1
|
Tüsüz Önata E, Özdemir Ö. Fecal microbiota transplantation in allergic diseases. World J Methodol 2025; 15:101430. [DOI: 10.5662/wjm.v15.i2.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024] Open
Abstract
Microorganisms such as bacteria, fungi, viruses, parasites living in the human intestine constitute the human intestinal microbiota. Dysbiosis refers to compositional and quantitative changes that negatively affect healthy gut microbiota. In recent years, with the demonstration that many diseases are associated with dysbiosis, treatment strategies targeting the correction of dysbiosis in the treatment of these diseases have begun to be investigated. Faecal microbiota transplantation (FMT) is the process of transferring faeces from a healthy donor to another recipient in order to restore the gut microbiota and provide a therapeutic benefit. FMT studies have gained popularity after probiotic, prebiotic, symbiotic studies in the treatment of dysbiosis and related diseases. FMT has emerged as a potential new therapy in the treatment of allergic diseases as it is associated with the maintenance of intestinal microbiota and immunological balance (T helper 1/T helper 2 cells) and thus suppression of allergic responses. In this article, the definition, application, safety and use of FMT in allergic diseases will be discussed with current data.
Collapse
Affiliation(s)
- Ece Tüsüz Önata
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| | - Öner Özdemir
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| |
Collapse
|
2
|
Asad A, Kirk M, Zhu S, Dong X, Gao M. Effects of Prebiotics and Probiotics on Symptoms of Depression and Anxiety in Clinically Diagnosed Samples: Systematic Review and Meta-analysis of Randomized Controlled Trials. Nutr Rev 2024:nuae177. [PMID: 39731509 DOI: 10.1093/nutrit/nuae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024] Open
Abstract
CONTEXT The use of prebiotics and probiotics as a treatment for psychiatric conditions has gained interest due to their potential to modulate the gut-brain axis. This review aims to assess the effectiveness of these interventions in reducing symptoms of depression and anxiety in psychiatric populations. OBJECTIVE The aim was to comprehensively review and appraise the effectiveness of prebiotic, probiotic, and synbiotic interventions in reducing clinical depression and anxiety symptoms. DATA SOURCES Systematic searches were conducted across Embase, Medline, PsycINFO, CINAHL, Cochrane Library, and Science Citation Index from database inception to May 22, 2023. DATA EXTRACTION Randomized controlled trials investigating prebiotic, probiotic, or synbiotic interventions for treating clinical depression or anxiety symptoms in clinical samples were included. Data were extracted on study characteristics, intervention details, and outcome measures. The Cochrane Collaboration Tool was used to assess the risk of bias. DATA ANALYSIS The standardized mean difference (SMD) was calculated using Hedge's g as the metric of effect size. A random-effects model was applied to estimate pooled effect sizes with 95% CIs. Subgroup analyses were performed based on study characteristics, methodological factors, and intervention types. Sensitivity analyses excluded studies with a high risk of bias. RESULTS Twenty-three RCTs involving 1401 patients met the inclusion criteria, with 20 trials providing sufficient data for meta-analysis. Of these, 18 trials investigated probiotics for depression, 9 trials assessed probiotics for anxiety, and 3 trials examined prebiotics for depression. Probiotics demonstrated a significant reduction in depression symptoms (SMD: -0.96; 95% CI: -1.31, -0.61) and a moderate reduction in anxiety symptoms (SMD: -0.59; 95% CI: -0.98, -0.19). Prebiotics did not show a significant effect on depression (SMD: -0.28; 95% CI: -0.61, 0.04). High heterogeneity was observed across studies, and subgroup analyses indicated that study duration and probiotic formulations contributed to the variation in effect sizes. CONCLUSION Probiotics showed substantial reductions in depression symptoms and moderate reductions in anxiety symptoms. Prebiotics showed a nonsignificant trend toward reducing depression. An adjunctive mental health treatment approach that diagnoses, monitors, and treats the gut microbiome alongside traditional pharmacological treatment holds promise for clinical practice. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023424136.
Collapse
Affiliation(s)
- Afrida Asad
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Megan Kirk
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Sufen Zhu
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Xue Dong
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Min Gao
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
3
|
Qi P, Xie R, Liu H, Zhang Z, Cheng Y, Ma J, Wan K, Xie X. Mechanisms of gut homeostasis regulating Th17/Treg cell balance in PMOP. Front Immunol 2024; 15:1497311. [PMID: 39735544 PMCID: PMC11671525 DOI: 10.3389/fimmu.2024.1497311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic bone disease driven by estrogen deficiency, primarily manifesting as reduced bone mass and heightened fracture risk. Its development is intricately linked to the balance between Th17 and Treg cells. Recent studies have highlighted the significant role of gut homeostasis in PMOP. The gut microbiota profoundly impacts bone health by modulating the host's immune system, metabolic pathways, and endocrine functions. In particular, the regulation of Th17 and Treg cell balance by gut homeostasis plays a pivotal role in the onset and progression of PMOP. Th17 cells secrete pro-inflammatory cytokines that stimulate osteoclast activity, accelerating bone resorption, while Treg cells counteract this process through anti-inflammatory mechanisms, preserving bone mass. The gut microbiota and its metabolites can influence Th17/Treg equilibrium, thereby modulating bone metabolism. Furthermore, the integrity of the gut barrier is critical for systemic immune stability, and its disruption can lead to immune dysregulation and metabolic imbalances. Thus, targeting gut homeostasis to restore Th17/Treg balance offers a novel therapeutic avenue for the prevention and treatment of PMOP.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | | | - Hao Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zixuan Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuan Cheng
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jilong Ma
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kangwei Wan
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - XingWen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
4
|
Moreno-Altamirano L, Robles-Rivera K, Castelán-Sánchez HG, Vaca-Paniagua F, Iñarritu Pérez MDC, Hernández-Valencia SE, Cruz-Casarrubias C, García-García JJ, Ruíz de la Cruz M, Martínez-Gregorio H, Díaz Velásquez CE, Soto-Estrada G, Navarro-Ocaña A, Carrillo-Medina S. Gut Microbiota: Association with Fiber Intake, Ultra-Processed Food Consumption, Sex, Body Mass Index, and Socioeconomic Status in Medical Students. Nutrients 2024; 16:4241. [PMID: 39683634 DOI: 10.3390/nu16234241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
The gut microbiota plays a vital role in various physical and physiological processes, including immune system regulation, neurotransmitter production, inflammatory response modulation, and the inhibition of pathogenic organisms. An imbalance in the microbial community, known as dysbiosis, has been associated with numerous health issues. Biological influences, health behaviors, socioeconomic determinants, and nutritional status can disrupt this balance. OBJECTIVE To evaluate the differences in the gut microbiota composition in medical students according to fiber intake, ultra-processed food (UPF) consumption, sex, body mass index, and socioeconomic status. METHODS A cross-sectional study was conducted with 91 medical students, and 82 fecal samples were analyzed. Sociodemographic and dietary data were collected via questionnaires, UPF consumption was assessed using the NOVA classification, and trained nutritionists performed anthropometry. DNA extraction and 16S rRNA sequencing were performed for the microbial analysis. Bioinformatics and statistical tests included the Dunn and Kruskal-Wallis tests, a PCoA analysis, PERMANOVA, ANOVA, Spearman's rank correlation, and alpha and beta diversity metrics. RESULTS Dietary fiber intake strongly influences gut microbiota composition. Lower fiber intake was associated with a higher prevalence of Parabacteroides and Muribaculaceae. Prevotella was more prevalent in individuals with lower UPF intake, while Phascolarctobacterium was prevalent in those with higher UPF consumption. Significant differences were associated with sex and UPF consumption but not BMI or SES. Women consumed more UPF, which correlated with distinct gut microbiota profiles. CONCLUSIONS This study highlights the significant impact of diet, particularly fiber intake and UPF, on gut microbiota composition, emphasizing the importance of dietary habits in maintaining gut health.
Collapse
Affiliation(s)
- Laura Moreno-Altamirano
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco, Coyoacán, Mexico City 04510, Mexico
| | - Karina Robles-Rivera
- Research Department, Secretariat of Clinical Education, Medical Internship and Social Service, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Hugo G Castelán-Sánchez
- Department of Pathology and Laboratory Medicine, Western University, Dental Sciences Building, Rm. 4044, London, Ontario N6A 5C1, Canada
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
| | - María Del Carmen Iñarritu Pérez
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco, Coyoacán, Mexico City 04510, Mexico
| | - Sandra Elvia Hernández-Valencia
- National Institute of Rehabilitation Luis Guillermo Ibarra Ibarra, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico
| | - Carlos Cruz-Casarrubias
- Center for Nutrition and Health Research, Mexican National Institute of Public Health, Fray Pedro de Gante 12, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| | - Juan José García-García
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco, Coyoacán, Mexico City 04510, Mexico
| | - Miguel Ruíz de la Cruz
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
| | - Héctor Martínez-Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
| | - Guadalupe Soto-Estrada
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco, Coyoacán, Mexico City 04510, Mexico
| | - Armando Navarro-Ocaña
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco, Coyoacán, Mexico City 04510, Mexico
| | - Santiago Carrillo-Medina
- Centro de Investigación Trials in Medicine S.C., Avenida Álvaro Obregón 121 Floor 15 Suite 1504, Cuauhtemoc, Mexico City 06700, Mexico
| |
Collapse
|
5
|
Ma ZS. Revisiting microgenderome: detecting and cataloguing sexually unique and enriched species in human microbiomes. BMC Biol 2024; 22:284. [PMID: 39639265 PMCID: PMC11622641 DOI: 10.1186/s12915-024-02025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Microgenderome or arguably more accurately microsexome refers to studies on sexual dimorphism of human microbiomes aimed at investigating bidirectional interactions between human microbiomes, sex hormones, and immune systems. It is important because of its implications to disease susceptibility and therapy, in which men and women demonstrate divergence in many diseases especially autoimmune diseases. In a previous report [1], we presented analyses of several key ecological aspects of microgenderome by leveraging the large datasets of the HMP (human microbiome project) but failed to offer species-level composition differences such as sexually unique species (US) and enriched species (ES). Existing approaches, for such tasks, including differential species relative abundance analysis and differential network analysis, possess certain limitations given that virtually all rely on species abundance alone or are univariate, while ignoring species distribution information across samples. Obviously, it is both species abundance and distribution that shape/drive the structure and dynamics of human microbiomes, and both should be equally responsible for the universal heterogeneity of microbiomes including the sexual dimorphism. RESULTS Here, we fill the gap by taking advantages of a recently developed computational algorithm, species specificity, and specificity diversity (SSD) framework (refer to the companion article) to reanalyze the HMP and complementary seminovaginal microbiome datasets. The SSD framework can randomly search and catalogue the sexually specific unique/enriched species with statistical rigor, guided by species specificity (a synthetic metric of abundance and distribution) and specificity diversity (SD). The SSD framework reveals that men seem to have more unique species than women in their gut and reproductive system microbiomes, but women seem to have more unique species than men in the airway, oral, and skin microbiomes, which is likely due to sexual dimorphism in the hormone and immune systems. We further investigate co-dependency and heterogeneity of those sexually unique/enriched species across 15 body sites, with core/periphery network analyses. CONCLUSIONS This study not only produced sexually unique/enriched species in the human microbiomes and analyzed their codependency and heterogeneity but also further validated the robustness of the SSD framework presented in the companion article, by performing all negative control tests based on the HMP gut microbiome samples.
Collapse
Affiliation(s)
- Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Department of Entomology, College of Plant Protection, Hebei Agricultural University, Baoding, China.
- Microbiome Medicine and Advanced AI Lab, Cambridge, MA, 02138, USA.
- Faculty of Arts and Science, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Wu Z, Sun Y, Huang W, Jin Z, You F, Li X, Xiao C. Direct and indirect effects of estrogens, androgens and intestinal microbiota on colorectal cancer. Front Cell Infect Microbiol 2024; 14:1458033. [PMID: 39660281 PMCID: PMC11628516 DOI: 10.3389/fcimb.2024.1458033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Sex differences in colorectal cancer (CRC) has received considerable research attention recently, particularly regarding the influence of sex hormones and the intestinal microbiota. Estrogen, at the genetic and epigenetic levels, directly inhibits CRC cell proliferation by enhancing DNA mismatch repair, regulating miRNAs, blocking the cell cycle, and modulating ion channels. However, estradiol's activation of GPER promotes oncogene expression. Conversely, androgen contributes to epigenetic dysregulation and CRC progression via nuclear receptors while inducing apoptosis through membrane receptors. Specific gut microorganisms produce genotoxins and oncogenic metabolites that damage colonic cell DNA and contribute to cancer induction. Regarding the tumor microenvironment, estrogen mitigates intestinal inflammation, reverses immunosuppression, increases gut microbiome diversity and commensal bacteria abundance, and decreases pathogen enrichment. On the contrary, androgen disrupts intestinal microecology, diminish immunotherapy efficacy, and exacerbate colonic inflammation and tumor growth. The impact of estrogen and androgen is closely tied to their receptor status, elucidating their dual roles in CRC pathogenesis. This review comprehensively discusses the direct and indirect effects of sex hormones and the intestinal microbiota on CRC, considering environmental factors such as diet and lifestyle to propose novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Zihong Wu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Sun
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenbo Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenzhen Jin
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueke Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Harris RM, Pace F, Kuntz TM, Morgan XC, Hyland P, Summers K, McDermott E, Blumen K, Watnick PI. Testosterone treatment impacts the intestinal microbiome of transgender individuals. mSphere 2024; 9:e0055724. [PMID: 39254049 PMCID: PMC11520287 DOI: 10.1128/msphere.00557-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Medical modulation of sex hormone levels is a cornerstone of treatment for many conditions that impact well-being, including cancer, fertility/infertility, gender dysphoria, and chronic metabolic diseases such as diabetes and obesity. The microbial residents of the intestine, known as the microbiota, interact with sex hormones in the intestine, and there is correlative evidence that this interaction is bidirectional. Based on these published findings, we hypothesized that transgender individuals receiving exogenous testosterone as part of their gender-affirming medical treatment might undergo changes in their intestinal microbiome. To test this, we collected 26 stool samples from nine individuals before and up to 8 months after initiation of treatment with exogenous testosterone and subjected these samples to metagenomic analysis. While no species were significantly associated with the duration of testosterone therapy, pathways that generate glutamate increased in abundance, while those that consume glutamate decreased. Glutamate is a precursor of arginine, and testosterone is known to increase levels of arginine and its metabolites in the plasma. We hypothesize that testosterone increases the uptake of glutamate by enterocytes, thus decreasing access of the microbiota to this amino acid. While this pilot study establishes the impact of testosterone therapy on the intestinal microbiome, a more comprehensive study is necessary to establish the impact of testosterone-driven metagenomic shifts on the stool metatranscriptome, the stool metabolome, and the plasma metabolome.IMPORTANCEThe human intestine is inhabited by a large community of microbes known as the microbiome. Members of the microbiome consume the diet along with their human host. Thus, the metabolomes of the host and microbe are intricately linked. Testosterone alters the plasma metabolome. In particular, plasma levels of arginine and its metabolites and testosterone are positively correlated. To investigate the impact of exogenous testosterone on the microbiome, we analyzed the stool metagenomes of transgender individuals before and after the initiation of testosterone treatment. In this pilot project, we found a modest impact on the microbiome community structure but an increase in the abundance of metabolic pathways that generate glutamate and spare glutamate consumption. We propose that the host uses glutamate to generate arginine, decreasing the amount available for the microbiome.
Collapse
Affiliation(s)
- Rebecca M. Harris
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Fernanda Pace
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Thomas M. Kuntz
- Harvard Chan Microbiome Analysis Core, Department of Biostatistics, Harvard Chan School of Public Health, Boston, Massachusetts, USA
| | - Xochitl C. Morgan
- Harvard Chan Microbiome Analysis Core, Department of Biostatistics, Harvard Chan School of Public Health, Boston, Massachusetts, USA
| | - Phoebe Hyland
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kiana Summers
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Em McDermott
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kai Blumen
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Paula I. Watnick
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Félix J, Baca A, Taboada L, Álvarez-Calatayud G, De la Fuente M. Consumption of a Probiotic Blend with Vitamin D Improves Immunity, Redox, and Inflammatory State, Decreasing the Rate of Aging-A Pilot Study. Biomolecules 2024; 14:1360. [PMID: 39595538 PMCID: PMC11591724 DOI: 10.3390/biom14111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
There is evidence of the effect of probiotic intake on the immune system. However, the effect probiotics may have on the rate of aging is unknown. The aim of this study is to determine the effect of a probiotic blend on immunity, redox state, inflammation, and the rate of aging or biological age. A group of 10 men and 14 women took, daily for 2 months, a sachet with three probiotics (Bifidobacterium animalis subsp. lactis BSO1, Lactobacillus reuteri LRE02, Lactobacillus plantarum LP14) and vitamin D. Before starting the treatment and after 2 months, peripheral blood was collected. Immune functions were assessed in isolated immune cells, and cytokine concentrations were also measured both in mononuclear cell cultures and plasma. Redox state parameters were also analyzed in whole blood cells. Finally, the Immunity Clock was applied to determine the biological age. Results show that the intake of this probiotic blend in general, in both men and women, improves immunity and decreases the oxidative and inflammatory state. In addition, it rejuvenates the biological age by 10 years on average. It can be concluded that this probiotic blend could be proposed as a good strategy to slow down the aging process, and to achieve healthy aging.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Adriana Baca
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (A.B.); (M.D.l.F.)
| | - Luz Taboada
- General Medicine Area, Hospital HM Sanchinarro, 28040 Madrid, Spain;
| | - Guillermo Álvarez-Calatayud
- Gastroenterology and Child Nutrition Area, General University Hospital Gregorio Marañón, 28007 Madrid, Spain;
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28040 Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
9
|
Flanagan KL. ILC2s govern sex-differential immunity in skin. Cell Res 2024; 34:605-606. [PMID: 38720096 PMCID: PMC11368942 DOI: 10.1038/s41422-024-00972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Katie L Flanagan
- Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia.
- School of Medicine, University of Tasmania, Launceston, TAS, Australia.
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Cattaneo A, Bellenghi M, Ferroni E, Mangia C, Marconi M, Rizza P, Borghini A, Martini L, Luciani MN, Ortona E, Carè A, Appetecchia M, Ministry Of Health-Gender Medicine Team. Recommendations for the Application of Sex and Gender Medicine in Preclinical, Epidemiological and Clinical Research. J Pers Med 2024; 14:908. [PMID: 39338162 PMCID: PMC11433203 DOI: 10.3390/jpm14090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Gender medicine studies how health status and diseases differ between men and women in terms of prevention, therapeutic approach, prognosis, and psychological and social impact. Sex and gender analyses have been demonstrated to improve science, contributing to achieving real appropriateness and equity in the cure for each person. Therefore, it is fundamental to consider, both in preclinical and clinical research, the different clinical and biological features associated with sex and/or gender, where sex differences are mainly influenced by biological determinants and gender ones by socio-cultural and economic matters. This article was developed to provide knowledge and methodological tools for the development of studies/research protocols in which sex and gender should be taken into account.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Maria Bellenghi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eliana Ferroni
- Epidemiological System of the Veneto Region, Regional Center for Epidemiology, Veneto Region, 35100 Padova, Italy
| | - Cristina Mangia
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Matteo Marconi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Rizza
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alice Borghini
- Agenzia Nazionale per i Servizi Sanitari Regionali, 00187 Rome, Italy
| | - Lorena Martini
- Agenzia Nazionale per i Servizi Sanitari Regionali, 00187 Rome, Italy
| | | | - Elena Ortona
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandra Carè
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 00144 Rome, Italy
| | | |
Collapse
|
11
|
Song CH, Kim N, Nam RH, Choi SI, Jang JY, Kim EH, Choi J, Choi Y, Yoon H, Lee SM, Seok YJ. The Possible Preventative Role of Lactate- and Butyrate-Producing Bacteria in Colorectal Carcinogenesis. Gut Liver 2024; 18:654-666. [PMID: 38030382 PMCID: PMC11249946 DOI: 10.5009/gnl230385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background/Aims : The gut microbiome has emerged as a key player that mechanistically links various risk factors to colorectal cancer (CRC) etiology. However, the role of the gut microbiome in CRC pathogenesis remains unclear. This study aimed to characterize the gut microbiota in healthy controls (HCs) and patients with colorectal adenoma (AD) and CRC in subgroups based on sex and age. Methods : Study participants who visited the hospital for surveillance of CRC or gastrointestinal symptoms were prospectively enrolled, and the gut microbiome was analyzed based on fecal samples. Results : In terms of HC-AD-CRC sequence, commensal bacteria, including lactate-producing (Streptococcus salivarius) and butyrate-producing (Faecalibacterium prausnitzii, Anaerostipes hadrus, and Eubacterium hallii) bacteria, were more abundant in the HC group than in the AD and CRC groups. In the sex comparison, the female HC group had more lactate-producing bacteria (Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Lactobacillus ruminis) than the male HC group. In age comparison, younger subjects had more butyrate-producing bacteria (Agathobaculum butyriciproducens and Blautia faecis) than the older subjects in the HC group. Interestingly, lactate-producing bacteria (B. catenulatum) were more abundant in females than males among younger HC group subjects. However, these sex- and age-dependent differences were not observed in the AD and CRC groups. Conclusions : The gut microbiome, specifically lactate- and butyrate-producing bacteria, which were found to be abundant in the HC group, may play a role in preventing the progression of CRC. In particular, lactate-producing bacteria, which were found to be less abundant in healthy male controls may contribute to the higher incidence of CRC in males.
Collapse
Affiliation(s)
- Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Young Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Hye Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jina Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sun Min Lee
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| |
Collapse
|
12
|
Jha I, McMahon GA, Perugino CA, Katz G, Wallace ZS, Fernandes A, Jiang B, Zhang Y, McMahon AE, Guy TV, Liu H, Hernandez-Barco YG, Pillai S, Stone JH. Sex as a predictor of clinical phenotype and determinant of immune response in IgG4-related disease: a retrospective study of patients fulfilling the American College of Rheumatology-European League Against Rheumatism classification criteria. THE LANCET. RHEUMATOLOGY 2024; 6:e460-e468. [PMID: 38824935 PMCID: PMC11214762 DOI: 10.1016/s2665-9913(24)00089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND IgG4-related disease is a multiorgan fibroinflammatory disease considered to have an autoimmune origin. Case series describing individual organ involvement have suggested differences in phenotypic expression between males and females. We aimed to characterise differences in IgG4-related disease manifestations between male and female patients in a large single-centre cohort. METHODS In this retrospective, single-centre cohort study, patients were recruited from the Massachusetts General Hospital Rheumatology Clinic (Boston, MA, USA) and classified according to the American College of Rheumatology-European Alliance of Associations for Rheumatology (ACR-EULAR) classification criteria. Only patients satisfying the ACR-EULAR classification criteria were included in the study. Data on age at diagnosis, organ involvement at baseline, treatment status, and pre-treatment laboratory values were collected. Circulating plasmablasts and B-cell subsets were quantitated by flow cytometry. Active disease was defined by an IgG4-related disease Responder Index score of more than 0. Laboratory values were analysed for patients who were untreated at baseline and had active IgG4-related disease. The main outcomes were assessed in all participants with available data. FINDINGS Of the 564 participants enrolled in the Massachusetts General Hospital Rheumatology Clinic IgG4-related disease Registry, 328 fulfilled ACR-EULAR classification criteria and were included between January, 2008, and May, 2023. There was a strong male predominance (male:female ratio 2·2:1) with 226 (69%) males and 102 (31%) females, which contrasted markedly with our general rheumatology clinic population (0·4:1; p<0·001). The male predominance increased with each decade of life starting at age 40 years. On average, male patients were 5·5 years older at diagnosis than female patients (63·7 years vs 58·2 years; p=0·0031). We observed male patients to have higher ACR-EULAR classification criteria scores at baseline with a median score of 35·0 (IQR 28·0-46·0), compared with 29·5 (25·0-39·0) for females (p=0·0010). The proportion of male patients with pancreatic and renal involvement was almost double the proportion observed in female patients (50% of the male patients had pancreatic involvement, compared with about 26% of the female patients; p<0·0001). Male patients were more likely to have serological abnormalities at baseline. The distribution of IgG4 values differed significantly between male an female sexes, favouring higher values in males. We found that male patients with IgG4-related disease were more likely to have active B-cell responses in the blood as defined by plasmablast expansions. INTERPRETATION IgG4-related disease is unusual among autoimmune diseases in that it is more likely to affect males than females and to present with a striking sex-dependent organ distribution and degree of B-cell response. These findings highlight important variation between IgG4-related disease and other conditions generally believed to have an autoimmune basis. Most autoimmune diseases, by contrast to IgG4-related disease, demonstrate pronounced predilections for affecting females more frequently than males. Hypotheses surrounding the cause and pathophysiology of this condition need to consider this unusual sex distribution among patients with IgG4-related disease. FUNDING National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rheumatology Research Foundation, and the National Institute of Arthritis and Musculoskeletal and Skin Diseases.
Collapse
Affiliation(s)
- Isha Jha
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Grace A McMahon
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Cory A Perugino
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, USA
| | - Guy Katz
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Zachary S Wallace
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Rheumatology and Allergy Clinical Epidemiology Research Center, Boston MA, USA
| | - Ana Fernandes
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Bohang Jiang
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA; Rheumatology and Allergy Clinical Epidemiology Research Center, Boston MA, USA
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Aubree E McMahon
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas V Guy
- Harvard Medical School, Boston, MA, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, USA
| | - Hang Liu
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, USA
| | | | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, USA
| | - John H Stone
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Blanco G, Carrete M, Navas I, García-Fernández AJ. Age and sex differences in pharmaceutical contamination in a keystone scavenger. ENVIRONMENTAL RESEARCH 2024; 251:118592. [PMID: 38442815 DOI: 10.1016/j.envres.2024.118592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Pharmaceutical contaminants have a recognized negative impact on wildlife health. However, there are still many knowledge gaps on the factors influencing exposure and metabolic processing of compound mixtures as a function of season and individual characteristics such as age and sex. We evaluated age and sex differences in a set of seventeen compounds, including eleven antibiotics, five NSAIDs and caffeine, evaluated by HPLC-MS-TOF analysis in griffon vultures (Gyps fulvus) from central Spain. Pharmaceutical cocktails (up to 10 compounds simultaneously) were found in all individuals. Lincomycin was detected in all individuals, and fluoroquinolones were found at high frequencies, while NSAIDs were at low frequencies and concentrations, including flumixin meglumine, which can be lethal to vultures. A higher total number of compounds and sum of concentrations, as well as prevalence and concentration of several of the pharmaceuticals tested was found in females than in males for both nestlings and adults. This is the first study to present evidence of sex differences in the pharmacokinetics of dietary drug contaminants in a vulture species. Chronic exposure to "medications" in entire populations can potentially have sub-lethal health effects that affect fitness differently according to age and sex, with demographic implications for population viability. Specifically, if females have higher mortality after fledging due to high pharmaceutical contamination, this should be considered when modelling the population dynamic of this species for conservation purposes.
Collapse
Affiliation(s)
- Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Martina Carrete
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera, km. 1, 41013, Sevilla, Spain
| | - Isabel Navas
- Toxicology and Forensic Veterinary Service, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Antonio J García-Fernández
- Toxicology and Forensic Veterinary Service, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
14
|
Ekpruke CD, Alford R, Parker E, Silveyra P. Gonadal sex and chromosome complement influence the gut microbiome in a mouse model of allergic airway inflammation. Physiol Genomics 2024; 56:417-425. [PMID: 38640403 PMCID: PMC11368565 DOI: 10.1152/physiolgenomics.00003.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Evidence abounds that gut microbiome components are associated with sex disparities in the immune system. However, it remains unclear whether the observed sex disparity in asthma incidence is associated with sex-dependent differences in immune-modulating gut microbiota, and/or its influence on allergic airway inflammatory processes. Using a mouse model of house dust mite (HDM)-induced allergic inflammation and the four core genotypes (FCGs) model, we have previously reported sex differences in lung inflammatory phenotypes. Here, we investigated associations of gut microbiomes with these phenotypes by challenging FCG mice [mouse with female sex chromosome and male gonad (XXM), mouse with female sex chromosome and female gonad (XXF), mouse with male sex chromosome and male gonad (XYM), and mouse with male sex chromosome and female gonad (XYF); n = 7/group] with HDM (25 μg) or PBS intranasally for 5 wk and collecting fecal samples. We extracted fecal DNA and analyzed the 16S microbiome via Targeted Metagenomic Sequencing. We compared α and β diversity across genotypes and assessed the Firmicutes/Bacteroidetes (F/B) ratio. When comparing baseline and after exposure for the FCG, we found that the gut F/B ratio was only increased in the XXM genotype. We also found that α diversity was significantly increased in all FCG mice upon HDM challenge, with the highest increase in the XXF, and the lowest in the XXM genotypes. Similarly, β diversity of the microbial community was also affected by challenge in a gonad- and chromosome-dependent manner. In summary, our results indicated that HDM treatment, gonads, and sex chromosomes significantly influence the gut microbial community composition. We concluded that allergic lung inflammation may be affected by the gut microbiome in a sex-dependent manner involving both hormonal and genetic influences.NEW & NOTEWORTHY Recently, the gut microbiome and its role in chronic respiratory disease have been the subject of extensive research and the establishment of its involvement in immune functions. Using the FCG mouse model, our findings revealed the influence of gonads and sex chromosomes on the microbial community structure before and after exposure to HDM. Our data provide a potential new avenue to better understand mediators of sex disparities associated with allergic airway inflammation.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Erik Parker
- Department of Epidemiology and Biostatistics, Biostatistics Consulting Center, School of Public Health, Indiana University, Bloomington, Indiana, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
- School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
15
|
Xie X, Chen X, Zhang S, Liu J, Zhang W, Cao Y. Neutralizing gut-derived lipopolysaccharide as a novel therapeutic strategy for severe leptospirosis. eLife 2024; 13:RP96065. [PMID: 38818711 PMCID: PMC11142641 DOI: 10.7554/elife.96065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Leptospirosis is an emerging infectious disease caused by pathogenic Leptospira spp. Humans and some mammals can develop severe forms of leptospirosis accompanied by a dysregulated inflammatory response, which often results in death. The gut microbiota has been increasingly recognized as a vital element in systemic health. However, the precise role of the gut microbiota in severe leptospirosis is still unknown. Here, we aimed to explore the function and potential mechanisms of the gut microbiota in a hamster model of severe leptospirosis. Our study showed that leptospires were able to multiply in the intestine, cause pathological injury, and induce intestinal and systemic inflammatory responses. 16S rRNA gene sequencing analysis revealed that Leptospira infection changed the composition of the gut microbiota of hamsters with an expansion of Proteobacteria. In addition, gut barrier permeability was increased after infection, as reflected by a decrease in the expression of tight junctions. Translocated Proteobacteria were found in the intestinal epithelium of moribund hamsters, as determined by fluorescence in situ hybridization, with elevated lipopolysaccharide (LPS) levels in the serum. Moreover, gut microbiota depletion reduced the survival time, increased the leptospiral load, and promoted the expression of proinflammatory cytokines after Leptospira infection. Intriguingly, fecal filtration and serum from moribund hamsters both increased the transcription of TNF-α, IL-1β, IL-10, and TLR4 in macrophages compared with those from uninfected hamsters. These stimulating activities were inhibited by LPS neutralization using polymyxin B. Based on our findings, we identified an LPS neutralization therapy that significantly improved the survival rates in severe leptospirosis when used in combination with antibiotic therapy or polyclonal antibody therapy. In conclusion, our study not only uncovers the role of the gut microbiota in severe leptospirosis but also provides a therapeutic strategy for severe leptospirosis.
Collapse
Affiliation(s)
- Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
| | - Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
| | - Shilei Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
| | - Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin UniversityChangchunChina
| |
Collapse
|
16
|
Nambiar RB, Elbediwi M, Ed-Dra A, Wu B, Yue M. Epidemiology and antimicrobial resistance of Salmonella serovars Typhimurium and 4,[5],12:i- recovered from hospitalized patients in China. Microbiol Res 2024; 282:127631. [PMID: 38330818 DOI: 10.1016/j.micres.2024.127631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Global emergence of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is a continuing challenge for modern healthcare. However, the knowledge, regarding the epidemiology of salmonellosis caused by the monophasic variant S. 4,[5],12:i:- in hospitalized patients, is limited in China. To bridge this gap, we carried out a retrospective study to determine the antimicrobial resistance, trends, and risk factors of S. Typhimurium and S. 4,[5],12:i:- (n = 329) recovered from patients in Zhejiang province between 2011 and 2019. The results showed that 90.57% (298/329) of the isolates were MDR; among them, 48.94% (161/329) and 12.46% (41/329) were phenotypically resistant to cephalosporins and fluoroquinolones, respectively, which are the drugs of choice used to treat salmonellosis in clinics. Additionally, we observed a higher incidence of infections among the young population (<5 years old). Notably, the higher prevalence of ST34 (sequence type 34) isolates, especially after 2014, with MDR (57.05%, 170/298) phenotype, and incidence of ST34 isolates co-harbouring mcr-1 (mobile colistin resistance gene) and blaCTX-M-14 (β-lactamase gene) suggest an association between STs and drug resistance. Together, the increasing prevalence of MDR ST34 calls for enhanced monitoring strategies to mitigate the spread and dissemination of MDR clones of S. Typhimurium and S. 4,[5],12:i-. Our study provides improved knowledge about non-typhoid Salmonella (NTS) infections, which could help in the effective recommendation of antimicrobials in hospitalized patients.
Collapse
Affiliation(s)
- Reshma B Nambiar
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, BP: 591, Beni Mellal, Morocco
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Lamas-Paz A, Mesquita M, Garcia-Lacarte M, Estévez-Vázquez O, Benedé-Ubieto R, Gutierrez AH, Wu H, Leal Lasalle H, Vaquero J, Bañares R, Martínez-Naves E, Roa S, Nevzorova YA, Jorquera G, Cubero FJ. Fecal microbiota transplantation from female donors restores gut permeability and reduces liver injury and inflammation in middle-aged male mice exposed to alcohol. Front Nutr 2024; 11:1393014. [PMID: 38699545 PMCID: PMC11063254 DOI: 10.3389/fnut.2024.1393014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Background Alcohol misuse, binge drinking pattern, and gender-specific effects in the middle-aged population has been clearly underestimated. In the present study, we focused on understanding gender-specific effects of alcohol exposure on the gut-liver axis and the role of gut microbiota in modulating gender-specific responses to alcohol consumption. Methods Fifty-two-week-old female and male C57BL/6 mice were fasted for 12 h, and then administered a single oral dose of ethanol (EtOH) (6 g/kg). Controls were given a single dose of PBS. Animals were sacrificed 8 h later. Alternatively, fecal microbiota transplantation (FMT) was performed in 52-week-old male mice from female donors of the same age. Permeability of the large intestine (colon), gut microbiota, liver injury, and inflammation was thoroughly evaluated in all groups. Results Middle-aged male mice exposed to EtOH showed a significant increase in gut permeability in the large intestine, evaluated by FITC-dextran assay and ZO-1, OCCLUDIN and MUCIN-2 immuno-staining, compared to PBS-treated animals, whilst female mice of the same age also increased their gut permeability, but displayed a partially maintained intestinal barrier integrity. Moreover, there was a significant up-regulation of TLRs and markers of hepatocellular injury, cell death (AST, TUNEL-positive cells) and lipid accumulation (ORO) in male mice after EtOH exposure. Interestingly, FMT from female donors to male mice reduced gut leakiness, modified gut microbiota composition, ameliorated liver injury and inflammation, TLR activation and the senescence phenotype of middle-aged mice. Conclusion Our findings highlighted the relevance of gender in middle-aged individuals who are exposed to alcohol in the gut-liver axis. Moreover, our study revealed that gender-specific microbiota transplantation might be a plausible therapy in the management of alcohol-related disorders during aging.
Collapse
Affiliation(s)
- Arantza Lamas-Paz
- Department of Immunology, Ophthalmology and Eye Nose and Throat (ENT), Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Mariana Mesquita
- Department of Immunology, Ophthalmology and Eye Nose and Throat (ENT), Complutense University School of Medicine, Madrid, Spain
- State University of Campinas, Campinas, SP, Brazil
| | - Marcos Garcia-Lacarte
- Department of Biochemistry and Genetics, Universidad de Navarra, Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Olga Estévez-Vázquez
- Department of Immunology, Ophthalmology and Eye Nose and Throat (ENT), Complutense University School of Medicine, Madrid, Spain
| | - Raquel Benedé-Ubieto
- Department of Immunology, Ophthalmology and Eye Nose and Throat (ENT), Complutense University School of Medicine, Madrid, Spain
| | - Alejandro H. Gutierrez
- Department of Immunology, Ophthalmology and Eye Nose and Throat (ENT), Complutense University School of Medicine, Madrid, Spain
| | - Hanghang Wu
- Department of Immunology, Ophthalmology and Eye Nose and Throat (ENT), Complutense University School of Medicine, Madrid, Spain
| | - Hector Leal Lasalle
- Department of Immunology, Ophthalmology and Eye Nose and Throat (ENT), Complutense University School of Medicine, Madrid, Spain
| | - Javier Vaquero
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and Eye Nose and Throat (ENT), Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Sergio Roa
- Department of Biochemistry and Genetics, Universidad de Navarra, Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and Eye Nose and Throat (ENT), Complutense University School of Medicine, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and Eye Nose and Throat (ENT), Complutense University School of Medicine, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
18
|
Tian Y, Xie Y, Hong X, Guo Z, Yu Q. 17β-Estradiol protects female rats from bilateral oophorectomy-induced nonalcoholic fatty liver disease induced by improving linoleic acid metabolism alteration and gut microbiota disturbance. Heliyon 2024; 10:e29013. [PMID: 38601573 PMCID: PMC11004821 DOI: 10.1016/j.heliyon.2024.e29013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
After surgical or natural menopause, women face a high risk of nonalcoholic fatty liver disease (NAFLD), which can be diminished by hormone replacement therapy (HRT). The gut microbiota is subject to modulation by various physiological changes and the progression of diseases. This microbial ecosystem coexists symbiotically with the host, playing pivotal roles in immune maturation, microbial defense mechanisms, and metabolic functions essential for nutritional and hormone homeostasis. E2 supplementation effectively prevented the development of NAFLD after bilateral oophorectomy (OVX) in female rats. The changes in the gut microbiota such as abnormal biosynthetic metabolism of fatty acids caused by OVX were partially restored by E2 supplementation. The combination of liver transcriptomics and metabolomics analysis revealed that linoleic acid (LA) metabolism, a pivotal pathway in fatty acids metabolism was mainly manipulated during the induction and treatment of NAFLD. Further correlation analysis indicated that the gut microbes were associated with abnormal serum indicators and different LA metabolites. These metabolites are also closely related to serum indicators of NAFLD. An in vitro study verified that LA is an inducer of hepatic steatosis. The changes in transcription in the LA metabolism pathway could be normalized by E2 treatment. The metabolic perturbations of LA may directly and secondhand impact the development of NAFLD in postmenopausal individuals. This research focused on the sex-specific pathophysiology and treatment of NAFLD, providing more evidence for HRT and calling for the multitiered management of NAFLD.
Collapse
Affiliation(s)
| | | | - Xinyu Hong
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| |
Collapse
|
19
|
Rio P, Caldarelli M, Chiantore M, Ocarino F, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Immune Cells, Gut Microbiota, and Vaccines: A Gender Perspective. Cells 2024; 13:526. [PMID: 38534370 PMCID: PMC10969451 DOI: 10.3390/cells13060526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The development of preventive and therapeutic vaccines has played a crucial role in preventing infections and treating chronic and non-communicable diseases, respectively. For a long time, the influence of sex differences on modifying health and disease has not been addressed in clinical and preclinical studies. The interaction of genetic, epigenetic, and hormonal factors plays a role in the sex-related differences in the epidemiology of diseases, clinical manifestations, and the response to treatment. Moreover, sex is one of the leading factors influencing the gut microbiota composition, which could further explain the different predisposition to diseases in men and women. In the same way, differences between sexes occur also in the immune response to vaccines. This narrative review aims to highlight these differences, focusing on the immune response to vaccines. Comparative data about immune responses, vaccine effectiveness, and side effects are reviewed. Hence, the intricate interplay between sex, immunity, and the gut microbiota will be discussed for its potential role in the response to vaccination. Embracing a sex-oriented perspective in research may improve the efficacy of the immune response and allow the design of tailored vaccine schedules.
Collapse
Affiliation(s)
- Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| |
Collapse
|
20
|
Ribera C, Sánchez-Ortí JV, Clarke G, Marx W, Mörkl S, Balanzá-Martínez V. Probiotic, prebiotic, synbiotic and fermented food supplementation in psychiatric disorders: A systematic review of clinical trials. Neurosci Biobehav Rev 2024; 158:105561. [PMID: 38280441 DOI: 10.1016/j.neubiorev.2024.105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The use of probiotics, prebiotics, synbiotics or fermented foods can modulate the gut-brain axis and constitute a potentially therapeutic intervention in psychiatric disorders. This systematic review aims to identify current evidence regarding these interventions in the treatment of patients with DSM/ICD psychiatric diagnoses. Forty-seven articles from 42 studies met the inclusion criteria. Risk of bias was assessed in all included studies. Major depression was the most studied disorder (n = 19 studies). Studies frequently focused on schizophrenia (n = 11) and bipolar disorder (n = 5) and there were limited studies in anorexia nervosa (n = 4), ADHD (n = 3), Tourette (n = 1), insomnia (n = 1), PTSD (n = 1) and generalized anxiety disorder (n = 1). Except in MDD, current evidence does not clarify the role of probiotics and prebiotics in the treatment of mental illness. Several studies point to an improvement in the immune and inflammatory profile (e.g. CRP, IL6), which may be a relevant mechanism of action of the therapeutic response identified in these studies. Future research should consider lifestyle and dietary habits of patients as possible confounders that may influence inter-individual treatment response.
Collapse
Affiliation(s)
- Carlos Ribera
- Department of Psychiatry, Hospital Clínico Universitario de Valencia, Department of Psychiatry, Blasco Ibañez 17, floor 7B, 46010 Valencia, Spain.
| | - Joan Vicent Sánchez-Ortí
- Faculty of Psychology, University of Valencia, Valencia, Spain; INCLIVA - Health Research Institute, Valencia, Spain; TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Fundación INCLIVA, Av. Menéndez y Pelayo 4, 46010 Valencia, Spain.
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Dept of Psychiatry and Neurobehavioural Science, College Rd, 1.15 Biosciences Building, Cork, Ireland.
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, 299 Ryrie street, Geelong, VIC 3220, Australia.
| | - Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Vicent Balanzá-Martínez
- INCLIVA - Health Research Institute, Valencia, Spain; TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Fundación INCLIVA, Av. Menéndez y Pelayo 4, 46010 Valencia, Spain; Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia. Blasco Ibañez 15, 46010 Valencia, Spain.; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; VALSME (Valencia Salut Mental i Estigma) Research Group, University of Valencia, Valencia, Spain.
| |
Collapse
|
21
|
Tanelian A, Nankova B, Miari M, Sabban EL. Microbial composition, functionality, and stress resilience or susceptibility: unraveling sex-specific patterns. Biol Sex Differ 2024; 15:20. [PMID: 38409102 PMCID: PMC10898170 DOI: 10.1186/s13293-024-00590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Following exposure to traumatic stress, women are twice as likely as men to develop mood disorders. Yet, individual responses to such stress vary, with some people developing stress-induced psychopathologies while others exhibit resilience. The factors influencing sex-related disparities in affective disorders as well as variations in resilience remain unclear; however, emerging evidence suggests differences in the gut microbiota play a role. In this study, using the single prolonged stress (SPS) model of post-traumatic stress disorder, we investigated pre- and post-existing differences in microbial composition, functionality, and metabolites that affect stress susceptibility or resilience in each sex. METHODS Male and female Sprague-Dawley rats were randomly assigned to control or SPS groups. Two weeks following SPS, the animals were exposed to a battery of behavioral tests and decapitated a day later. Based on their anxiety index, they were further categorized as SPS-resilient (SPS-R) or SPS-susceptible (SPS-S). On the day of dissection, cecum, and selected brain tissues were isolated. Stool samples were collected before and after SPS, whereas urine samples were taken before and 30 min into the SPS. RESULTS Before SPS exposure, the sympathoadrenal axis exhibited alterations within male subgroups only. Expression of tight junction protein claudin-5 was lower in brain of SPS-S males, but higher in SPS-R females following SPS. Across the study, alpha diversity remained consistently lower in males compared to females. Beta diversity revealed distinct separations between male and female susceptible groups before SPS, with this separation becoming evident in the resilient groups following SPS. At the genus level, Lactobacillus, Lachnospiraceae_Incertae_Sedis, and Barnesiella exhibited sex-specific alterations, displaying opposing abundances in each sex. Additionally, sex-specific changes were observed in microbial predictive functionality and targeted functional modules both before and after SPS. Alterations in the microbial short-chain fatty acids (SCFAs), were also observed, with major and minor SCFAs being lower in SPS-susceptible males whereas branched-chain SCFAs being higher in SPS-susceptible females. CONCLUSION This study highlights distinct pre- and post-trauma differences in microbial composition, functionality, and metabolites, associated with stress resilience in male and female rats. The findings underscore the importance of developing sex-specific therapeutic strategies to effectively address stress-related disorders. Highlights SPS model induces divergent anxiety and social behavioral responses to traumatic stress in both male and female rodents. SPS-resilient females displayed less anxiety-like behavior and initiated more interactions towards a juvenile rat than SPS-resilient males. Sex-specific pre-existing and SPS-induced differences in the gut microbial composition and predictive functionality were observed in susceptible and resilient rats. SPS-resilient males displayed elevated cecal acetate levels, whereas SPS-susceptible females exhibited heightened branched-chain SCFAs.
Collapse
Affiliation(s)
- Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Bistra Nankova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
- Division of Newborn Medicine, Departments of Pediatrics, New York Medical College, Valhalla, NY, 10595, USA
| | - Mariam Miari
- Department of Clinical Sciences in Malmo, Lund University Diabetes Center, Malmo, Sweden
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Psychiatry and Behavioral Science, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
22
|
Boahen CK, Abee H, Ponce IR, Joosten LAB, Netea MG, Kumar V. Sex-biased genetic regulation of inflammatory proteins in the Dutch population. BMC Genomics 2024; 25:154. [PMID: 38326779 PMCID: PMC10851559 DOI: 10.1186/s12864-024-10065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Significant differences in immune responses, prevalence or susceptibility of diseases and treatment responses have been described between males and females. Despite this, sex-differentiation analysis of the genetic architecture of inflammatory proteins is largely unexplored. We performed sex-stratified meta-analysis after protein quantitative trait loci (pQTL) mapping using inflammatory biomarkers profiled using targeted proteomics (Olink inflammatory panel) of two population-based cohorts of Europeans. RESULTS Even though, around 67% of the pQTLs demonstrated shared effect between sexes, colocalization analysis identified two loci in the males (LINC01135 and ITGAV) and three loci (CNOT10, SRD5A2, and LILRB5) in the females with evidence of sex-dependent modulation by pQTL variants. Furthermore, we identified pathways with relevant functions in the sex-biased pQTL variants. We also showed through cross-validation that the sex-specific pQTLs are linked with sex-specific phenotypic traits. CONCLUSION Our study demonstrates the relevance of genetic sex-stratified analysis in the context of genetic dissection of protein abundances among individuals and reveals that, sex-specific pQTLs might mediate sex-linked phenotypes. Identification of sex-specific pQTLs associated with sex-biased diseases can help realize the promise of individualized treatment.
Collapse
Affiliation(s)
- Collins K Boahen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Hannah Abee
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Isis Ricaño Ponce
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacia, Cluj-Napoca-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands.
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands.
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, the Netherlands.
- Nitte (Deemed to Be University), Medical Sciences Complex, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
23
|
Ding M, Li B, Chen H, Liang D, Ross RP, Stanton C, Zhao J, Chen W, Yang B. Human breastmilk-derived Bifidobacterium longum subsp. infantis CCFM1269 regulates bone formation by the GH/IGF axis through PI3K/AKT pathway. Gut Microbes 2024; 16:2290344. [PMID: 38116652 PMCID: PMC10761167 DOI: 10.1080/19490976.2023.2290344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
Bifidobacterium longum subsp. infantis is a prevalent member of the gut microbiota of breastfed infants. In this study, the effects of human breastmilk-derived B.longum subsp. infantis CCFM1269 on bone formation in developing BALB/c mice were investigated. Newborn female and male mice were assigned to control group (administered saline), CCFM11269 group (administered B. longum subsp. infantis CCFM1269, 1 × 109 CFU/mouse/day) and I5TI group (administered B. longum subsp. infantis I5TI, 1 × 109 CFU/mouse/day) from 1-week-old to 3-, 4- and 5-week old. B. longum subsp. infantis I5TI served as a negative control in this study. The results demonstrated that B. longum subsp. infantis CCFM1269 promoted bone formation in growing mice by modulating the composition of the gut microbiota and metabolites. The expression of genes and proteins in the PI3K/AKT pathway was stimulated by B. longum subsp. infantis CCFM1269 through the GH/IGF-1 axis in growing mice. This finding suggests B. longum subsp. infantis CCFM1269 may be useful for modulating bone metabolism during growth.
Collapse
Affiliation(s)
- Mengfan Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dong Liang
- Department of Applied Nutrition I, China National Center for Food Safety Risk Assessment, Beijing, China
| | - R. Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
24
|
David P, Claud EC. Necrotizing Enterocolitis and the Preterm Infant Microbiome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:29-41. [PMID: 39060729 DOI: 10.1007/978-3-031-58572-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Preterm infants differ significantly from their term infant counterparts regarding bacterial colonization patterns related to maternal microbiota diversity, mode of delivery, feeding type, antibiotic exposure, and the environmental influences related to prolonged hospitalization in the neonatal intensive care unit (NICU). Necrotizing enterocolitis (NEC), a multifactorial intestinal disorder characterized by ischemic bowel disease, disproportionately impacts preterm infants and has a high disease burden. Recent studies in the basic, translational, and clinical scientific literature have advanced knowledge into this complex disease process. Despite the explosion of research into NEC, however, there is a still a great deal unknown about this devastating illness. Additionally, the disease morbidity and mortality for NEC remain high despite advances in therapy options. This chapter reviews the current literature into the preterm infant microbiome, pathogenesis of NEC, potential targets for altering preterm microbiome, influence of microbiome on other organ systems, long-term implications of microbiome dysbiosis, and future directions of study.
Collapse
Affiliation(s)
- Pyone David
- Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Erika C Claud
- Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Li X, Hu S, Yin J, Peng X, King L, Li L, Xu Z, Zhou L, Peng Z, Ze X, Zhang X, Hou Q, Shan Z, Liu L. Effect of synbiotic supplementation on immune parameters and gut microbiota in healthy adults: a double-blind randomized controlled trial. Gut Microbes 2023; 15:2247025. [PMID: 37614109 PMCID: PMC10453972 DOI: 10.1080/19490976.2023.2247025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Synbiotics are increasingly used by the general population to boost immunity. However, there is limited evidence concerning the immunomodulatory effects of synbiotics in healthy individuals. Therefore, we conducted a double-blind, randomized, placebo-controlled study in 106 healthy adults. Participants were randomly assigned to receive either synbiotics (containing Bifidobacterium lactis HN019 1.5 × 108 CFU/d, Lactobacillus rhamnosus HN001 7.5 × 107 CFU/d, and fructooligosaccharide 500 mg/d) or placebo for 8 weeks. Immune parameters and gut microbiota composition were measured at baseline, mid, and end of the study. Compared to the placebo group, participants receiving synbiotic supplementation exhibited greater reductions in plasma C-reactive protein (P = 0.088) and interferon-gamma (P = 0.008), along with larger increases in plasma interleukin (IL)-10 (P = 0.008) and stool secretory IgA (sIgA) (P = 0.014). Additionally, synbiotic supplementation led to an enrichment of beneficial bacteria (Clostridium_sensu_stricto_1, Lactobacillus, Bifidobacterium, and Collinsella) and several functional pathways related to amino acids and short-chain fatty acids biosynthesis, whereas reduced potential pro-inflammatory Parabacteroides compared to baseline. Importantly, alternations in anti-inflammatory markers (IL-10 and sIgA) were significantly correlated with microbial variations triggered by synbiotic supplementation. Stratification of participants into two enterotypes based on pre-treatment Prevotella-to-Bacteroides (P/B) ratio revealed a more favorable effect of synbiotic supplements in individuals with a higher P/B ratio. In conclusion, this study suggested the beneficial effects of synbiotic supplementation on immune parameters, which were correlated with synbiotics-induced microbial changes and modified by microbial enterotypes. These findings provided direct evidence supporting the personalized supplementation of synbiotics for immunomodulation.
Collapse
Affiliation(s)
- Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihui Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhou
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational, Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolei Ze
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Xuguang Zhang
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei province, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Hoffmann JP, Liu JA, Seddu K, Klein SL. Sex hormone signaling and regulation of immune function. Immunity 2023; 56:2472-2491. [PMID: 37967530 DOI: 10.1016/j.immuni.2023.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023]
Abstract
Immune responses to antigens, including innocuous, self, tumor, microbial, and vaccine antigens, differ between males and females. The quest to uncover the mechanisms for biological sex differences in the immune system has intensified, with considerable literature pointing toward sex hormonal influences on immune cell function. Sex steroids, including estrogens, androgens, and progestins, have profound effects on immune function. As such, drastic changes in sex steroid concentrations that occur with aging (e.g., after puberty or during the menopause transition) or pregnancy impact immune responses and the pathogenesis of immune-related diseases. The effect of sex steroids on immunity involves both the concentration of the ligand and the density and distribution of genomic and nongenomic receptors that serve as transcriptional regulators of immune cellular responses to affect autoimmunity, allergy, infectious diseases, cancers, and responses to vaccines. The next frontier will be harnessing these effects of sex steroids to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Joseph P Hoffmann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Flahaut M, Leprohon P, Pham NP, Gingras H, Bourbeau J, Papadopoulou B, Maltais F, Ouellette M. Distinctive features of the oropharyngeal microbiome in Inuit of Nunavik and correlations of mild to moderate bronchial obstruction with dysbiosis. Sci Rep 2023; 13:16622. [PMID: 37789055 PMCID: PMC10547696 DOI: 10.1038/s41598-023-43821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Inuit of Nunavik are coping with living conditions that can influence respiratory health. Our objective was to investigate associations between respiratory health in Inuit communities and their airway microbiome. Oropharyngeal samples were collected during the Qanuilirpitaa? 2017 Inuit Health Survey and subjected to metagenomic analyses. Participants were assigned to a bronchial obstruction group or a control group based on their clinical history and their pulmonary function, as monitored by spirometry. The Inuit microbiota composition was found to be distinct from other studied populations. Within the Inuit microbiota, differences in diversity measures tend to distinguish the two groups. Bacterial taxa found to be more abundant in the control group included candidate probiotic strains, while those enriched in the bronchial obstruction group included opportunistic pathogens. Crossing taxa affiliation method and machine learning consolidated our finding of distinct core microbiomes between the two groups. More microbial metabolic pathways were enriched in the control participants and these were often involved in vitamin and anti-inflammatory metabolism, while a link could be established between the enriched pathways in the disease group and inflammation. Overall, our results suggest a link between microbial abundance, interactions and metabolic activities and respiratory health in the Inuit population.
Collapse
Affiliation(s)
- Mathilde Flahaut
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nguyen Phuong Pham
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Hélène Gingras
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Jean Bourbeau
- Department of Medicine, Division of Respiratory Medicine, McGill University Health Center, Montréal, QC, Canada
| | - Barbara Papadopoulou
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Maltais
- Groupe de Recherche en Santé Respiratoire, Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
28
|
Abstract
Cancer cells originate from a series of acquired genetic mutations that can drive their uncontrolled cell proliferation and immune evasion. Environmental factors, including the microorganisms that colonize the human body, can shift the metabolism, growth pattern and function of neoplastic cells and shape the tumour microenvironment. Dysbiosis of the gut microbiome is now recognized as a hallmark of cancer by the scientific community. However, only a few microorganisms have been identified that directly initiate tumorigenesis or skew the immune system to generate a tumour-permissive milieu. Over the past two decades, research on the human microbiome and its functionalities within and across individuals has revealed microbiota-focused strategies for health and disease. Here, we review the evolving understanding of the mechanisms by which the microbiota acts in cancer initiation, promotion and progression. We explore the roles of bacteria in gastrointestinal tract malignancies and cancers of the lung, breast and prostate. Finally, we discuss the promises and limitations of targeting or harnessing bacteria in personalized cancer prevention, diagnostics and treatment.
Collapse
Affiliation(s)
- Geniver El Tekle
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
29
|
Shang S, Zhu J, Liu X, Wang W, Dai T, Wang L, Li B. The Impacts of Fecal Microbiota Transplantation from Same Sex on the Symptoms of Ulcerative Colitis Patients. Pol J Microbiol 2023; 72:247-268. [PMID: 37725892 PMCID: PMC10508974 DOI: 10.33073/pjm-2023-025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/08/2023] [Indexed: 09/21/2023] Open
Abstract
We aimed to compare the clinical efficacy of fecal microbiota transplantation (FMT) from the same sex on ulcerative colitis (UC) patients. A total of 272 UC patients were selected in the prospective clinical study, which incorporated four distinct groups, each comprising male and female patients, who were either receiving FMT or placebo, respectively. FMT was performed by sending the gut microbiota of healthy female or male adolescents to the same gender patients via gastroscope three times (one time/three weeks), and a placebo was used with an equal volume of saline. Abdominal pain, diarrhea, thick bloody stool, intestinal mucosal lesion, and Mayo scores were measured. Self-rating anxiety scale (SAS) and self-rating depression scale (SDS) were evaluated. The changes of intestinal flora were detected by the 16S rRNA sequencing. FMT reduced the scores of diarrhea, abdominal pain, mucosal lesion, and Mayo, SAS, and SDS in UC patients compared to the placebo group (p < 0.05). Clostridiales and Desulfovibrionaceae were dominant in gut microbiota from male patients and were reduced after FMT. Meanwhile, the abundance of Prevotella, Lactobacillus, and Bifidobacterium was increased in the male group. Female patients had a higher abundance of Escherichia-Shigella, Desulfovibrionaceae, and Staphylococcaceae before FMT, and it was reduced after FMT. Meanwhile, the abundance of Porphyromonadaceae, Prevotella, Lactobacillus, and Bifidobacterium was increased in the female group. There were no significant changes for the species in the corresponding placebo groups. FMT improved the UC symptoms of male and female patients, which may be associated with different gut microbiota changes.
Collapse
Affiliation(s)
- Shu Shang
- Department of Endoscopic Diagnosis and Treatment Center, Shenyang Fifth People's Hospital, Shenyang, China
| | - Jian Zhu
- Department of Anorectal, Shenyang Fifth People's Hospital, Shenyang, China
| | - Xi Liu
- Department of Endoscopic Diagnosis and Treatment Center, Shenyang Fifth People's Hospital, Shenyang, China
| | - Wei Wang
- Department of Endoscopic Diagnosis and Treatment Center, Shenyang Fifth People's Hospital, Shenyang, China
| | - Tingting Dai
- Department of Endoscopic Diagnosis and Treatment Center, Shenyang Fifth People's Hospital, Shenyang, China
| | - Li Wang
- Zhuoyuan Health Human Microbiology Research Laboratory, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Baojun Li
- Department of Dean, Shenyang Fifth People's Hospital, Shenyang, China
| |
Collapse
|
30
|
Li Q, Chan H, Liu WX, Liu CA, Zhou Y, Huang D, Wang X, Li X, Xie C, Liu WYZ, Wang XS, Ng SK, Gou H, Zhao LY, Fong W, Jiang L, Lin Y, Zhao G, Bai F, Liu X, Chen H, Zhang L, Wong SH, Chan MTV, Wu WKK, Yu J. Carnobacterium maltaromaticum boosts intestinal vitamin D production to suppress colorectal cancer in female mice. Cancer Cell 2023; 41:1450-1465.e8. [PMID: 37478851 DOI: 10.1016/j.ccell.2023.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/03/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
Carnobacterium maltaromaticum was found to be specifically depleted in female patients with colorectal cancer (CRC). Administration of C. maltaromaticum reduces intestinal tumor formation in two murine CRC models in a female-specific manner. Estrogen increases the attachment and colonization of C. maltaromaticum via increasing the colonic expression of SLC3A2 that binds to DD-CPase of this bacterium. Metabolomic and transcriptomic profiling unveils the increased gut abundance of vitamin D-related metabolites and the mucosal activation of vitamin D receptor (VDR) signaling in C. maltaromaticum-gavaged mice in a gut microbiome- and VDR-dependent manner. In vitro fermentation system confirms the metabolic cross-feeding of C. maltaromaticum with Faecalibacterium prausnitzii to convert C. maltaromaticum-produced 7-dehydrocholesterol into vitamin D for activating the host VDR signaling. Overall, C. maltaromaticum colonizes the gut in an estrogen-dependent manner and acts along with other microbes to augment the intestinal vitamin D production to activate the host VDR for suppressing CRC.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hung Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei-Xin Liu
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chang-An Liu
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunfei Zhou
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Huang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xueliang Wang
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chuan Xie
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Ying-Zhi Liu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xian-Song Wang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siu Kin Ng
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongyan Gou
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liu-Yang Zhao
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Fong
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lanping Jiang
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yufeng Lin
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guijun Zhao
- Department of Endoscopy Center, Inner Mongolia Key Laboratory of Endoscopic Digestive Disease, Inner Mongolia people's Hospital, Hohhot, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarong Chen
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sunny Hei Wong
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Matthew Tak Vai Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - William Ka Kei Wu
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jun Yu
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
31
|
Abstract
In 1978, the theory behind helminth parasites having the potential to regulate the abundance of their host populations was formalized based on the understanding that those helminth macroparasites that reduce survival or fecundity of the infected host population would be among the forces limiting unregulated host population growth. Now, 45 years later, a phenomenal breadth of factors that directly or indirectly affect the host-helminth interaction has emerged. Based largely on publications from the past 5 years, this review explores the host-helminth interaction from three lenses: the perspective of the helminth, the host, and the environment. What biotic and abiotic as well as social and intrinsic host factors affect helminths? What are the negative, and positive, implications for host populations and communities? What are the larger-scale implications of the host-helminth dynamic on the environment, and what evidence do we have that human-induced environmental change will modify this dynamic? The overwhelming message is that context is everything. Our understanding of second-, third-, and fourth-level interactions is extremely limited, and we are far from drawing generalizations about the myriad of microbe-helminth-host interactions.Yet the intricate, co-evolved balance and complexity of these interactions may provide a level of resilience in the face of global environmental change. Hopefully, this albeit limited compilation of recent research will spark new interdisciplinary studies, and application of the One Health approach to all helminth systems will generate new and testable conceptual frameworks that encompass our understanding of the host-helminth-environment triad.
Collapse
Affiliation(s)
- M E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, QuebecH9X 3V9, Canada
| |
Collapse
|
32
|
Zhang M, Zhai Z, Yang B, He L, Wang J, Dai W, Xue L, Yang X, Feng Y, Wang H. Exploring the alteration of gut microbiota and brain function in gender-specific Parkinson's disease based on metagenomic sequencing. Front Aging Neurosci 2023; 15:1148546. [PMID: 37502423 PMCID: PMC10370496 DOI: 10.3389/fnagi.2023.1148546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
Background The role of the microbiota-gut-brain axis in Parkinson's disease (PD) has received increasing attention. Although gender differences are known to an essential role in the epidemiology and clinical course of PD, there are no studies on the sex specificity of the microbiota-gut-brain axis in the development and progression of PD. Methods Fresh fecal samples from 24 PD patients (13 males, 11 females) were collected for metagenomic sequencing. The composition and function of the gut microbiota were analyzed by resting-state functional magnetic resonance imaging (fMRI). Gender-dependent differences in brain ALFF values and their correlation with microbiota were further analyzed. Results The relative abundance of Propionivibrio, Thermosediminibacter, and Flavobacteriaceae_noname was increased in male PD patients. LEfse analysis showed that Verrucomicrobial, Akkermansiaceae, and Akkermansia were dominant in the males. In female patients, the relative abundance of Propionicicella was decreased and Escherichia, Escherichia_coli, and Lachnospiraceae were predominant. The expression of the sesquiterpenoid and triterpenoid biosynthesis pathways was increased in male PD patients and was statistically different from females. Compared to the Male PD patients, female patients showed decreased ALFF values in the left inferior parietal regions, and the relative abundance of Propionivibrio was positively correlated with the regional ALFF values. Conclusion Our study provides novel clinical evidence of the gender-specific relationship between gut microbiota alterations and brain function in PD patients, highlighting the critical role of the microbiota-gut-brain axis in gender differences in PD.
Collapse
Affiliation(s)
- Minna Zhang
- Department of Gastroenterology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Zhiyuan Zhai
- Department of Neurology, The Huai’an Clinical College of Xuzhou Medical University, Huai’an, China
| | - Bo Yang
- Department of Gastroenterology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Le He
- Department of Gastroenterology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Jingyi Wang
- Department of Gastroenterology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Weijie Dai
- Department of Gastroenterology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Liujun Xue
- Department of Neurology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Xiaozhong Yang
- Department of Gastroenterology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Yun Feng
- Department of Radiology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu Province, China
| | - Honggang Wang
- Department of Gastroenterology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| |
Collapse
|
33
|
Pasin C, Consiglio CR, Huisman J, de Lange AMG, Peckham H, Vallejo-Yagüe E, Abela IA, Islander U, Neuner-Jehle N, Pujantell M, Roth O, Schirmer M, Tepekule B, Zeeb M, Hachfeld A, Aebi-Popp K, Kouyos RD, Bonhoeffer S. Sex and gender in infection and immunity: addressing the bottlenecks from basic science to public health and clinical applications. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221628. [PMID: 37416827 PMCID: PMC10320357 DOI: 10.1098/rsos.221628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Although sex and gender are recognized as major determinants of health and immunity, their role is rarely considered in clinical practice and public health. We identified six bottlenecks preventing the inclusion of sex and gender considerations from basic science to clinical practice, precision medicine and public health policies. (i) A terminology-related bottleneck, linked to the definitions of sex and gender themselves, and the lack of consensus on how to evaluate gender. (ii) A data-related bottleneck, due to gaps in sex-disaggregated data, data on trans/non-binary people and gender identity. (iii) A translational bottleneck, limited by animal models and the underrepresentation of gender minorities in biomedical studies. (iv) A statistical bottleneck, with inappropriate statistical analyses and results interpretation. (v) An ethical bottleneck posed by the underrepresentation of pregnant people and gender minorities in clinical studies. (vi) A structural bottleneck, as systemic bias and discriminations affect not only academic research but also decision makers. We specify guidelines for researchers, scientific journals, funding agencies and academic institutions to address these bottlenecks. Following such guidelines will support the development of more efficient and equitable care strategies for all.
Collapse
Affiliation(s)
- Chloé Pasin
- Collegium Helveticum, 8092 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Camila R. Consiglio
- Department of Women's and Children's Health, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Jana S. Huisman
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann-Marie G. de Lange
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
- Department of Psychology, University of Oslo, 0373 Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London WC1E 6JF, UK
| | | | - Irene A. Abela
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Ulrika Islander
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 40530 Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Nadia Neuner-Jehle
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Maria Pujantell
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Olivia Roth
- Marine Evolutionary Biology, Zoological Institute, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Melanie Schirmer
- Emmy Noether Group for Computational Microbiome Research, ZIEL – Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Burcu Tepekule
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Marius Zeeb
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Anna Hachfeld
- Department of Infectious Diseases, University Hospital and University of Bern, 3012 Bern, Switzerland
| | - Karoline Aebi-Popp
- Department of Infectious Diseases, University Hospital and University of Bern, 3012 Bern, Switzerland
- Department of Obstetrics and Gynecology, Lindenhofspital, 3012 Bern, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Sebastian Bonhoeffer
- Collegium Helveticum, 8092 Zurich, Switzerland
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
34
|
Zhang Q, Chen B, Zhang J, Dong J, Ma J, Zhang Y, Jin K, Lu J. Effect of prebiotics, probiotics, synbiotics on depression: results from a meta-analysis. BMC Psychiatry 2023; 23:477. [PMID: 37386630 PMCID: PMC10308754 DOI: 10.1186/s12888-023-04963-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Accumulating studies have shown the effects of gut microbiota management tools in improving depression. We conducted a meta-analysis to evaluate the effects of prebiotics, probiotics, and synbiotics on patients with depression. We searched six databases up to July 2022. In total, 13 randomized controlled trials (RCTs) with 786 participants were included. The overall results demonstrated that patients who received prebiotics, probiotics or synbiotics had significantly improved symptoms of depression compared with those in the placebo group. However, subgroup analysis only confirmed the significant antidepressant effects of agents that contained probiotics. In addition, patients with mild or moderate depression could both benefit from the treatment. Studies with a lower proportion of females reported stronger effects for alleviating depressive symptoms. In conclusion, agents that manipulate gut microbiota might improve mild-to-moderate depression. It is necessary to further investigate the benefits of prebiotic, probiotic and synbiotic treatments relative to antidepressants and follow up with individuals over a longer time before these therapies are implemented in clinical practice.
Collapse
Affiliation(s)
- Qin Zhang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghui Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyi Dong
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianglin Ma
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China.
| |
Collapse
|
35
|
Toro-Ascuy D, Cárdenas JP, Zorondo-Rodríguez F, González D, Silva-Moreno E, Puebla C, Nunez-Parra A, Reyes-Cerpa S, Fuenzalida LF. Microbiota Profile of the Nasal Cavity According to Lifestyles in Healthy Adults in Santiago, Chile. Microorganisms 2023; 11:1635. [PMID: 37512807 PMCID: PMC10384449 DOI: 10.3390/microorganisms11071635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The respiratory microbiome is dynamic, varying between anatomical niches, and it is affected by various host and environmental factors, one of which is lifestyle. Few studies have characterized the upper respiratory tract microbiome profile according to lifestyle. We explored the association between lifestyles and microbiota profiles in the upper respiratory tract of healthy adults. METHODS We analyzed nasal samples from 110 healthy adults who were living in Santiago, Chile, using 16S ribosomal RNA gene-sequencing methods. Volunteers completed a structured questionnaire about lifestyle. RESULTS The composition and abundance of taxonomic groups varied across lifestyle attributes. Additionally, multivariate models suggested that alpha diversity varied in the function of physical activity, nutritional status, smoking, and the interaction between nutritional status and smoking, although the significant impact of those variables varied between women and men. Although physical activity and nutritional status were significantly associated with all indexes of alpha diversity among women, the diversity of microbiota among men was associated with smoking and the interaction between nutritional status and smoking. CONCLUSIONS The alpha diversity of nasal microbiota is associated with lifestyle attributes, but these associations depend on sex and nutritional status. Our results suggest that future studies of the airway microbiome may provide a better resolution if data are stratified for differences in sex and nutritional status.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Juan P Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Francisco Zorondo-Rodríguez
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago 8910060, Chile
| | - Damariz González
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Evelyn Silva-Moreno
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Carlos Puebla
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Alexia Nunez-Parra
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Loreto F Fuenzalida
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
36
|
Kaune T, Griesmann H, Theuerkorn K, Hämmerle M, Laumen H, Krug S, Plumeier I, Kahl S, Junca H, Gustavo dos Anjos Borges L, Michl P, Pieper DH, Rosendahl J. Gender-specific changes of the gut microbiome correlate with tumor development in murine models of pancreatic cancer. iScience 2023; 26:106841. [PMID: 37255660 PMCID: PMC10225934 DOI: 10.1016/j.isci.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a dismal outcome. To improve understanding of sequential microbiome changes during PDAC development we analyzed mouse models of pancreatic carcinogenesis (KC mice recapitulating pre-invasive PanIN formation, as well as KPC mice recapitulating invasive PDAC) during early tumor development and subsequent tumor progression. Diversity and community composition were analyzed depending on genotype, age, and gender. Both mouse models demonstrated concordant abundance changes of several genera influenced by one or more of the investigated factors. Abundance was significantly impacted by gender, highlighting the need to further elucidate the impact of gender differences. The findings underline the importance of the microbiome in PDAC development and indicate that microbiological screening of patients at risk and targeting the microbiome in PDAC development may be feasible in future.
Collapse
Affiliation(s)
- Tom Kaune
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Griesmann
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Katharina Theuerkorn
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Monika Hämmerle
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Helmut Laumen
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Krug
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Klinik für Innere Medizin IV, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Iris Plumeier
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silke Kahl
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Howard Junca
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Klinik für Innere Medizin IV, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
37
|
Ankeny RA, Whittaker AL, Ryan M, Boer J, Plebanski M, Tuke J, Spencer SJ. The power of effective study design in animal Experimentation: Exploring the statistical and ethical implications of asking multiple questions of a data set. Brain Behav Immun 2023:S0889-1591(23)00156-3. [PMID: 37315700 DOI: 10.1016/j.bbi.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023] Open
Abstract
One of the chief advantages of using highly standardised biological models including model organisms is that multiple variables can be precisely controlled so that the variable of interest is more easily studied. However, such an approach often obscures effects in sub-populations resulting from natural population heterogeneity. Efforts to expand our fundamental understanding of multiple sub-populations are in progress. However, such stratified or personalised approaches require fundamental modifications of our usual study designs that should be implemented in Brain, Behavior and Immunity (BBI) research going forward. Here we explore the statistical feasibility of asking multiple questions (including incorporating sex) within the same experimental cohort using statistical simulations of real data. We illustrate and discuss the large explosion in sample numbers necessary to detect effects with appropriate power for every additional question posed using the same data set. This exploration highlights the strong likelihood of type II errors (false negatives) for standard data and type I errors when dealing with complex genomic data, where studies are too under-powered to appropriately test these interactions. We show this power may differ for males and females in high throughput data sets such as RNA sequencing. We offer a rationale for the use of alternative experimental and statistical strategies based on interdisciplinary insights and discuss the real-world implications of increasing the complexities of our experimental designs, and the implications of not attempting to alter our experimental designs going forward.
Collapse
Affiliation(s)
- R A Ankeny
- School of Humanities, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - A L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - M Ryan
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Australia
| | - J Boer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - M Plebanski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - J Tuke
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Australia
| | - S J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia.
| |
Collapse
|
38
|
Niccolai E, Baldi S, Nannini G, Gensini F, Papi L, Vezzosi V, Bianchi S, Orzalesi L, Ramazzotti M, Amedei A. Breast cancer: the first comparative evaluation of oncobiome composition between males and females. Biol Sex Differ 2023; 14:37. [PMID: 37277847 DOI: 10.1186/s13293-023-00523-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that breast microbiota dysbiosis contributes to cancer initiation, progression, prognosis and treatment efficacy. Anyway, available data are referred only to female patients, and studies on males are completely missing. Male breast cancer (MBC) is 70-100 times less frequent, but the mortality rate adjusted to incidence is higher in men than in females. Currently, MBC diagnostic approaches and treatments have generally been extrapolated from the clinical experience gained in women, while few studies focus on characterizing male cancer biology. Taking into account the rising importance of the oncobiome field and the need of MBC targeted studies, we explored the breast cancer oncobiome of male and female patients. METHODS 16S rRNA gene sequencing was performed in 20 tumor and 20 non-pathological adjacent FFPE breast tissues from male and female patients. RESULTS We documented, for the first time, the presence of a sexually dimorphic breast-associated microbiota, here defined as "breast microgenderome". Moreover, the paired analysis of tumor and non-pathological adjacent tissues suggests the presence of a cancer-associated dysbiosis in male patients, with surrounding tissue conserving a healthier microbiome, whereas in female patients, the entire breast tissue is predisposed to cancer development. Finally, the phylum Tenericutes, especially the genera Mesoplasma and Mycobacterium, could to be involved in breast carcinogenesis, in both sexes, deserving further investigation, not only for its role in cancer development but even as potential prognostic biomarker. CONCLUSIONS Breast microbiota characterization can enhance the understanding of male breast cancer pathogenesis, being useful for detection of new prognostic biomarkers and development of innovative personalized therapies, remarking the relevant gender differences.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Francesca Gensini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Laura Papi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Vania Vezzosi
- Division of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Lorenzo Orzalesi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| |
Collapse
|
39
|
Zhang S, Cai H, Wang C, Zhu J, Yu Y. Sex-dependent gut microbiota-brain-cognition associations: a multimodal MRI study. BMC Neurol 2023; 23:169. [PMID: 37106317 PMCID: PMC10134644 DOI: 10.1186/s12883-023-03217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND There is bidirectional communication between the gut microbiota and the brain. Empirical evidence has demonstrated sex differences in both the gut microbiome and the brain. However, the effects of sex on the gut microbiota-brain associations have yet to be determined. We aim to elucidate the sex-specific effects of gut microbiota on brain and cognition. METHODS One hundred fifty-seven healthy young adults underwent brain structural, perfusion, functional and diffusion MRIs to measure gray matter volume (GMV), cerebral blood flow (CBF), functional connectivity strength (FCS) and white matter integrity, respectively. Fecal samples were collected and 16S amplicon sequencing was utilized to assess gut microbial diversity. Correlation analyses were conducted to test for sex-dependent associations between microbial diversity and brain imaging parameters, and mediation analysis was performed to further characterize the gut microbiota-brain-cognition relationship. RESULTS We found that higher gut microbial diversity was associated with higher GMV in the right cerebellum VI, higher CBF in the bilateral calcarine sulcus yet lower CBF in the left superior frontal gyrus, higher FCS in the bilateral paracentral lobule, and lower diffusivity in widespread white matter regions in males. However, these associations were absent in females. Of more importance, these neuroimaging biomarkers significantly mediated the association between gut microbial diversity and behavioral inhibition in males. CONCLUSIONS These findings highlight sex as a potential influential factor underlying the gut microbiota-brain-cognition relationship, and expose the gut microbiota as a biomarker-driven and sex-sensitive intervention target for mental disorders with abnormal behavioral inhibition.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, 272007, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
40
|
Rohrer SD, Jiménez-Uzcátegui G, Parker PG, Chubiz LM. Composition and function of the Galapagos penguin gut microbiome vary with age, location, and a putative bacterial pathogen. Sci Rep 2023; 13:5358. [PMID: 37005428 PMCID: PMC10067942 DOI: 10.1038/s41598-023-31826-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Microbial colonization plays a direct role in host health. Understanding the ecology of the resident microbial community for a given host species is thus an important step for detecting population vulnerabilities like disease. However, the idea of integrating microbiome research into conservation is still relatively new, and wild birds have received less attention in this field than mammals or domesticated animals. Here we examine the composition and function of the gut microbiome of the endangered Galapagos penguin (Spheniscus mendiculus) with the goals of characterizing the normal microbial community and resistome, identifying likely pathogens, and testing hypotheses of structuring forces for this community based on demographics, location, and infection status. We collected fecal samples from wild penguins in 2018 and performed 16S rRNA gene sequencing and whole genome sequencing (WGS) on extracted DNA. 16S sequencing revealed that the bacterial phyla Fusobacteria, Epsilonbacteraeota, Firmicutes, and Proteobacteria dominate the community. Functional pathways were computed from WGS data, showing genetic functional potential primarily focused on metabolism-amino acid metabolism, carbohydrate metabolism, and energy metabolism are the most well-represented functional groups. WGS samples were each screened for antimicrobial resistance, characterizing a resistome made up of nine antibiotic resistance genes. Samples were screened for potential enteric pathogens using virulence factors as indicators; Clostridium perfringens was revealed as a likely pathogen. Overall, three factors appear to be shaping the alpha and beta diversity of the microbial community: penguin developmental stage, sampling location, and C. perfringens. We found that juvenile penguins have significantly lower alpha diversity than adults based on three metrics, as well as significantly different beta diversity. Location effects are minimal, but one site has significantly lower Shannon diversity than the other primary sites. Finally, when samples were grouped by C. perfringens virulence factors, we found dramatic changes in beta diversity based on operational taxonomic units, protein families, and functional pathways. This study provides a baseline microbiome for an endangered species, implicates both penguin age and the presence of a potential bacterial pathogen as primary factors associated with microbial community variance, and reveals widespread antibiotic resistance genes across the population.
Collapse
Affiliation(s)
- Sage D Rohrer
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., St. Louis, MO, 63121, USA.
| | | | - Patricia G Parker
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., St. Louis, MO, 63121, USA
- WildCare Institute, Saint Louis Zoo, One Government Drive, St. Louis, MO, 63110, USA
| | - Lon M Chubiz
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., St. Louis, MO, 63121, USA
| |
Collapse
|
41
|
Andreoli L, Chighizola CB, Iaccarino L, Botta A, Gerosa M, Ramoni V, Tani C, Bermas B, Brucato A, Buyon J, Cetin I, Chambers CD, Clowse MEB, Costedoat-Chalumeau N, Cutolo M, De Carolis S, Dolhain R, Fazzi EM, Förger F, Giles I, Haase I, Khamashta M, Levy RA, Meroni PL, Mosca M, Nelson-Piercy C, Raio L, Salmon J, Villiger P, Wahren-Herlenius M, Wallenius M, Zanardini C, Shoenfeld Y, Tincani A. Immunology of pregnancy and reproductive health in autoimmune rheumatic diseases. Update from the 11 th International Conference on Reproduction, Pregnancy and Rheumatic Diseases. Autoimmun Rev 2023; 22:103259. [PMID: 36549355 DOI: 10.1016/j.autrev.2022.103259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Autoimmune rheumatic diseases (ARD) can affect women and men during fertile age, therefore reproductive health is a priority issue in rheumatology. Many topics need to be considered during preconception counselling: fertility, the impact of disease-related factors on pregnancy outcomes, the influence of pregnancy on disease activity, the compatibility of medications with pregnancy and breastfeeding. Risk stratification and individualized treatment approach elaborated by a multidisciplinary team minimize the risk of adverse pregnancy outcomes (APO). Research has been focused on identifying biomarkers that can be predictive of APO. Specifically, preeclampsia and hypertensive disorders of pregnancy tend to develop more frequently in women with ARD. Placental insufficiency can lead to intrauterine growth restriction and small-for-gestational age newborns. Such APO have been shown to be associated with maternal disease activity in different ARD. Therefore, a key message to be addressed to the woman wishing for a pregnancy and to her family is that treatment with compatible drugs is the best way to ensure maternal and fetal wellbeing. An increasing number of medications have entered the management of ARD, but data about their use in pregnancy and lactation are scarce. More information is needed for most biologic drugs and their biosimilars, and for the so-called small molecules, while there is sufficient evidence to recommend the use of TNF inhibitors if needed for keeping maternal disease under control. Other issues related to the reproductive journey have emerged as "unmet needs", such as sexual dysfunction, contraception, medically assisted reproduction techniques, long-term outcome of children, and they will be addressed in this review paper. Collaborative research has been instrumental to reach current knowledge and the future will bring novel insights thanks to pregnancy registries and prospective studies that have been established in several Countries and to their joint efforts in merging data.
Collapse
Affiliation(s)
- Laura Andreoli
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Cecilia B Chighizola
- Paediatric Rheumatology Unit, ASST G. Pini & CTO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luca Iaccarino
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Angela Botta
- Department of Obstetrics, Gynaecology and Pediatrics, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Gerosa
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO, Research Center for Adult and Pediatric Rheumatic Diseases, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Véronique Ramoni
- Medicina Generale Lodi, ASST Lodi-Ospedale Maggiore, Lodi, Italy
| | - Chiara Tani
- Rheumatology Unit, Azienda Ospedaliero Universitaria Pisana and Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Antonio Brucato
- Internal Medicine, Fatebenefratelli Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Jill Buyon
- Division of Rheumatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Irene Cetin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospitals, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Christina D Chambers
- Department of Pediatrics, University of California, Herbert Wertheim School of Public Health and Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Megan E B Clowse
- Division of Rheumatology & Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Nathalie Costedoat-Chalumeau
- Internal Medicine Department, Cochin Hospital, Referral center for rare autoimmune and systemic diseases, Université de Paris, CRESS, INSERM, INRA, Paris, France
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal M edicine, University of Genoa, IRCSS San Martino Polyclinic, Genoa, Italy
| | - Sara De Carolis
- Department of Obstetrics, Gynaecology and Pediatrics, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Radboud Dolhain
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elisa M Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Child Neurology and Psychiatry Unit, ASST Spedali Civili, Brescia, Italy
| | - Frauke Förger
- Department of Rheumatology and Immunology, University Hospital (Inselspitaland University of Bern, Bern, Switzerland
| | - Ian Giles
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, University College London, Department of rheumatology, University College London Hospital, London, UK
| | - Isabell Haase
- Department for Rheumatology and Hiller Research Institute, Heinrich-Heine-University, Düsseldorf, Germany
| | - Munther Khamashta
- Women & Children's Health, King's College, London, UK; GlaxoSmithKline Global Medical Expert, Dubai, United Arab Emirates
| | - Roger A Levy
- Universidade do Estado de Rio de Janeiro, Rio de Janeiro, Brazil; GlaxoSmithKline Global Medical Expert, Collegeville, PA, USA
| | - Pier Luigi Meroni
- IRCCS Istituto Auxologico Italiano, Immunorheumatology Research Laboratory, Milan, Italy
| | - Marta Mosca
- Rheumatology Unit, Azienda Ospedaliero Universitaria Pisana and Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Luigi Raio
- Department of Obstetrics and Gynaecology, University Hospital (Inselspitaland University of Bern, Bern, Switzerland
| | - Jane Salmon
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Peter Villiger
- Rheumatology and Clinical Immunology, Medical Center Monbijou, Bern, Switzerland
| | - Marie Wahren-Herlenius
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marianne Wallenius
- National Advisory Unit on Pregnancy and Rheumatic Diseases, St Olavs Hospital, Trondheim, University Hospital and Institute of Neuromedicine and Movement Science, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Cristina Zanardini
- Department of Obstetrics and Gynecology, ASST Spedali Civili, Brescia, Italy
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Ariel University, Ariel, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Angela Tincani
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
42
|
Liu C, Zhang J, Chen M, An P, Xiang J, Yu R, Zeng S, Wei S, Deng B, Liu Z, Jiang C, Shi J, Wu K, Dong W. Gender Differences in Psychological Symptoms and Quality of Life in Patients with Inflammatory Bowel Disease in China: A Multicenter Study. J Clin Med 2023; 12:jcm12051791. [PMID: 36902578 PMCID: PMC10002859 DOI: 10.3390/jcm12051791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE To explore the gender differences in the psychological symptoms, sleep quality, and quality of life of patients with inflammatory bowel disease (IBD). METHODS A unified questionnaire was developed to collect clinical data on the psychology and quality of life of IBD patients from 42 hospitals in 22 provinces in China from September 2021 to May 2022. The general clinical characteristics, psychological symptoms, sleep quality, and quality of life of IBD patients of different genders were analyzed via a descriptive statistical analysis. A multivariate logistic regression analysis was conducted, and independent influencing factors were screened to construct a nomogram to predict the quality of life. The consistency index (C-index), receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), and calibration curve were used to evaluate the discrimination and accuracy of the nomogram model. Decision curve analysis (DCA) was used to evaluate the clinical utility. RESULTS A total of 2478 IBD patients (1371 patients with ulcerative colitis (UC) and 1107 patients with Crohn's disease (CD)) were investigated, including 1547 males (62.4%) and 931 females (37.6%). The proportion of anxiety in females was significantly higher than in males (IBD: 30.5% vs. 22.4%, p < 0.001; UC: 32.4% vs. 25.1%, p = 0.003; CD: 26.8% vs. 19.9%, p = 0.013), and there were differences in the severity of anxiety between the genders (IBD: p < 0.001; UC: p < 0.001; CD: p = 0.050). The proportion of depression in females was higher than in males (IBD: 33.1% vs. 27.7%, p = 0.005; UC: 34.4% vs. 28.9%, p = 0.031; CD: 30.6% vs. 26.6%, p = 0.184), and there were differences in the severity of depression between the genders (IBD: p = 0.004; UC: p = 0.022; CD: p = 0.312). The proportion suffering from sleep disturbances among females was slightly higher than among males (IBD: 63.2% vs. 58.4%, p = 0.018; UC: 63.4% vs. 58.1%, p = 0.047; CD: 62.7% vs. 58.6%, p = 0.210), and the proportion of females with a poor quality of life was higher than that of males (IBD: 41.8% vs. 35.2%, p = 0.001; UC: 45.1% vs. 39.8%, p = 0.049; CD: 35.4% vs. 30.8%, p = 0.141). The AUC values of the female and male nomogram prediction models for predicting poor quality of life were 0.770 (95% CI: 0.7391-0.7998) and 0.771 (95% CI: 0.7466-0.7952), respectively. The calibration diagrams of the two models showed that the calibration curves fitted well with the ideal curve, and the DCA that showed nomogram models could bring clinical benefits. CONCLUSIONS There were significant gender differences in the psychological symptoms, sleep quality, and quality of life of IBD patients, suggesting that females need more psychological support. In addition, a nomogram model with high accuracy and performance was constructed to predict the quality of life of IBD patients of different genders, which is helpful for the timely clinical formulation of personalized intervention plans that can improve the prognosis of patients and save medical costs.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Min Chen
- Department of Gastroenterology, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Ping An
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiankang Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rong Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Suqi Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuchun Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Changqing Jiang
- Department of Clinical Psychology, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jie Shi
- Department of Medical Psychology, Chinese People’s Liberation Army Rocket Army Characteristic Medical Center, Beijing 100088, China
| | - Kaichun Wu
- Department of Gastroenterology, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
- Correspondence: (K.W.); (W.D.)
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence: (K.W.); (W.D.)
| |
Collapse
|
43
|
Mock JR, Tune MK, Bose PG, McCullough MJ, Doerschuk CM. Comparison of different methods of initiating lung inflammation and the sex-specific effects on inflammatory parameters. Am J Physiol Lung Cell Mol Physiol 2023; 324:L199-L210. [PMID: 36594854 PMCID: PMC9925158 DOI: 10.1152/ajplung.00118.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Sex as a biological variable is an essential element of preclinical research. Sex-specific differences in lung volume, alveolar number, body weight, and the relationship between lung and body weight result in important questions about generating equivalent injuries in males and females so that comparisons in their responses can be assessed. Few studies compare stimulus dosing methods for murine lung models investigating immune responses. To examine sex-specific effects, we explored several dosing techniques for three stimuli, LPS, Streptococcus pneumoniae, and influenza A, on survival, injury parameters in bronchoalveolar lavage (BAL), and immune cell numbers in single-cell lung suspensions after injury. These data demonstrate that body weight-based dosing produced fewer differences between sexes when compared with injury initiated with inocula containing the same number of organisms. Comparison of the lung and body weights showed that females had a greater lung-to-body weight ratio than males. However, in LPS-induced injury, adjusting the dose for sex differences in this ratio in addition to body weight provided no new information about sex differences compared with dosing by body weight alone, most likely due to the variability in measures of the immune response. Studies evaluating BAL volumes revealed that smaller but more lavages resulted in greater returns and lower protein concentrations, particularly in the smaller female lungs. Thus, designing dosing and measurement methods that generate equivalent injuries facilitates comparison of immune responses between sexes. Continued development of methods for both induction and evaluation of injury will likely facilitate identification of sex differences in immune responses.
Collapse
Affiliation(s)
- Jason R Mock
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Miriya K Tune
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Pria G Bose
- Biological and Biomedical Sciences Program, University of North Carolina, Chapel Hill, North Carolina
| | - Morgan J McCullough
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Claire M Doerschuk
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
- Center for Airways Disease University of North Carolina, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
44
|
Rudyk M, Hurmach Y, Serhiichuk T, Akulenko I, Skivka L, Berehova T, Ostapchenko L. Multi-probiotic consumption sex-dependently interferes with MSG-induced obesity and concomitant phagocyte pro-inflammatory polarization in rats: Food for thought about personalized nutrition. Heliyon 2023; 9:e13381. [PMID: 36816299 PMCID: PMC9932736 DOI: 10.1016/j.heliyon.2023.e13381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Epidemic scope which obesity has reached in many countries necessitates shifting the emphasis in medicine from traditional reaction to individualized and personalized prevention. Numerous trials convincingly prove sexual dimorphism of obesity in morbidity, pathophysiology, comorbidity, outcomes and prophylaxis efficacy. Obesity is characterized by chronic systemic low-grade inflammation that creates the preconditions for the emergence of numerous comorbidities. Leading role in the initiation, propagation and resolution of inflammation belongs to tissue resident and circulating phagocytes. The outcome of inflammation largely depends on phagocyte functional polarization, which in turn is governed by environmental stimuli. Gut microbiota (GM), whose disturbances are one of the key pathogenetic features in obesity, substantially affect phagocyte functions and can either aggravate or calm obesity-associated inflammation. Probiotics possess promising physiological functions, including microbiota-restoring and anti-inflammatory traits, that may possibly help prevent obesity. However, sex-specific effects of probiotic supplementation for targeted obesity prevention remain unknown. The aim of the current study was aimed to compare the effect of multi-probiotic preparation used in prophylactic regimen on the adiposity, profile of culturable GM and its short-chain fatty acids as well as on functional profile of phagocytes from different locations in male and female rats with monosodium glutamate (MSG)-induced obesity. Obesity was induced by neonatal MSG injections in male and female rats, who were given the multi-species probiotic during juvenile and adult developmental stages. Culturable fecal and mucosa-associated microbiota of the intestine were examined using selective diagnostic media. Short-chain fatty acid profile in fecal samples was determined by GC-MS. Phagocyte functional profile was evaluated using flow cytometry and colorimetric methods. Probiotic supplementation after the administration of MSG prevented weight gain and fat accumulation, inflammatory phagocyte activation and alterations in GM in female rats. In male MSG-injected rats, probiotic supplementation restricted but did not prevent weight gain and fat deposition, alleviated but did not prevent systemic inflammation, prevented the alterations in GM, but with residual imbalance in the ratio of obligate anaerobic to facultative anaerobic bacteria. Our findings emphasize the necessity of sex-centered approaches to the prophylactic use of probiotics in obesity in the context of predictive preventive and personalized medicine.
Collapse
Affiliation(s)
- Mariia Rudyk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine,Corresponding author.
| | - Yevheniia Hurmach
- Bogomolets National Medical University, 13, T. Shevchenko Blvd, Kyiv, 01601, Ukraine
| | - Tetiana Serhiichuk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Iryna Akulenko
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Larysa Skivka
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Tetiana Berehova
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Liudmyla Ostapchenko
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| |
Collapse
|
45
|
Rugge M, Zorzi M, Guzzinati S, Stocco C, Avossa F, Del Zotto S, Clagnan E, Bricca L, Dal Maso L, Serraino D. Outcomes of SARS-CoV-2 infection in cancer versus non-cancer-patients: a population-based study in northeastern Italy. TUMORI JOURNAL 2023; 109:38-46. [PMID: 35130777 PMCID: PMC9895302 DOI: 10.1177/03008916211073771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION This study assesses the risk of infection and clinical outcomes in a large consecutive population of cancer and non-cancer patients tested for SARS-CoV-2 status. METHODS Study patients underwent SARS-CoV-2 molecular-testing between 22 February 2020 and 31 July 2020, and were found infected (CoV2+ve) or uninfected. History of malignancy was obtained from regional population-based cancer registries. Cancer-patients were distinguished by time between cancer diagnosis and SARS-CoV-2 testing (<12/⩾12 months). Comorbidities, hospitalization, and death at 15 September 2020 were retrieved from regional population-based databases. The impact of cancer history on SARS-CoV-2 infection and clinical outcomes was calculated by fitting a multivariable logistic regression model, adjusting for sex, age, and comorbidities. RESULTS Among 552,362 individuals tested for SARS-CoV-2, 55,206 (10.0%) were cancer-patients and 22,564 (4.1%) tested CoV2+ve. Irrespective of time since cancer diagnosis, SARS-CoV-2 infection was significantly lower among cancer patients (1,787; 3.2%) than non-cancer individuals (20,777; 4.2% - Odds Ratio (OR)=0.60; 0.57-0.63). CoV2+ve cancer-patients were older than non-cancer individuals (median age: 77 versus 57 years; p<0.0001), were more frequently men and with comorbidities. Hospitalizations (39.9% versus 22.5%; OR=1.61; 1.44-1.80) and deaths (24.3% versus 9.7%; OR=1.51; 1.32-1.72) were more frequent in cancer-patients. CoV2+ve cancer-patients were at higher risk of death (lung OR=2.90; 1.58-5.24, blood OR=2.73; 1.88-3.93, breast OR=1.77; 1.32-2.35). CONCLUSIONS The risks of hospitalization and death are significantly higher in CoV2+ve individuals with past or present cancer (particularly malignancies of the lung, hematologic or breast) than in those with no history of cancer.
Collapse
Affiliation(s)
- Massimo Rugge
- Department of Medicine - DIMED,
Surgical Pathology and Cytopathology Unit, Università degli Studi di Padova, Padova,
Italy,Veneto Tumour Registry, Azienda Zero,
Padova, Italy
| | - Manuel Zorzi
- Veneto Tumour Registry, Azienda Zero,
Padova, Italy
| | | | | | - Francesco Avossa
- Regional Epidemiological Service Unit,
Azienda Zero, Padova, Italy
| | | | - Elena Clagnan
- Friuli Venezia Giulia Regional Health
Coordination Agency, Udine, Italy
| | - Ludovica Bricca
- Department of Medicine - DIMED,
Surgical Pathology and Cytopathology Unit, Università degli Studi di Padova, Padova,
Italy
| | - Luigino Dal Maso
- Cancer Epidemiology Unit, Centro di
Riferimento Oncologico, IRCCS, Aviano, Italy,Luigino Dal Maso, Cancer Epidemiology,
Centro di Riferimento Oncologico (CRO) Aviano, via Gallini, 2, Aviano (PN),
33081, Italy.
| | - Diego Serraino
- Cancer Epidemiology Unit, Centro di
Riferimento Oncologico, IRCCS, Aviano, Italy
| |
Collapse
|
46
|
Vemuri R, Herath MP. Beyond the Gut, Emerging Microbiome Areas of Research: A Focus on Early-Life Microbial Colonization. Microorganisms 2023; 11:microorganisms11020239. [PMID: 36838204 PMCID: PMC9962807 DOI: 10.3390/microorganisms11020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Undoubtedly, the human body harbors trillions of microbes of different kinds performing various physiological activities, such as priming the immune system, influencing host metabolism, and improving health by providing important metabolites such as short-chain fatty acids. Although the gut is considered the "microbial organ" of our body as it hosts the most microbes, there are microbes present in various other important anatomical locations differing in numbers and type. Research has shown the presence of microbes in utero, sparking a debate on the "sterile womb" concept, and there is much scope for more work in this area. It is important to understand the early-life microbiome colonization, which has a role in the developmental origins of health and disease in later life. Moreover, seminal studies have indicated the presence of microbes beyond the gut, for example, in the adipose tissue and the liver. However, it is still unclear what is the exact source of these microbes and their exact roles in health and disease. In this review, we appraise and discuss emerging microbiome areas of research and their roles in metabolic health. Further, we review the importance of the genital microbiome in early-life microbial interactions.
Collapse
Affiliation(s)
- Ravichandra Vemuri
- Department of Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
- Correspondence: (R.V.); (M.P.H.)
| | - Manoja P. Herath
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
- Correspondence: (R.V.); (M.P.H.)
| |
Collapse
|
47
|
Jain T, Li YM. Gut microbes modulate neurodegeneration. Science 2023; 379:142-143. [PMID: 36634183 DOI: 10.1126/science.adf9548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microbiota mediate neuroinflammation in a genetic- and sex-specific manner in mice.
Collapse
Affiliation(s)
- Tanya Jain
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Neuroscience Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Neuroscience Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Pharmacology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
48
|
Kheloui S, Smith A, Ismail N. Combined oral contraceptives and mental health: Are adolescence and the gut-brain axis the missing links? Front Neuroendocrinol 2023; 68:101041. [PMID: 36244525 DOI: 10.1016/j.yfrne.2022.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Combined oral contraceptives (containing synthetic forms of estradiol and progestins) are one of the most commonly used drugs among females. However, their effects on the gut-brain axis have not been investigated to a great extent despite clear evidence that suggest bi-directional interactions between the gut microbiome and endogenous sex hormones. Moreover, oral contraceptives are prescribed during adolescence, a critical period of development during which several brain structures and systems, such as hypothalamic-pituitary-gonadal axis, undergo maturation. Considering that oral contraceptives could impact the developing adolescent brain and that these effects may be mediated by the gut-brain axis, further research investigating the effects of oral contraceptives on the gut-brain axis is imperative. This article briefly reviews evidence from animal and human studies on the effects of combined oral contraceptives on the brain and the gut microbiota particularly during adolescence.
Collapse
Affiliation(s)
- Sarah Kheloui
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Andra Smith
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada; uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Nafissa Ismail
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada; uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada; LIFE Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
49
|
St Clair LA, Chaulagain S, Klein SL, Benn CS, Flanagan KL. Sex-Differential and Non-specific Effects of Vaccines Over the Life Course. Curr Top Microbiol Immunol 2023; 441:225-251. [PMID: 37695431 PMCID: PMC10917449 DOI: 10.1007/978-3-031-35139-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Biological sex and age have profound effects on immune responses throughout the lifespan and impact vaccine acceptance, responses, and outcomes. Mounting evidence from epidemiological, clinical, and animal model studies show that males and females respond differentially to vaccination throughout the lifespan. Within age groups, females tend to produce greater vaccine-induced immune responses than males, with sex differences apparent across all age groups, but are most pronounced among reproductive aged individuals. Females report more adverse effects following vaccination than males. Females, especially among children under 5 years of age, also experience more non-specific effects of vaccination. Despite these known sex- and age-specific differences in vaccine-induced immune responses and outcomes, sex and age are often ignored in vaccine research. Herein, we review the known sex differences in the immunogenicity, effectiveness, reactogenicity, and non-specific effects of vaccination over the lifespan. Ways in which these data can be leveraged to improve vaccine research are described.
Collapse
Affiliation(s)
- Laura A St Clair
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabal Chaulagain
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Stabell Benn
- Institute of Clinical Research and Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Katie L Flanagan
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia.
| |
Collapse
|
50
|
Song CH, Kim N, Nam RH, Choi SI, Jang JY, Lee HN. Changes in Gut Microbiome upon Orchiectomy and Testosterone Administration in AOM/DSS-Induced Colon Cancer Mouse Model. Cancer Res Treat 2023; 55:196-218. [PMID: 35790194 PMCID: PMC9873319 DOI: 10.4143/crt.2022.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Sex hormones are known to affect the gut microbiota. Previously, we reported that endogenous and exogenous testosterone are associated with colorectal cancer (CRC) development and submucosal invasion. In the present study, we investigated whether the gut microbiota is affected by orchiectomy (ORX) and testosterone propionate (TP) administration using an azoxymethane/dextran sulfate sodium (AOM/DSS)-induced CRC mouse model. MATERIALS AND METHODS Gut microbiota was evaluated by means of 16S rRNA gene sequencing of stool DNA extracted from feces that were obtained at 13 weeks after AOM injection (from 22-week-old animals) and stored in a gas-generating pouch. RESULTS The increase in microbial diversity (Chao1 and Phylogenetic Diversity index) and Firmicutes/Bacteroidetes (F/B) ratio upon AOM/DSS treatment in ORX mice was significantly decreased by TP supplementation. The ratio of commensal bacteria to opportunistic pathogens was lower in the TP-administered females and ORX mice than in the AOM/DSS group. Opportunistic pathogens (Mucispirillum schaedleri or Akkermansia muciniphila) were identified only in the TP group. In addition, microbial diversity and F/B ratio were higher in male controls than in female and ORX controls. Flintibacter butyricus, Ruminococcus bromii, and Romboutsia timonensis showed similar changes in the male control group as those in the female and ORX controls. CONCLUSION In conclusion, testosterone determines the dysbiosis of gut microbiota, which suggests that it plays a role in the sex-related differences in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Jae Young Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Ha-Na Lee
- Laboratory of Immunology, Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD,
USA
| |
Collapse
|