, Lin QT, Chen PK, Xiong XQ, DingKun S, Qian L, Cheng ZY, Cai XR. Multiparametric MRI analysis for the evaluation of renal function in patients with hyperuricemia: a preliminary study. BMC Med Imaging 2021; 21:139. [PMID: 34583652 PMCID: PMC8477479 DOI: 10.1186/s12880-021-00675-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background To investigate the renal dysfunction in patients with hyperuricemia by employing a multiparametric MRI protocol, consisting of quantitative water molecule diffusion, microstructure, microscopic perfusion, and oxygenation measurements in kidneys. Materials and methods A total of 48 patients with hyperuricemia (HU) and 22 age-matched healthy control subjects (HC) were enrolled in the study. For each participant, three different functional magnetic resonance imaging (fMRI) sequences were acquired and analyzed, including intravoxel incoherent motion imaging (IVIM), diffusion tensor imaging (DTI), and blood-oxygen-level-dependent MRI (BOLD). Thereafter, an independent two-sample t-test was applied to discover the significant differences of MRI indices between the hyperuricemia (HU) and HC groups, and the specific potential biomarkers between two subgroups of HU group (asymptomatic hyperuricemia group (AH) and gouty arthritis group (GA)). Further, multivariate logistic regression analyses were performed to classify the AH from the GA group using the MRI indices with significant between-group differences. The receiver operating characteristic (ROC) curve was plotted, and the area under the ROC curve (AUC) was calculated to assess the performance of each MR index for differentiation between the AH and GA groups. Results Ten parametric values of the HU group were significantly lower than those of the HC group among the 14 fMRI parameters (P < 0.05). The cortical D, D*, and f values and medullary D and R2*values had significant differences between the AH and GA groups (P < 0.05). Combining the cortical D and f values and medullary R2* value gave the best diagnostic efficacy, yielding an AUC, sensitivity, and specificity of 0.967 ± 0.022, 91.67%, and 95.83%, respectively. Conclusions A multiparametric MR analysis plays an important role in the evaluation of renal dysfunction in hyperuricemia from multiple perspectives. It could be a promising method for noninvasive detection and identification of the early-stage renal damage induced by hyperuricemia. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-021-00675-4.
Collapse
Affiliation(s)
- You-Zhen Feng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Xiang-Nan Dong
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.,Department of Nephrology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qi-Ting Lin
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ping-Kang Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Xiao-Qing Xiong
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - SiTu DingKun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Zhong-Yuan Cheng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.
| | - Xiang-Ran Cai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
16
|
Feng YZ, Chen XQ, Cheng ZY, Lin QT, Chen PK, Si-Tu DK, Cao R, Qian L, Heng B, Cai XR. Non-invasive investigation of early kidney damage in streptozotocin-induced diabetic rats by intravoxel incoherent motion diffusion-weighted (IVIM) MRI. BMC Nephrol 2021; 22:321. [PMID: 34565330 PMCID: PMC8474753 DOI: 10.1186/s12882-021-02530-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
Background The current study investigated the performance of intravoxel incoherent motion diffusion (IVIM) technology in monitoring early renal injury in streptozotocin rats. Methods Forty-eight Sprague-Dawley (SD) rats were divided into a control group and a diabetic mellitus (DM) group. Six rats in each group were randomly selected for MR scans at four different time points (0, 4, 8, and 12 weeks). The IVIM-derived parameters (D, D*, f and ADC values) of the renal cortex (CO), outer and inner stripe of the outer medulla (OS, IS), and internal medulla (IM) were acquired. Changes in each IVIM-derived parameter over time were analyzed, and differences between the two groups at each point were assessed. The associations between the IVIM parameters and IV collagen expression, urine volume (UV), blood urea nitrogen (BUN), and serum creatinine (Scr) were investigated. Results The D and D* values of CO and the ADC values of CO, OS, IS and IM displayed significantly different trends between the two groups over time (P<0.05). In addition, significant correlations were discovered between the D* value of CO and UV and BUN (r=0.527, P=0.033; r=0.617, P=0.005), between the ADC value of IM and BUN (r=0.557, P=0.019) and between the f value of IM and BUN (r=0.527, P=0.033). No correlation was found between IVIM parameters and IV collagen expression and Scr. Conclusions IVIM is a potential sensitive and noninvasive technology for the simultaneous assessment of early renal cortical and medullary injuries induced by diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02530-8.
Collapse
Affiliation(s)
- You-Zhen Feng
- Medical Imaging Center, Jinan University First Affiliated Hospital, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Xiao-Qiao Chen
- Medical Imaging Center, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zhong-Yuan Cheng
- Medical Imaging Center, Jinan University First Affiliated Hospital, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Qi-Ting Lin
- Medical Imaging Center, Jinan University First Affiliated Hospital, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ping-Kang Chen
- Medical Imaging Center, Jinan University First Affiliated Hospital, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ding-Kun Si-Tu
- Medical Imaging Center, Jinan University First Affiliated Hospital, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Rui Cao
- Nephrology Department, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Long Qian
- GE Healthcare, Beijing, China.,Department of Biomedical Engineering, Peking University, Beijing, 100871, China
| | - Baoli Heng
- Yingde Base, Institute of Kidney Surgery, Jinan University, Guangzhou, Guangdong, China.,Department of Urology, Jinan University First Affiliated Hospital, Guangzhou, China
| | - Xiang-Ran Cai
- Medical Imaging Center, Jinan University First Affiliated Hospital, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
17
|
Yang H, Cui X, Zheng X, Li J, Yao Q, Li X, Qin J. Preliminary quantitative analysis of vertebral microenvironment changes in type 2 diabetes mellitus using FOCUS IVIM-DWI and IDEAL-IQ sequences. Magn Reson Imaging 2021; 84:84-91. [PMID: 34560231 DOI: 10.1016/j.mri.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To explore the application of intravoxel incoherent motion diffusion-weighted imaging(IVIM-DWI) on account of field-of-view optimized and constrained undistorted single shot (FOCUS) and iteraterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation(IDEAL-IQ) sequences in evaluating the vertebral microenvironment changes of type 2 diabetes mellitus(T2DM) patients and the correlation with bone mineral density(BMD). METHOD 128 T2DM patients (mean age 63.4 ± 5.28 years) underwent both dual-energy X-ray absorptiometry (DEXA) and spine MRI. The FOCUS IVIM-DWI and IDEAL-IQ derived parameters of the vertebral body(L1, L2, L3, L4)were measured on corresponding maps of the lumbar spine. The subjects were divided into 3 groups according to T-scores as follows: normal (n = 37), osteopenia (n = 43), and osteoporosis(n = 48) group.One-way analysis of variance (ANOVA) were used to compare the vertebral parameters(ADCslow, ADCfast, f, FF, R2*) among three BMD cohorts.Receiver operating characteristic (ROC) analyses and Spearman's rank correlation were performed to test the diagnostic performance and the correlation between them respectively. RESULTS There were significant differences in vertebral ADCslow, ADCfast, FF and R2* between the three groups (P < 0.05).Statistically, BMD was moderately negatively correlated with FF (r = -0.584, P < 0.001) and weakly positively with ADCslow (r = 0.334, P < 0.001), meanwhile moderately positively correlated with R2*(r = 0.509, P < 0.001) and ADCfast(0.545, P < 0.001).ADCfast was moderately negatively correlated with FF (r = -0.417, P < 0.001), weakly positively correlated with R2*(0.359, P < 0.001).Compared with the area under the curve (AUC) of ADCslow, ADCfast, FF and R2*, the AUC of ADCfast was higher in identifying between normal and abnormal(osteopenia and osteoporosis), normal from osteopenia, while the AUC of FF was higher in identifying osteopenia from osteoporosis. CONCLUSIONS FOCUS IVIM-DWI and IDEAL-IQ of lumbar spine might be useful to evaluate the vertebral microenvironment changes of T2DM patients.
Collapse
Affiliation(s)
- Hui Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiaojie Cui
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiuzhu Zheng
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Jiang Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Qianqian Yao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiaoqian Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Jian Qin
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China.
| |
Collapse
|
18
|
Lee SK, Lee J, Jang S, Lee E, Jeon CY, Lim KS, Jin YB, Choi J. Renal Diffusion-Weighted Imaging in Healthy Dogs: Reproducibility, Test-Retest Repeatability, and Selection of the Optimal b-value Combination. Front Vet Sci 2021; 8:641971. [PMID: 34277748 PMCID: PMC8282824 DOI: 10.3389/fvets.2021.641971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Diffusion-weighted imaging (DWI) magnetic resonance imaging can evaluate alterations in the microstructure of the kidney. The purpose of this study was to assess the apparent diffusion coefficient (ADC) and the intravoxel incoherent motion model (IVIM) parameters of a normal kidney in healthy dogs, to evaluate the effect of b-value combinations on the ADC value, and the reproducibility and test-retest repeatability in monoexponential and IVIM analysis. In this experimental study, the ADC, pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f p) were measured from both kidneys in nine healthy beagles using nine b-values (b = 0, 50, 70, 100, 150, 200, 500, 800, and 1,000 s/mm2) twice with a 1-week interval between measurements. Interobserver and intraobserver reproducibility, and test-retest repeatability of the measurements were calculated. ADC values were measured using 10 different b-value combinations consisting of three b-values each, and were compared to the ADC obtained from nine b-values. All the ADC, D, D*, and f p values measured from the renal cortex, medulla, and the entire kidney had excellent interobserver and intraobserver reproducibility, and test-retest repeatability. The ADC obtained from a b-value combination of 0, 100, and 800 s/mm2 had the highest intraclass correlation coefficient with the ADC from nine b-values. The results of this study indicated that DWI MRI using multiple b-values is feasible for the measurement of ADC and IVIM parameters with high reproducibility and repeatability in the kidneys of healthy dogs. A combination of b = 0, 100, and 800 s/mm2 can be used for ADC measurements when multiple b-values are not available in dogs.
Collapse
Affiliation(s)
- Sang-Kwon Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Juryeoung Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Seolyn Jang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Eunji Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Kyung-Seoub Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jihye Choi
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
19
|
ŞAHAN MH, ÖZDEMİR A, ASAL N, KARADENİZ BİLGİLİ YM, DOĞAN A, GÜNGÜNEŞ A. Pancreas and kidney changes in type 2 diabetes patients: the role of diffusion-weighted imaging. Turk J Med Sci 2021; 51:1289-1295. [PMID: 33535733 PMCID: PMC8283477 DOI: 10.3906/sag-2011-176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background/aim The aim of this study was to compare renal and pancreatic apparent diffusion-coefficient (ADC) values of diabetic patients and control subjects and to examine their potential association with several diabetes-related clinical parameters. Materials and methods A total of 80 sex- and age-matched patients were included in the study. Of them, 40 were patients with type 2 diabetes and 40 were nondiabetic participants. Abdominal diffusion-weighted MRIs of both groups were retrospectively reviewed. Diabetes-related clinical parameters were recorded. Results The difference between the mean ADC values of the patient group and the control group was significant (p = 0.012). It was also found that the mean pancreatic ADC values of diabetic patients and the control group significantly differed (p = 0.02). Besides, there were positive correlations between the mean pancreatic ADC values and age, Hb1Ac level, treatment type, and disease duration (p < 0.05). While eGFR values positively correlated with the mean renal ADC values (p < 0.05), there were negative correlations between such values and age, serum creatinine level, and disease duration (p < 0.05). Conclusion Renal and pancreatic ADC values of diabetic patients could potentially play a role, as markers of renal and pancreatic functions, in clinical decisions in the follow-up of such patients.
Collapse
Affiliation(s)
- Mehmet Hamdi ŞAHAN
- Department of Radiology, Faculty of Medicine, Gaziantep University, GaziantepTurkey
| | - Adnan ÖZDEMİR
- Department of Radiology, Faculty of Medicine, Kırıkkale University, KırıkkaleTurkey
| | - Neşe ASAL
- Department of Radiology, Faculty of Medicine, Kırıkkale University, KırıkkaleTurkey
| | | | - Adil DOĞAN
- Department of Radiology, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, KahramanmaraşTurkey
| | - Aşkın GÜNGÜNEŞ
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kırıkkale University, KırıkkaleTurkey
| |
Collapse
|
20
|
Li XS, Zhang QJ, Zhu J, Zhou QQ, Yu YS, Hu ZC, Xia ZY, Wei L, Yin XD, Zhang H. Assessment of kidney function in chronic kidney disease by combining diffusion tensor imaging and total kidney volume. Int Urol Nephrol 2021; 54:385-393. [PMID: 34024009 DOI: 10.1007/s11255-021-02886-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2020] [Accepted: 05/08/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study aimed to investigate the value and feasibility of combining fractional anisotropy (FA) values from diffusion tensor imaging (DTI) and total kidney volume (TKV) for the assessment of kidney function in chronic kidney disease (CKD). MATERIALS AND METHODS Fifty-one patients were included in this study. All MRI examinations were performed with a 3.0 T scanner. DTI was used to measure FA values, and TKV was obtained from DTI and T2-weighted imaging (T2WI). Patients were divided into three groups (mild, moderate, severe) according to eGFR, which was calculated with serum creatinine. Differences in the FA values of the cortex and medulla were analysed among the three groups, and the relationships of FA values, TKV, and the product of the FA values and TKV with eGFR were analysed. Receiver operating characteristic (ROC) curve analysis was used to compare the diagnostic efficiency of the FA values, TKV, and the product of the FA values and TKV for kidney function in different CKD stages. RESULTS Medullary FA values (m-FA), TKV, and the product of the m-FA values and TKV (m-FA-TKV) were significantly correlated with eGFR (r = 0.653, 0.685, and 0.797, respectively; all P < 0.001). ROC curve analysis showed that m-FA-TKV exhibited better diagnostic performance than m-FA values (P = 0.022). CONCLUSION m-FA-TKV obtained by DTI significantly improves the accuracy of kidney function assessment in CKD patients.
Collapse
Affiliation(s)
- Xue-Song Li
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Qing-Juan Zhang
- Department of Nephrology, The Affiliated Jiangning Hospital with Nanjing Medicine University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Jiang Zhu
- Department of Nephrology, The Affiliated Jiangning Hospital with Nanjing Medicine University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Qing-Qing Zhou
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Zhang-Chun Hu
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Zi-Yi Xia
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Liang Wei
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Xin-Dao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China.
| |
Collapse
|
21
|
Navval-Esfahlan E, Rafraf M, Asghari S, Imani H, Asghari-Jafarabadi M, Karimi-Avval S. Effect of French maritime pine bark extract supplementation on metabolic status and serum vascular cell adhesion molecule-1 levels in patients with type 2 diabetes and microalbuminuria. Complement Ther Med 2021; 58:102689. [PMID: 33610726 DOI: 10.1016/j.ctim.2021.102689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2020] [Revised: 01/17/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES This study investigated the effect of French maritime pine bark extract (PBE) supplementation on metabolic parameters, vascular cell adhesion molecule 1 (VCAM-1), urinary albumin-to-creatinine ratio (UACR), and anthropometric indexes in patients with type 2 diabetes (T2DM) and microalbuminuria. DESIGN This randomized, double-blind, placebo-controlled clinical trial was conducted on 46 patients with T2DM and the evidence of microalbuminuria aged 30-65 years. SETTING Patients were recruited from the endocrinology clinic of Sina hospital (Tabriz, Iran) from March 2018 to April 2019. INTERVENTIONS The subjects were randomly assigned to receive two capsules/day each containing 50mg of PBE or placebo for eight weeks. MAIN OUTCOME MEASURES Glycemic parameters, serum VCAM-1 and lipid profile, UACR, and anthropometric indexes were measured for all patients at baseline and the end of the study. RESULTS PBE supplementation significantly reduced glycosylated hemoglobin, VCAM-1, total cholesterol, UACR, waist circumference, and waist-to-height ratio compared to the placebo group at the end of the study (all P < 0.05). Changes in fasting blood glucose, insulin, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol were not significant between the two groups (all P > 0.05). CONCLUSIONS The study findings demonstrated some favorable effects of PBE supplementation on glycemic control, serum VCAM-1 and total cholesterol levels, and microalbuminuria, as well as abdominal obesity in patients with T2DM.
Collapse
Affiliation(s)
- Elham Navval-Esfahlan
- Students' Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Imani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Karimi-Avval
- Department of Endocrine and Metabolism, Sina Medical Research and Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Zhang J, Yu Y, Liu X, Tang X, Xu F, Zhang M, Xie G, Zhang L, Li X, Liu ZH. Evaluation of Renal Fibrosis by Mapping Histology and Magnetic Resonance Imaging. KIDNEY DISEASES 2021; 7:131-142. [PMID: 33824869 DOI: 10.1159/000513332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/22/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Background Renal fibrosis is a key driver of progression in chronic kidney disease (CKD). Recent advances in diagnostic imaging techniques have shown promising results for the noninvasive assessment of renal fibrosis. However, the specificity and accuracy of these techniques are controversial because they indirectly assess renal fibrosis. This limits fibrosis assessment by imaging in CKD for clinical practice. To validate magnetic resonance imaging (MRI) assessment for fibrosis, we derived representative models by mapping histology-proven renal fibrosis and imaging in CKD. Methods Ninety-seven adult Chinese CKD participants with histology were studied. The kidney cortex interstitial extracellular matrix volume was calculated by the Aperio ScanScope system using Masson's trichrome slices. The kidney cortex microcirculation was quantitatively assessed by peritubular capillary density using CD34 staining. The imaging techniques included intravoxel incoherent motion diffusion-weighted imaging and magnetic resonance elastography (MRE) imaging. Relevant analyses were performed to evaluate the correlations between MRI parameters and histology variables. Multiple linear regression models were used to describe the relationships between a response variable and other variables. The best-fit lines, which minimize the sum of squared residuals of the multiple linear regression models, were generated. Results MRE values were negatively associated with the interstitial extracellular matrix volume (Rho = -0.397, p < 0.001). The best mapping model of extracellular matrix volume with the MRE value and estimated glomerular filtration rate (eGFR) we obtained was as follows: Interstitial extracellular matrix volume = 218.504 - 14.651 × In(MRE) - 18.499 × In(eGFR). DWI-fraction values were positively associated with peritubular capillary density (Rho = 0.472, p < 0.001). The best mapping model of peritubular capillary density with DWI-fraction value and eGFR was as follows: Peritubular capillaries density = 17.914 + 9.403 × (DWI - fraction) + 0.112 × (eGFR). Conclusions The study provides histological evidence to support that MRI can effectively evaluate fibrosis in the kidney. These findings picture the graphs of the mapping model from imaging and eGFR into fibrosis, which has significant value for clinical implementation.
Collapse
Affiliation(s)
- Jiong Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Yuanmeng Yu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | | | - Xiong Tang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Second Military Medical University, Nanjing, China
| | - Guotong Xie
- Ping An Healthcare Technology, Ping An Health Cloud Company Limited, Ping An International Smart City Technology Co., Ltd., Beijing, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiang Li
- Ping An Health Technology, Beijing, China
| | - Zhi-Hong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Second Military Medical University, Nanjing, China
| |
Collapse
|
23
|
Alnazer I, Bourdon P, Urruty T, Falou O, Khalil M, Shahin A, Fernandez-Maloigne C. Recent advances in medical image processing for the evaluation of chronic kidney disease. Med Image Anal 2021; 69:101960. [PMID: 33517241 DOI: 10.1016/j.media.2021.101960] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Assessment of renal function and structure accurately remains essential in the diagnosis and prognosis of Chronic Kidney Disease (CKD). Advanced imaging, including Magnetic Resonance Imaging (MRI), Ultrasound Elastography (UE), Computed Tomography (CT) and scintigraphy (PET, SPECT) offers the opportunity to non-invasively retrieve structural, functional and molecular information that could detect changes in renal tissue properties and functionality. Currently, the ability of artificial intelligence to turn conventional medical imaging into a full-automated diagnostic tool is widely investigated. In addition to the qualitative analysis performed on renal medical imaging, texture analysis was integrated with machine learning techniques as a quantification of renal tissue heterogeneity, providing a promising complementary tool in renal function decline prediction. Interestingly, deep learning holds the ability to be a novel approach of renal function diagnosis. This paper proposes a survey that covers both qualitative and quantitative analysis applied to novel medical imaging techniques to monitor the decline of renal function. First, we summarize the use of different medical imaging modalities to monitor CKD and then, we show the ability of Artificial Intelligence (AI) to guide renal function evaluation from segmentation to disease prediction, discussing how texture analysis and machine learning techniques have emerged in recent clinical researches in order to improve renal dysfunction monitoring and prediction. The paper gives a summary about the role of AI in renal segmentation.
Collapse
Affiliation(s)
- Israa Alnazer
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France; AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon.
| | - Pascal Bourdon
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Thierry Urruty
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Omar Falou
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon; American University of Culture and Education, Koura, Lebanon; Lebanese University, Faculty of Science, Tripoli, Lebanon
| | - Mohamad Khalil
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Ahmad Shahin
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Christine Fernandez-Maloigne
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| |
Collapse
|
24
|
Abstract
OBJECTIVE To explore whether a radiomics signature based on diffusion tensor imaging (DTI) can detect early kidney damage in diabetic patients. MATERIALS AND METHODS Twenty-eight healthy volunteers (group A) and thirty type 2 diabetic patients (group B) with micro-normoalbuminuria, a urinary albumin-to-creatinine ratio (ACR) < 30 mg/g and an estimated glomerular filtration rate (eGFR) of 60-120 mL/(min 1.73 m2) were recruited. Kidney DTI was performed using 1.5T magnetic resonance imaging (MRI).The radiologist manually drew regions of interest (ROI) on the fractional anisotropy (FA) map of the right kidney ROI including the cortex and medulla. The texture features of the ROIs were extracted using MaZda software. The Fisher coefficient, mutual information (MI), and probability of classification error and average correlation coefficient (POE + ACC) methods were used to select the texture features. The most valuable texture features were further selected by the least absolute shrinkage and selection operator (LASSO) algorithm. A LASSO regression model based on the radiomics signature was established. The diagnostic performance of the model for detecting early diabetic kidney changes was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). Empower (R), R, and MedCalc15.8 software were used for statistical analysis RESULTS: A total of 279 texture features were extracted from ROI of the kidney, and 30 most valuable texture features were selected from groups A and B using MaZda software. After LASSO-logistic regression, a diagnostic model of diabetic kidney damage based on texture features was established. Model discrimination evaluation: AUC = 0.882 (0.770 ± 0.952). Model calibration evaluation: Hosmer-Lemeshow X2 = 5.3611, P = 0.7184, P > 0.05, the model has good calibration. CONCLUSION The texture features based on DTI could play a promising role in detecting early diabetic kidney damage.
Collapse
|
25
|
Cheng ZY, Feng YZ, Liu XL, Ye YJ, Hu JJ, Cai XR. Diffusional kurtosis imaging of kidneys in patients with hyperuricemia: initial study. Acta Radiol 2020; 61:839-847. [PMID: 31610679 DOI: 10.1177/0284185119878362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND At present, there remains a lack of a reliable indicator for monitoring renal function in patients with hyperuricemia. PURPOSE This study aimed to evaluate the feasibility of diffusion kurtosis imaging in the assessment of renal function in patients with hyperuricemia. MATERIAL AND METHODS A total of 75 male participants, including 25 with asymptomatic hyperuricemia, 25 with gouty arthritis, and 25 age-matched male healthy controls, were enrolled in this study. Diffusion kurtosis imaging data were acquired to derive axial (Ka), radial (Kr), and mean kurtosis (MK), fractional anisotropy, axial (Da), radial (Dr), and mean diffusivity (MD) for comparisons among the three groups. They were also correlated with estimated glomerular filtration rate (eGFR). RESULTS The MK values of the renal cortex and medulla and Kr value of the renal medulla in patients with asymptomatic hyperuricemia and gouty arthritis significantly increased compared with those in the controls (P < 0.05). Patients with gouty arthritis showed significant higher cortical and medullary Ka values compared with the other two groups (P < 0.05). The cortical Kr values of the asymptomatic hyperuricemia and gouty arthritis patients were significantly higher than that of the controls (P < 0.05). The medullary fractional anisotropy value showed a significant difference between the control and gouty arthritis groups (P < 0.05). No correlation was found between any diffusion kurtosis imaging parameters and eGFR value. CONCLUSION Diffusion kurtosis imaging is feasible in the assessment of the early changes of renal cortex and medulla in patients with hyperuricemia.
Collapse
Affiliation(s)
- Zhong-Yuan Cheng
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
- *Equal contributors
| | - You-Zhen Feng
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
- *Equal contributors
| | - Xiao-Ling Liu
- Medical Imaging Center, Guangdong Provincial Hospital of Traditional Chinese Medicine Zhuhai Branch, Guangdong, PR China
| | - Yao-Jiang Ye
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
| | - Jun-Jiao Hu
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
| | - Xiang-Ran Cai
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
| |
Collapse
|
26
|
Diffusion-weighted Renal MRI at 9.4 Tesla Using RARE to Improve Anatomical Integrity. Sci Rep 2019; 9:19723. [PMID: 31873155 PMCID: PMC6928203 DOI: 10.1038/s41598-019-56184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive imaging technique sensitive to tissue water movement. By enabling a discrimination between tissue properties without the need of contrast agent administration, DWI is invaluable for probing tissue microstructure in kidney diseases. DWI studies commonly make use of single-shot Echo-Planar Imaging (ss-EPI) techniques that are prone to suffering from geometric distortion. The goal of the present study was to develop a robust DWI technique tailored for preclinical magnetic resonance imaging (MRI) studies that is free of distortion and sensitive to detect microstructural changes. Since fast spin-echo imaging techniques are less susceptible to B0 inhomogeneity related image distortions, we introduced a diffusion sensitization to a split-echo Rapid Acquisition with Relaxation Enhancement (RARE) technique for high field preclinical DWI at 9.4 T. Validation studies in standard liquids provided diffusion coefficients consistent with reported values from the literature. Split-echo RARE outperformed conventional ss-EPI, with ss-EPI showing a 3.5-times larger border displacement (2.60 vs. 0.75) and a 60% higher intra-subject variability (cortex = 74%, outer medulla = 62% and inner medulla = 44%). The anatomical integrity provided by the split-echo RARE DWI technique is an essential component of parametric imaging on the way towards robust renal tissue characterization, especially during kidney disease.
Collapse
|
27
|
Zhang J, Zhang LJ. Functional MRI as a Tool for Evaluating Interstitial Fibrosis and Prognosis in Kidney Disease. KIDNEY DISEASES 2019; 6:7-12. [PMID: 32021869 DOI: 10.1159/000504708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/23/2019] [Revised: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Background Kidney fibrosis is a key driver of progression of kidney diseases. Renal biopsies remain the gold-standard approach to specifically diagnose and stage renal fibrosis at present. However, there is a lack of multi-dimensional pictures showing renal function, histology, and imaging of the fibrotic kidney. Summary Magnetic resonance imaging (MRI) strategies have been rapidly evolving during the past couple of decades, especially driven by advances in technology. Recently, several pioneer and remarkable studies demonstrated that advanced functional MRI (fMRI) tools could be useful for the evaluation of kidney fibrosis and progression, which provides more opportunities to benefit from the significant value of fMRI tools for clinical implementation. Key Messages fMRI will be a novel approach to evaluate interstitial fibrosis and prognosis in kidney disease.
Collapse
Affiliation(s)
- Jiong Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Long Jiang Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
28
|
Feng YZ, Ye YJ, Cheng ZY, Hu JJ, Zhang CB, Qian L, Lu XH, Cai XR. Non-invasive assessment of early stage diabetic nephropathy by DTI and BOLD MRI. Br J Radiol 2019; 93:20190562. [PMID: 31603347 DOI: 10.1259/bjr.20190562] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Patients with diabetes mellitus, diabetic nephropathy (DN) and healthy donor were analyzed to test whether the early DN patients can be detected using both blood oxygenation level dependent (BOLD) and diffusion tensor imaging. METHODS This study was approved by the Ethics Committee of our hospital. MR images were acquired on a 3.0-Tesla MR system (Discovery MR750, General Electric, Milwaukee, WI). 30 diabetic patients were divided into NAU (normal to mildly increased albuminuria, N = 15) and MAU (moderately increased albuminuria, N = 15) group based on the absence or presence of microalbuminuria. 15 controls with sex- and age-matched were enrolled in the study. Prior to MRI scan, all participants were instructed to collect their fresh morning urine samples for quantitative measurement of urinary microalbumin and urinary creatinine. Then, the estimations of serum creatinine, serum uric acid, HbAlc and fasting plasma glucose as well as fundus examinations were performed in all subjects. Then, the values of albumin-creatinine ratio (ACR) and estimated glomerular filtration rate were also calculated. All subjects underwent renal diffusion tensor imaging (DTI) and BOLD acquisition after fasting for 4 h. Regions of interest were placed in renal medulla and cortex for evaluating apparent diffusion coefficient (ADC), fractional anisotropy (FA) and R2* values by two experienced radiologists. The consistency between the two observations was estimated using intragroup correlation coefficients. To test differences in ADC, FA and R2* values across the three groups, the data were analyzed using separate one-way ANOVAs. Post-hoc pair wise comparisons were then performed using t-test. To investigate the clinical relevance of imaging parameters in both regions across the three groups, the correlations of values of the ACR/estimated glomerular filtration rate and of the ADC/FA/R2* were calculated. RESULTS There was a high level of consistency of those ADC, FA and R2* values across the three groups on both renal cortex and medulla measured by the two doctors. The FA value of medulla in MAU group was lower than that in control (p < 0.01). The R2* value of medulla in the NAU group was higher than that in the control (p < 0.01), and the R2* value of medulla in the MAU group was lower than that in the control (p = 0.009) . Moreover, the current study revealed a decreasing trend in FA values of the renal medulla from the control group to NAU and MAU groups. Finally, a weak negatively correlation between medullary R2* and ACR was found in current study. CONCLUSION Medullary R2* value might be a new more sensitive predictor of early DN. Meanwhile, BOLD imaging detected the medullary hypoxia at the simply diabetic stage, while DTI didn't identify the medullary directional diffusion changes at this stage. Based on our assumption mentioned above, it's presumable that BOLD imaging may be more sensitive for assessment of the early renal function changes than DTI. These imaging techniques are more accurate and practical than conventional tests. ADVANCES IN KNOWLEDGE Non-invasive MRI was used to detect renal function changes at early DN stage.
Collapse
Affiliation(s)
- You-Zhen Feng
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yao-Jiang Ye
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Zhong-Yuan Cheng
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jun-Jiao Hu
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Chuang-Biao Zhang
- Endocrinology department, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | | | - Xiao-Hua Lu
- Endocrinology department, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xiang-Ran Cai
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Yu Z, Zhu H, Wu X, Chen Z, Zhang Z, Li J, Ye Q. Acute renal impairment characterization using diffusion magnetic resonance imaging: Validation by histology. NMR IN BIOMEDICINE 2019; 32:e4126. [PMID: 31290588 DOI: 10.1002/nbm.4126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/12/2018] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Diffusion magnetic resonance imaging has been demonstrated to be a simple, noninvasive and accurate method for the detection of renal microstructure and microcirculation, which are closely linked to renal function. Moreover, serum endothelin-1 (ET-1) was also reported as a good indicator of early renal injury. The aim of this study was to evaluate the feasibility and capability of diffusion MRI and ET-1 to detect acute kidney injury by an operation simulating high-pressure renal pelvic perfusion, which is commonly used during ureteroscopic lithotripsy. Histological findings were used as a reference. Fourteen New Zealand rabbits in an experimental group and 14 in a control group were used in this study. Diffusion tensor imaging and intravoxel incoherent motion diffusion-weighted imaging were acquired by a 3.0 T MRI scanner. Significant corticomedullary differences were found in the values of the apparent diffusion coefficient (ADC), pure tissue diffusion, volume fraction of pseudo-diffusion (fp) and fractional anisotropy (FA) (P < 0.05 for all) in both preoperation and postoperation experimental groups. Compared with the control group, the values of cortical fpmean , medullary ADCmean and FAmean decreased significantly (P < 0.05) after the operation in the experimental group. Also, the change rate of medullary ADCmean in the experimental group was more pronounced than that in the control group (P = 0.018). No significant change was found in serum ET-1 concentration after surgery in either the experimental (P = 0.80) or control (P = 0.17) groups. In the experimental group, histological changes were observed in the medulla, while no visible change was found in the cortex. This study demonstrated the feasibility of diffusion MRI to detect the changes of renal microstructure and microcirculation in acute kidney injury, with the potential to evaluate renal function. Moreover, the sensitivity of diffusion MRI to acute kidney injury appears to be superior to that of serum ET-1.
Collapse
Affiliation(s)
- Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Honghui Zhu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiuling Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhongwei Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhao Zhang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiong Ye
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
30
|
Cheng ZY, Feng YZ, Hu JJ, Lin QT, Li W, Qian L, Cai XR. Intravoxel incoherent motion imaging of the kidney: The application in patients with hyperuricemia. J Magn Reson Imaging 2019; 51:833-840. [PMID: 31318112 DOI: 10.1002/jmri.26861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hyperuricemia is an independent risk factor for onset and progression of kidney disease. However, there remains a lack of a reliable and noninvasive biomarker to identify and monitor the changes of renal function in patients with hyperuricemia. PURPOSE To assess the utility of intravoxel incoherent motion (IVIM) parameters in identifying the early changes of renal function in patients with hyperuricemia. STUDY TYPE Retrospective case-control study. POPULATION Eighty-four male participants, including asymptomatic hyperuricemia (AH, 27 cases), gouty arthritis (GA, 31 cases), and 26 age-matched healthy controls. FIELD STRENGTH/SEQUENCE 3.0T; intravoxel incoherent motion (IVIM). ASSESSMENT Differences in the IVIM parameters among the three groups were assessed. Pure molecular diffusion (D value); perfusion-related diffusion (D* value); pseudodiffusion fraction (f value); apparent diffusion coefficient (ADC value); estimated glomerular filtration rate (eGFR). Also, they were correlated with eGFR. STATISTICAL TESTS Bonferroni test, Tamhane's T2 method, and Pearson correlation analysis. RESULTS The D values in renal cortex and medulla significantly decreased from the control, AH to GA groups (P < 0.05). The GA patients had a significantly lower cortical f value than the controls and AH patients (P < 0.05). The medullary f values in the AH and GA patients were significantly lower than that in the controls (P < 0.05). Also, the cortical and medullary ADC values had similar results across the three groups (P < 0.05), except for the comparison between the AH and GA groups (P = 0.668, P = 0.111, respectively). No significant correlation was found between any IVIM parameters with eGFR. DATA CONCLUSION IVIM imaging may be helpful for detecting the early changes of renal function induced by hyperuricemia. The D value could be the most sensitive IVIM-derived parameter in the assessment of renal function in patients with hyperuricemia in this study. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:833-840.
Collapse
Affiliation(s)
- Zhong-Yuan Cheng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - You-Zhen Feng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jun-Jiao Hu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qi-Ting Lin
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wei Li
- Medical Imaging Center, Zhuhai People's Hospital, Zhuhai, China
| | | | - Xiang-Ran Cai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl Res 2019; 209:105-120. [PMID: 31082371 PMCID: PMC6553637 DOI: 10.1016/j.trsl.2019.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is a useful biomarker for diagnosis and guidance of therapeutic interventions of chronic kidney disease (CKD), a worldwide disease that affects more than 10% of the population and is one of the major causes of death. Currently, tissue biopsy is the gold standard for assessment of renal fibrosis. However, it is invasive, and prone to sampling error and observer variability, and may also result in complications. Recent advances in diagnostic imaging techniques, including magnetic resonance imaging (MRI) and ultrasonography, have shown promise for noninvasive assessment of renal fibrosis. These imaging techniques measure renal fibrosis by evaluating its impacts on the functional, mechanical, and molecular properties of the kidney, such as water mobility by diffusion MRI, tissue hypoxia by blood oxygenation level dependent MRI, renal stiffness by MR and ultrasound elastography, and macromolecule content by magnetization transfer imaging. Other MR techniques, such as T1/T2 mapping and susceptibility-weighted imaging have also been explored for measuring renal fibrosis. Promising findings have been reported in both preclinical and clinical studies using these techniques. Nevertheless, limited specificity, sensitivity, and practicality in these techniques may hinder their immediate application in clinical routine. In this review, we will introduce methodologies of these techniques, outline their applications in fibrosis imaging, and discuss their limitations and pitfalls.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
32
|
Li Q, Wang D, Zhu X, Shen K, Xu F, Chen Y. Combination of renal apparent diffusion coefficient and renal parenchymal volume for better assessment of split renal function in chronic kidney disease. Eur J Radiol 2018; 108:194-200. [DOI: 10.1016/j.ejrad.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|