1
|
Abd-Alla MH, Nafady NA, Hassan AA, Bashandy SR. Isolation and characterization of non-rhizobial bacteria and arbuscular mycorrhizal fungi from legumes. BMC Microbiol 2024; 24:454. [PMID: 39506644 PMCID: PMC11539435 DOI: 10.1186/s12866-024-03591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigates non-rhizobial endophytic bacteria in the root nodules of chickpea (Cicer arietinum L), faba bean (Vicia faba), and cowpea (Vigna unguiculata L. Walp), as well as arbuscular mycorrhizal fungi in the rhizospheric soil of chickpea and faba bean. Out of the 34 endophytic bacterial populations examined, 31 strains were identified as non-rhizobial based on nodulation tests. All strains were assessed for their plant growth-promoting (PGP) activities in vitro. The results revealed that most isolates exhibited multiple PGP activities, such as nitrogen fixation, indole-3-acetic acid (IAA) and ammonia (NH3) production, phosphate solubilization, and exopolysaccharide production. The most effective PGP bacteria were selected for 16S rRNA analysis. Additionally, a total of 36 species of native arbuscular mycorrhizal fungi (AMF) were identified. Acaulospora (100%) and Scutellospora (91.66%) were the most prevalent genera in Cicer arietinum L. and Vicia faba L. plants, respectively. Acaulospora also exhibited the highest spore density and relative abundance in both plants. Moreover, the root colonization of Cicer arietinum L. and Vicia faba L. plants by hyphae, vesicles, and arbuscules (HVA) was significant. The findings of this study provide valuable insights into non-rhizobial endophytic bacteria associated with legume root nodules and the diversity of AMF. These organisms have great potential for PGP and can be manipulated by co-inoculation with rhizobia to enhance their biofertilizer effectiveness. This manipulation is crucial for promoting sustainable agriculture, improving crop growth, and advancing biofertilizer technology.
Collapse
Affiliation(s)
- Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Nivien A Nafady
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Amany A Hassan
- Botany and Microbiology Department, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt
| | - Shymaa R Bashandy
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
2
|
Hnini M, Aurag J. Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. Front Microbiol 2024; 15:1386742. [PMID: 38812696 PMCID: PMC11133547 DOI: 10.3389/fmicb.2024.1386742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the Rhizobiaceae familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that Bacillus and Pseudomonas are the most prevalent genera of nodule endophytic bacteria, succeeded by Paenibacillus, Enterobacter, Pantoea, Agrobacterium, and Microbacterium. To date, the bibliographic data available show that Glycine max followed by Vigna radiata, Phaseolus vulgaris and Lens culinaris are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of Bacillus and Pseudomonas as the most abundant nodule endophytic bacteria, alongside Paenibacillus, Agrobacterium, and Enterobacter. Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Collapse
Affiliation(s)
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Ruraż K, Przemieniecki SW, Błaszak M, Czarnomska SD, Ochmian I, Piwowarczyk R. Stigmas of holoparasitic Phelipanche arenaria (Orobanchaceae) - a suitable ephemeric flower habitat for development unique microbiome. BMC PLANT BIOLOGY 2023; 23:486. [PMID: 37821804 PMCID: PMC10566107 DOI: 10.1186/s12870-023-04488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Microbial communities have occasionally been observed in part of the ephemeric reproductive structure of floral stigmas, but their prevalence, phylogenetic diversity and ecological roles are understudied. This report describes the first study of bacterial and fungal communities in immature and mature stigma tissue of the endangered holoparasitic plant Phelipanche arenaria. Culture-dependent methods coupled with next-generation sequencing indicated that a small surface of the flower stigma was an unexpectedly rich and diverse microhabitat for colonization of microbial. We also compared the enzymatic activity of the bacterial communities between immature and mature stigmas samples. RESULTS Using high-throughput sequencing methods, we identified and classified 39 to over 51 OTUs per sample for bacterial OTUs represented by Pantoea agglomerans and P. ananatis, comprising 50.6%, followed by Pseudomonas, Luteibacter spp., Sphingomonas spp. with 17% of total frequency. The bacterial profile of immature stigmas of P. arenaria contained unique microorganisms (21 of the most numerous OTUs) that were not confirmed in mature stigmas. However, the enzymatic activity of bacteria in mature stigmas of P. arenaria showed more activity than observed in immature stigmas. In the fungal profile, we recorded even 80 OTUs in mature stigmas, consisting of Capnodiales 45.03% of the total abundance with 28.27% of frequency was created by Alternaria eichhorniae (10.55%), Mycosphaerella tassiana (9.69%), and Aureobasidium pullulans (8.03%). Additionally, numerous putative plant growth-promoting bacteria, fungal pathogens and pathogen-antagonistic yeasts were also detected. CONCLUSIONS Our study uncovered that P. arenaria stigmas host diverse bacterial and fungal communities. These microorganisms are well known and have been described as beneficial for biotechnological and environmental applications (e.g., production of different enzymes and antimicrobial compounds). This research provided valuable insight into the parasitic plant-microbe interactions.
Collapse
Affiliation(s)
- Karolina Ruraż
- Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Sebastian Wojciech Przemieniecki
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Magdalena Błaszak
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
| | - Sylwia Dagmara Czarnomska
- Museum and Institute of Zoology, Polish Academy of Sciences, Nadwiślańska 108, 80-680 Gdańsk, Poland
| | - Ireneusz Ochmian
- Department of Horticulture, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
| | - Renata Piwowarczyk
- Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| |
Collapse
|
4
|
Akoijam N, Joshi SR. Bioprospecting acid- and arsenic-tolerant plant growth-promoting rhizobacteria for mitigation of arsenic toxicity in acidic agricultural soils. Arch Microbiol 2023; 205:229. [PMID: 37160492 DOI: 10.1007/s00203-023-03567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Widespread use of chemical fertilizers and falling productivity in traditional agricultural practices has led to the biodiversity hotspot of North-Eastern region of India to face imminent threat to soil nutrients and biodiversity. The present work aimed to isolate rhizobacteria from Oryza sativa L. to evaluate their plant growth-promoting traits like indole, ammonia, siderophore production, and phosphate solubilization followed by in vitro plant growth promotion and anti-fungal assessment against Curvularia oryzae. Moreover, presence of heavy metals such as arsenic in chemical fertilizers and in groundwater contributes to arsenic contamination of agricultural soil. Taking this into consideration for the present study, the background metal content of the bulk soil, roots and grains of rice was measured. Arsenic tolerance of the rhizobacterial isolates was assessed using different concentrations of arsenite- and arsenate-supplemented media. 16S rRNA gene sequencing and phylogenetic tree analysis identified the isolates as Bacillus paramycoides, B. albus, B. altitudinis, B. koreensis, B. megaterium, B. wiedmannii, B. paramycoides, Chryseobacterium gleum, Stenotrophomonas maltophilia and Pseudomonas shirazica. Considering the acidic nature of the paddy growing soil, the growth kinetics of the isolates were monitored in acid and arsenic-supplemented conditions for 48 h of growth. Few isolates showed potent anti-fungal activity against the late blight phytopathogen, Curvularia oryzae MTCC 2605, apart from being potential growth promoters. The findings open vistas for the mass production of the characterized PGP rhizobacteria for their application in rehabilitation of the degrading arsenic contaminated paddy fields.
Collapse
Affiliation(s)
- Nirmala Akoijam
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793 022, India
| | - Santa Ram Joshi
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793 022, India.
| |
Collapse
|
5
|
Mowafy AM, Khalifa S, Elsayed A. Brevibacillus DesertYSK and Rhizobium MAP7 stimulate the growth and pigmentation of Lactuca sativa L. J Genet Eng Biotechnol 2023; 21:17. [PMID: 36780046 PMCID: PMC9925635 DOI: 10.1186/s43141-023-00465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/13/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND Applying microbial biostimulants during crop cultivation allows for higher sustainability levels. It reduces the need for fertilizers and environmental contaminants while enhancing plant quality. This study assessed 13 endophytic bacteria, 4 newly isolated, and 9 donated, for plant growth-promoting capabilities. Quantitative assessments of indole acetic acid (IAA), gibberellic acid (GA3), siderophores, ammonia, exopolysaccharides, volatile HCN, and phosphate solubilization, along with Bray-Curtis cluster analyses were performed. RESULTS Upon the results we selected RhizobiumMAP7, Brevibacillus DesertYSK, Pseudomonas MAP8, BacillusMAP3, Brevibacillus MAP, and Bacillus DeltaYSK to evaluate their effects on Lactuca sativa growth and pigmentation in a 30-day greenhouse pot experiment. Both Brevibacillus DesertYSK and Rhizobium MAP7surpassed other strains in growth promotional effects. They doubled shoot length (12 and 12.3 cm, respectively, when compared with 7 cm for control after 30 days), and fresh weight (0.079 and 0.084 g, respectively, when compared with 0.045 g for control after 30 days), and increased root length by at least 3-fold when compared with control (4.5 and 3.5 cm, respectively, when compared with 1.2 cm for control after 30 days). Chlorophyll content also exhibited at least a 2-fold significant increase in response to bacterization compared with control. CONCLUSIONS This strain superiority was consistent with the in vitro assays data that showed strains capability as IAA and GA3producers. Also, strains were highly capable ammonia and siderophore producers and phosphate solubilizers, providing considerable hormone and nutrient levels for L. sativa plantsleading to improved growth parameters and appearance. These data support the notion that nodule-based bacteria are potential plant growth-promoting bacteria (PGPB) that may be used on a wider scale rather than just for legumes.
Collapse
Affiliation(s)
- Amr M. Mowafy
- grid.10251.370000000103426662Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt ,grid.10251.370000000103426662Department of Biological Sciences, Faculty of Science, New Mansoura University, New Mansoura City, Egypt
| | - Sherouk Khalifa
- grid.10251.370000000103426662Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Ashraf Elsayed
- grid.10251.370000000103426662Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
6
|
Patra D, Mandal S. Non-rhizobia are the alternative sustainable solution for growth and development of the nonlegume plants. Biotechnol Genet Eng Rev 2022:1-30. [PMID: 36471635 DOI: 10.1080/02648725.2022.2152623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
The major research focus for biological nitrogen fixation (BNF) has mostly been on typical rhizobia with legumes. But the newly identified non-rhizobial bacteria, both individually or in combination could also be an alternative for nitrogen supplementation in both legumes and nonlegume plants. Although about 90% of BNF is derived from a legume - rhizobia symbiosis, the non-legumes specially the cereals lack canonical nitrogen fixation system through root-nodule organogenesis. The non-rhizobia may colonize in the rhizosphere or present in endophytic/associative nature. The non-rhizobia are well known for facilitating plant growth through their potential to alleviate various stresses (salt, drought, and pathogens), acquisition of minerals (P, K, etc.), or by producing phytohormones. Bacterial symbiosis in non-legumes represents by the Gram-positive Frankia having a major contribution in overall fortification of usable nitrogenous material in soil where they are associated with their hosts. This review discusses the recent updates on the diversity and association of the non-rhizobial species and their impact on the growth and productivity of their host plants with particular emphasis on major economically important cereal plants. The future application possibilities of non-rhizobia for soil fertility and plant growth enhancement for sustainable agriculture have been discussed.
Collapse
Affiliation(s)
- Dipanwita Patra
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, Kolkata, India
| |
Collapse
|
7
|
Delanthabettu A, Narasimhappa NS, Ramaswamy A, Mallesh MH, Nagarajappa N, Govind G. Molecular Characterization of Native Bacillus thuringiensis Strains from Root Nodules with Toxicity Against the Fall Armyworm (FAW, Spodoptera frugiperda) and Brinjal Ash Weevil (Myllocerus subfasciatus). Curr Microbiol 2022; 79:274. [PMID: 35907079 DOI: 10.1007/s00284-022-02951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
The fall armyworm is an exotic pest which destroys a wide variety of crops Querywhereas the brinjal ash weevil is a serious pest of eggplant and other solanaceous vegetables. The goal of this research is to find a sustainable and ecologically friendly bio-control agent for managing FAW and brinjal ash weevils. Twelve natural Bacillus thuringiensis strains were isolated from cowpea root nodules, and the Gram-positive cells with characteristic Bt crystal structures were discovered using phase contrast and scanning electron microscopy. There were bipyramidal, cuboidal, rhombus, and spherical crystals. The Bt cry gene content was characterized by PCR analysis, which revealed the presence of cry1, cry1I, cry3, cry7, cry7,8, cry14, cry26, and cry55 genes. The identity of Bt was confirmed by cloning and sequencing the cry genes. In the nucleotide sequences, no pseudo genes or indels were found in cry sequences. SDS-PAGE examination indicated the presence of bands ranging in size from 13 to 130 kDa, with 50-60 kDa being the most common. When compared to the control, the new native Bt strains were lethal, with pathogenicity ranging from 93 to 100% against S. frugiperda larvae and M. subfasciatus adults. The studies revealed that the native strains with conserved regions of 16S rRNA genes were compared to NCBI database sequences and classified as native Bt strains with 99-100% similarity to known Bt strains. In conclusion, native Bt strains from cowpea root nodules were shown to have bio-insecticidal activity against fall armyworm larvae and brinjal ash weevil adults.
Collapse
Affiliation(s)
| | | | - Asokan Ramaswamy
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, 560089, India
| | | | - Nethra Nagarajappa
- Seed Technology Research Unit, AICRP on Seeds (Crops), UAS, GKVK, Bangalore, 560065, India
| | | |
Collapse
|
8
|
Suman A, Govindasamy V, Ramakrishnan B, Aswini K, SaiPrasad J, Sharma P, Pathak D, Annapurna K. Microbial Community and Function-Based Synthetic Bioinoculants: A Perspective for Sustainable Agriculture. Front Microbiol 2022; 12:805498. [PMID: 35360654 PMCID: PMC8963471 DOI: 10.3389/fmicb.2021.805498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Interactions among the plant microbiome and its host are dynamic, both spatially and temporally, leading to beneficial or pathogenic relationships in the rhizosphere, phyllosphere, and endosphere. These interactions range from cellular to molecular and genomic levels, exemplified by many complementing and coevolutionary relationships. The host plants acquire many metabolic and developmental traits such as alteration in their exudation pattern, acquisition of systemic tolerance, and coordination of signaling metabolites to interact with the microbial partners including bacteria, fungi, archaea, protists, and viruses. The microbiome responds by gaining or losing its traits to various molecular signals from the host plants and the environment. Such adaptive traits in the host and microbial partners make way for their coexistence, living together on, around, or inside the plants. The beneficial plant microbiome interactions have been exploited using traditional culturable approaches by isolating microbes with target functions, clearly contributing toward the host plants' growth, fitness, and stress resilience. The new knowledge gained on the unculturable members of the plant microbiome using metagenome research has clearly indicated the predominance of particular phyla/genera with presumptive functions. Practically, the culturable approach gives beneficial microbes in hand for direct use, whereas the unculturable approach gives the perfect theoretical information about the taxonomy and metabolic potential of well-colonized major microbial groups associated with the plants. To capitalize on such beneficial, endemic, and functionally diverse microbiome, the strategic approach of concomitant use of culture-dependent and culture-independent techniques would help in designing novel "biologicals" for various crops. The designed biologicals (or bioinoculants) should ensure the community's persistence due to their genomic and functional abilities. Here, we discuss the current paradigm on plant-microbiome-induced adaptive functions for the host and the strategies for synthesizing novel bioinoculants based on functions or phylum predominance of microbial communities using culturable and unculturable approaches. The effective crop-specific inclusive microbial community bioinoculants may lead to reduction in the cost of cultivation and improvement in soil and plant health for sustainable agriculture.
Collapse
Affiliation(s)
- Archna Suman
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Youseif SH, Abd El-Megeed FH, Abdelaal AS, Ageez A, Martínez-Romero E. Plant-microbe-microbe interactions influence the faba bean nodule colonization by diverse endophytic bacteria. FEMS Microbiol Ecol 2021; 97:6381688. [PMID: 34610117 DOI: 10.1093/femsec/fiab138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/30/2021] [Indexed: 11/14/2022] Open
Abstract
Legume root nodules harbor rhizobia and other non-nodulating endophytes known as nodule-associated bacteria (NAB) whose role in the legume symbiosis is still unknown. We analysed the genetic diversity of 34 NAB isolates obtained from the root nodules of faba bean grown under various soil conditions in Egypt using 16S rRNA and concatenated sequences of three housekeeping genes. All isolates were identified as members of the family Enterobacteriaceae belonging to the genera Klebsiella, Enterobacter and Raoultella. We identified nine enterobacterial genospecies, most of which have not been previously reported as NAB. All isolated strains harbored nifH gene sequences and most of them possessed plant growth-promoting (PGP) traits. Upon co-inoculation with an N2 fixing rhizobium (Rlv NGB-FR128), two strains (Enterobacter sichanensis NGB-FR97 and Klebsiella variicola NGB-FR116) significantly increased nodulation, growth and N-uptake of faba bean plants over the single treatments or the uninoculated control. The presence of these enterobacteria in nodules was significantly affected by the host plant genotype, symbiotic rhizobium genotype and endophyte genotype, indicating that the nodule colonization process is regulated by plant-microbe-microbe interactions. This study emphasizes the importance of nodule-associated enterobacteria and suggests their potential role in improving the effectiveness of rhizobial inoculants.
Collapse
Affiliation(s)
- Sameh H Youseif
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Fayrouz H Abd El-Megeed
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ali S Abdelaal
- Department of Genetics, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| | - Amr Ageez
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt.,Faculty of Biotechnology, MSA University, 6th of October City 12451, Egypt
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
10
|
García-Suárez R, Verduzco-Rosas LA, Ibarra JE. Isolation and characterization of two highly insecticidal, endophytic strains of Bacillus thuringiensis. FEMS Microbiol Ecol 2021; 97:fiab080. [PMID: 34117749 DOI: 10.1093/femsec/fiab080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/10/2021] [Indexed: 11/14/2022] Open
Abstract
Recent discovery of endophytic strains of Bacillus thuringiensis significantly improves the knowledge on its ecology. It also may be a new source for the isolation of insecticidal strains. This report shows the characterization of two endophytic, highly insecticidal strains of B. thuringiensis. Strains LBIT-1250L and LBIT-1251P were isolated from lavender and Poinsettia sap, respectively. Their parasporal crystals were very similar in morphology to those shown by serotypes israelensis and kurstaki, respectively. Bioassays on Aedes aegypti fourth instar larvae and on Manduca sexta first instar larvae, respectively, showed significantly higher levels of toxicity than those of their standard counterparts, IPS-82 (israelensis) and HD-1 (kurstaki) strains, respectively. Characterization of both strains included the sequencing of flagellin (hag) gene, plasmid and Bc Rep-PCR patterns and crystal protein content. All four characterization features indicated that LBIT1250L is highly related to the IPS-82 standard (serotype H-14: israelensis); while the LBIT-1251P was highly related to the HD-1 standard (serotype H-3a3b3c kurstaki). These results indicate that endophytic strains of B. thuringiensis may be a new source of potential insecticidal strains and opens more in-depth studies about the role of this bacterium in such a specialized habitat.
Collapse
Affiliation(s)
- Rosalina García-Suárez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Apartado postal 629, 36500 Irapuato, Gto., Mexico
| | - Luis A Verduzco-Rosas
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Apartado postal 629, 36500 Irapuato, Gto., Mexico
| | - Jorge E Ibarra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Apartado postal 629, 36500 Irapuato, Gto., Mexico
| |
Collapse
|
11
|
Batista BD, Dourado MN, Figueredo EF, Hortencio RO, Marques JPR, Piotto FA, Bonatelli ML, Settles ML, Azevedo JL, Quecine MC. The auxin-producing Bacillus thuringiensis RZ2MS9 promotes the growth and modifies the root architecture of tomato (Solanum lycopersicum cv. Micro-Tom). Arch Microbiol 2021; 203:3869-3882. [PMID: 34013419 DOI: 10.1007/s00203-021-02361-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 12/28/2022]
Abstract
Strains of Bacillus thuringiensis (Bt) are commonly commercialized as bioinoculants for insect pest control, but their benefits go beyond their insecticidal property: they can act as plant growth-promoters. Auxins play a major role in the plant growth promotion. However, the mechanism of auxin production by the Bacilli group, and more specifically by Bt strains, is unclear. In previous work, the plant growth-promoting rhizobacterium (PGPR) B. thuringiensis strain RZ2MS9 increased the corn roots. This drew our attention to the strain's auxin production trait, earlier detected in vitro. Here, we demonstrate that in its genome, RZ2MS9 harbours the complete set of genes required in two pathways that are used for Indole acetic acid (IAA) production. We also detected that the strain produces almost five times more IAA during the stationary phase. The bacterial application increased the shoot dry weight of the Micro-Tom (MT) tomato by 24%. The application also modified MT root architecture, with an increase of 26% in the average lateral root length and inhibition of the axial root. At the cellular level, RZ2MS9-treated MT plants presented elongated root cortical cells with intensified mitotic activity. Altogether, these are the best characterized auxin-associated phenotypes. Besides that, no growth alteration was detected in the auxin-insensitive diageotropic (dgt) plants either with or without the RZ2MS9 inoculation. Our results suggest that auxins play an important role in the ability of B. thuringiensis RZ2MS9 to promote MT growth and provide a better understanding of the auxin production mechanism by a Bt strain.
Collapse
Affiliation(s)
- Bruna Durante Batista
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Manuella Nóbrega Dourado
- Department of Microbiology, Biomedicine Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Everthon Fernandes Figueredo
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil
| | - Renata Ockner Hortencio
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil
| | - João Paulo Rodrigues Marques
- Laboratory of Nuclear Instrumentation, Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Fernando Angelo Piotto
- Department of Crop Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Maria Letícia Bonatelli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil.,Bioinformatics Core, University of California, Davis, CA, USA
| | | | - João Lucio Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
12
|
Aeron A, Dubey RC, Maheshwari DK. Next-generation biofertilizers and novel biostimulants: documentation and validation of mechanism of endophytic plant growth-promoting rhizobacteria in tomato. Arch Microbiol 2021; 203:3715-3726. [PMID: 33914091 DOI: 10.1007/s00203-021-02344-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
A study was conducted to determine the suitability of the endophytes as probable next-generation biofertilizers and novel biostimulants. Enterobacter turicensis RCT5 and Stenotrophomonas maltophilia RCT31 showed a zone of solubilization, of phosphate, potassium, silicate, and zinc, produced phytase. Among the three media used for phosphate solubilization, the rhizospheric medium turned out to be the best-producing results in less than 24 h, while others took a longer time to give the same results. The strains exhibited differential ability to produce organic acids in the plate assay and eight of these were profuse producers of exopolysaccharides. We were able to partially elucidate the mechanism of solubilization of insoluble salts that included organic acids and protein activity in the cell-free culture filtrates of endophytes. All the root nodule endophytes showed potential as novel biostimulants and next-generation biofertilizers as found in the germination assay of tomato, a non-host crop using different methodologies. It proved that the endophytes have different mechanism of expressions of their plant growth-promoting traits as well as can promote the growth of tomato plant irrespective of the method used.
Collapse
Affiliation(s)
- Abhinav Aeron
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukula Kangri Vishwavidhyalaya, Haridwar, Uttarakhand, 249 404, India.
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukula Kangri Vishwavidhyalaya, Haridwar, Uttarakhand, 249 404, India
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukula Kangri Vishwavidhyalaya, Haridwar, Uttarakhand, 249 404, India
| |
Collapse
|
13
|
Arif S, Liaquat F, Yang S, Shah IH, Zhao L, Xiong X, Garcia D, Zhang Y. Exogenous inoculation of endophytic bacterium Bacillus cereus suppresses clubroot (Plasmodiophora brassicae) occurrence in pak choi (Brassica campestris sp. chinensis L.). PLANTA 2021; 253:25. [PMID: 33404767 DOI: 10.1007/s00425-020-03546-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The presence of Bacillus cereus plays a key role in clubroot suppression and improves plant biomass in pak choi. B. cereus is reported for the first time as a novel biocontrol agent against clubroot. Plasmodiophora brassicae Woronin causes a devastating infectious disease known as clubroot that is damaging to cruciferous vegetables. This study aimed to isolate beneficial bacteria from the rhizosphere soil of pak choi (Brassica campestris sp. chinensis) and to evaluate the ability of the isolate to reduce the severity of clubroot. Strains obtained from the rhizosphere of symptomless pak choi were first selected on the basis of their germination inhibition rate and effects on the viability of P. brassicae resting spores. Eight bacterial isolates had inhibitory effects against the resting spores of clubroot causing pathogen. However, MZ-12 showed the highest inhibitory effect at 73.4%. Inoculation with MZ-12 enhanced the plant biomass relative to plants grown without MZ-12 as well as P. brassicae infected plants. Furthermore, enhanced antioxidant enzymatic activities were observed in clubroot-infected plants during bacterial association. Co-inoculation of the plant with both P. brassicae and MZ-12 resulted in a 64% reduction of gall formation in comparison to plants inoculated with P. brassicae only. Three applications of MZ-12 to plants infected with P. brassicae at 7, 14 and 21 days after seeding (DAS) were more effective than one application and repressed root hair infection. According to 16S rDNA sequence analysis, strain MZ-12 was identified as had a 100% sequence similarity with type strain Bacillus cereus. The findings of the present study will facilitate further investigation into biological mechanisms of cruciferous clubroot control.
Collapse
Affiliation(s)
- Samiah Arif
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Senlin Yang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Lina Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Xue Xiong
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Daniel Garcia
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Yidong Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China.
| |
Collapse
|
14
|
Isolation of Plant Growth-Promoting Bacillus cereus from Soil and Its Use as a Microbial Inoculant. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-04895-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Tapia-García EY, Hernández-Trejo V, Guevara-Luna J, Rojas-Rojas FU, Arroyo-Herrera I, Meza-Radilla G, Vásquez-Murrieta MS, Estrada-de los Santos P. Plant growth-promoting bacteria isolated from wild legume nodules and nodules of Phaseolus vulgaris L. trap plants in central and southern Mexico. Microbiol Res 2020; 239:126522. [DOI: 10.1016/j.micres.2020.126522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
|
16
|
Tang T, Sun X, Dong Y, Liu Q. Erythrobacter aureus sp. nov., a plant growth-promoting bacterium isolated from sediment in the Yellow Sea, China. 3 Biotech 2019; 9:430. [PMID: 31696035 PMCID: PMC6823416 DOI: 10.1007/s13205-019-1958-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/14/2019] [Indexed: 01/03/2023] Open
Abstract
The application of plant growth-promoting (PGP) bacterium in agriculture is expanding rapidly in recent years. With the development of microbial technology, new bacterial species effective in promoting plant growth have been identified. In this study, a PGP bacterium was isolated from marine sediments of the Yellow Sea in China. The confrontation culture test and pot experiments showed that strain YH-07T inhibited the growth of Fusarium oxysporum f. sp. lycopersici (a plant pathogenic fungus), benefiting plant growth and reducing disease incidence of tomato wilt. We used polyphasic approaches including phenotypic, chemotaxonomic and phylogenetic information to determine its taxonomic status. In addition to profiling general features of the YH-07T genome, we identified genes related to PGP traits and genes involved in environmental stress tolerance. Metabolic assays showed that strain YH-07T could produce siderophores, solubilize phosphate, resist to salinity, and grow well within a wide range of temperature and pH, which is a promising PGP bacterium for future agricultural applications. These results provide evidence that strain YH-07T is a novel species of the genus Erythrobacter, for which the name Erythrobacter aureus sp. nov. is proposed. The type strain is YH-07T (= CGMCC 1.16784T = DSM 107319T).
Collapse
Affiliation(s)
- Tongtong Tang
- Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008 Jiangsu Province China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xing Sun
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, 239000 China
| | - Yuanhua Dong
- Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008 Jiangsu Province China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qin Liu
- Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008 Jiangsu Province China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
17
|
The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 2019; 219:26-39. [DOI: 10.1016/j.micres.2018.10.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
|
18
|
Sánchez-Cruz R, Tpia Vázquez I, Batista-García RA, Méndez-Santiago EW, Sánchez-Carbente MDR, Leija A, Lira-Ruan V, Hernández G, Wong-Villarreal A, Folch-Mallol JL. Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potential. Microbiol Res 2018; 218:76-86. [PMID: 30454661 DOI: 10.1016/j.micres.2018.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 02/04/2023]
Abstract
Legumes establish symbiotic relationships with different microorganisms, which could function as plant growth promotion microorganisms (PGPM). The finding of new PGPM strains is important to increase plant production avoiding or diminishing the use of industrial fertilizers. Thus, in this work we evaluated the plant growth promotion traits of ten strains isolated from Mimosa pudica root nodules. According to the 16S rDNA sequence, the microorganisms were identified as Enterobacter sp. and Serratia sp. To the best of our knowledge this is the first report describing and endophytic interaction between Mimosa pudica and Enterobacter sp. These strains have some plant growth promoting traits such as phosphate solubilization, auxin production and cellulase and chitinase activity. Strains identified as Serratia sp. inhibited the growth of the phytopathogenic fungi Fusarium sp., and Alternaria solani and the oomycete Phytophthora capsici. According to their biochemical characteristics, three strains were selected to test their plant growth promoting activity in a medium with an insoluble phosphate source. These bacteria show low specificity for their hosts as endophytes, since they were able to colonize two very different legumes: Phaseolus vulgaris and M. pudica. Seedlings of P. vulgaris were inoculated and grown for fifteen days. Enterobacter sp. NOD1 and NOD10, promoted growth as reflected by an increase in shoot height as well as an increase in the size and emergence of the first two trifolia. We could localize NOD5 as an endophyte in roots in P. vulgaris by transforming the strain with a Green Fluorescent Protein carrying plasmid. Experiments of co-inoculation with different Rhizobium etli strains allowed us to discard that NOD5 can fix nitrogen in the nodules formed by a R. etli Fix- strain. The isolates described in this work show biotechnological potential for plant growth promoting activity and production of indoleacetic acid and siderophores.
Collapse
Affiliation(s)
- Ricardo Sánchez-Cruz
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Irán Tpia Vázquez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | | | - Alfonso Leija
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Lira-Ruan
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Gerogina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
19
|
Devi KA, Pandey P, Sharma GD. Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal Plant. HAYATI JOURNAL OF BIOSCIENCES 2016. [DOI: 10.1016/j.hjb.2016.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Jasim B, Sreelakshmi KS, Mathew J, Radhakrishnan EK. Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa monnieri. MICROBIAL ECOLOGY 2016; 72:106-119. [PMID: 27021396 DOI: 10.1007/s00248-016-0753-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/08/2016] [Indexed: 05/15/2023]
Abstract
Endophytic microorganisms which are ubiquitously present in plants may colonize intracellularly or intercellularly without causing any diseases. By living within the unique chemical environment of a host plant, they produce a vast array of compounds with a wide range of biological activities. Because of this, natural products of endophytic origin have been exploited for antimicrobial, antiviral, anticancer, and antioxidant properties. Also, they can be considered to function as an efficient microbial barrier to protect plants from various pathogens. In the present study, endophytic bacterium BmB 9 with antifungal and antibacterial activity isolated from the stem tissue of Bacopa monnieri was studied for the molecular and chemical basis of its activity. PCR-based genome mining for various biosynthetic gene clusters proved the presence of surfactin, iturin, and type I polyketide synthase (PKS) genes in the isolate. The LC-MS/MS based analysis of the extract further confirmed the production of surfactin derivatives (M + H(+)-1008.6602, 1022.6755), iturin (M + H(+)-1043.5697), and fengycin (M + H(+)-1491.8195, 1477.8055) by the selected bacterial isolate. The 16S rDNA sequence similarity based analysis identified the isolate BmB 9 as Bacillus sp. with 100 % identity to Bacillus sp. LCF1 (KP257289).
Collapse
Affiliation(s)
- B Jasim
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | - K S Sreelakshmi
- School of Biotechnology, Amrita Vishwa Vidhyapeetham, Clapppana, Kollam, Kerala, 690 525, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India.
| |
Collapse
|
21
|
Dhole A, Shelat H, Vyas R, Jhala Y, Bhange M. Endophytic occupation of legume root nodules by nifH-positive non-rhizobial bacteria, and their efficacy in the groundnut (Arachis hypogaea). ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1227-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
22
|
Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00279-16. [PMID: 27103716 PMCID: PMC4841131 DOI: 10.1128/genomea.00279-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacillus thuringiensis is the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, which exhibits antagonism against phytopathogens.
Collapse
|
23
|
Plant growth promoting activities of rhizobacteria isolated from Podophyllum hexandrum growing in North-West regions of the Himalaya. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40011-016-0722-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Aeron A, Chauhan PS, Dubey RC, Maheshwari DK, Bajpai VK. Root nodule bacteria fromClitoria ternateaL. are putative invasive nonrhizobial endophytes. Can J Microbiol 2015; 61:131-42. [DOI: 10.1139/cjm-2014-0483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, bacteria (8 species and 5 genera) belonging to the classes Betaproteobacteria, Gammaproteobacteria, and Sphingobacteria were isolated from root nodules of the multipurpose legume Clitoria ternatea L. and identified on the basis of partial 16S rRNA sequencing. The root nodule bacteria were subjected to phenotypic clustering and diversity studies using biochemical kits, including Hi-Media Carbokit™, Enterobacteriaceae™ identification kit, ERIC–PCR, and 16S ARDRA. All the strains showed growth on Ashby’s N-free media over 7 generations, indicative of presumptive nitrogen fixation and further confirmed by amplification of the nifH gene. None of the strains showed the capability to renodulate the host plant, neither alone nor in combination with standard rhizobial strains, which was further confirmed by the absence of nodC bands in PCR assay. The results clearly indicate the common existence of nonrhizobial microflora inside the root nodules of legumes, which were thought to be colonized only by rhizobia and were responsible for N2fixation in leguminous crops. However, with the recent discovery of nodule endophytes from a variety of legumes, as also observed here, it can be assumed that symbiotic rhizobia are not all alone and that these invasive endophytes belonging to various bacterial genera are more than just opportunistic colonizers of specialized nodule niche.
Collapse
Affiliation(s)
- Abhinav Aeron
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukul Kangri Vishwavidhyalaya, Haridwar 249-404, Uttarakhand, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park 3, Greater Noida (NCR, Delhi) 201-306, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Division of Plant Microbe Interactions, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226-001, Uttar Pradesh, India
| | - Ramesh Chand Dubey
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukul Kangri Vishwavidhyalaya, Haridwar 249-404, Uttarakhand, India
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukul Kangri Vishwavidhyalaya, Haridwar 249-404, Uttarakhand, India
| | - Vivek K. Bajpai
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| |
Collapse
|
25
|
Deivanai S, Bindusara AS, Prabhakaran G, Bhore SJ. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice. J Nat Sci Biol Med 2014; 5:437-44. [PMID: 25097431 PMCID: PMC4121931 DOI: 10.4103/0976-9668.136233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. OBJECTIVE The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. MATERIALS AND METHODS Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. RESULTS The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. CONCLUSION These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.
Collapse
Affiliation(s)
- Subramanian Deivanai
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling, Kedah, Malaysia
| | | | - Guruswamy Prabhakaran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling, Kedah, Malaysia
| | - Subhash Janardhan Bhore
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling, Kedah, Malaysia
| |
Collapse
|
26
|
Jha Y, Subramanian RB. Characterization of root-associated bacteria from paddy and its growth-promotion efficacy. 3 Biotech 2014; 4:325-330. [PMID: 28324437 PMCID: PMC4026455 DOI: 10.1007/s13205-013-0158-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022] Open
Abstract
Bacteria from rhizosphere (Bacillus pumilus) and endorhizophere (Pseudomonas pseudoalcaligenes) of rice plant were isolated and evaluated for their effect on the growth-promotion efficiency on rice in greenhouse. Ability to solubilize phosphate, siderophore, indoleacetic acid (IAA), gibberellin production and utilization of ACC (1-aminocyclopropane-1-carboxylate) as sole nitrogen source were evaluated, which were produced in high concentration by P. pseudoalcaligenes in this present study. Inoculation of isolated microorganism resulted in the reduction of pH (from neutral to acidic) of the medium used for phosphate solubilization, and has direct relation with titratable acidity, but gluconate production showed an opposite trend. P. pseudoalcaligenes better helped the plant to overcome or suppress fungal pathogen infection by producing β-1, 3-glucanase and chitinase as well as also have enhanced dry weight, plant height, and root length. Based on these results, P. pseudoalcaligenes in this study proved a better candidature as PGPR than B. pumilus.
Collapse
Affiliation(s)
- Yachana Jha
- N. V. Patel College of Pure and Applied Sciences, Sardar Patel University, V. V. Nagar, Anand, Gujarat India
| | - R. B. Subramanian
- BRD School of Biosciences, Sardar Patel University, Post Box No. 39, V. V. Nagar, Anand, 388120 Gujarat India
| |
Collapse
|
27
|
Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 2014; 30:719-25. [PMID: 24072498 DOI: 10.1007/s11274-013-1488-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 01/30/2013] [Indexed: 10/26/2022]
Abstract
Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 μg ml(-1), with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 μg ml(-1), except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99% similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation.
Collapse
Affiliation(s)
- Mohsin Tariq
- Microbial Physiology Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE)/ PAEC, Islamabad, Pakistan,
| | | | | | | | | |
Collapse
|
28
|
Aserse AA, Räsänen LA, Aseffa F, Hailemariam A, Lindström K. Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia. Appl Microbiol Biotechnol 2013; 97:10117-34. [PMID: 24196581 DOI: 10.1007/s00253-013-5248-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/17/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Fifty-five bacterial isolates were obtained from surface-sterilized nodules of woody and shrub legumes growing in Ethiopia: Crotalaria spp., Indigofera spp., and Erythrina brucei, and the food legumes soybean and common bean. Based on partial 16S rRNA gene sequence analysis, the majority of the isolates were identified as Gram-negative bacteria belonging to the genera Achromobacter, Agrobacterium, Burkholderia, Cronobacter, Enterobacter, Mesorhizobium, Novosphingobium, Pantoea, Pseudomonas, Rahnella, Rhizobium, Serratia, and Variovorax. Seven isolates were Gram-positive bacteria belonging to the genera Bacillus, Paenibacillus, Planomicrobium, and Rhodococcus. Amplified fragment length polymorphism (AFLP) fingerprinting showed that each strain was genetically distinct. According to phylogenetic analysis of recA, glnII, rpoB, and 16S rRNA gene sequences, Rhizobium, Mesorhizobium, and Agrobacterium were further classified into six different genospecies: Agrobacterium spp., Agrobacterium radiobacter, Rhizobium sp., Rhizobium phaseoli, Mesorhizobium sp., and putative new Rhizobium species. The strains from R. phaseoli, Rhizobium sp. IAR30, and Mesorhizobium sp. ERR6 induced nodules on their host plants. The other strains did not form nodules on their original host. Nine endophytic bacterial strains representing seven genera, Agrobacterium, Burkholderia, Paenibacillus, Pantoea, Pseudomonas, Rhizobium, and Serratia, were found to colonize nodules of Crotalaria incana and common bean on co-inoculation with symbiotic rhizobia. Four endophytic Rhizobium and two Agrobacterium strains had identical nifH gene sequences with symbiotic Rhizobium strains, suggesting horizontal gene transfer. Most symbiotic and nonsymbiotic endophytic bacteria showed plant growth-promoting properties in vitro, which indicate their potential role in the promotion of plant growth when colonizing plant roots and the rhizosphere.
Collapse
Affiliation(s)
- Aregu Amsalu Aserse
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, P.O. Box 56, 00014, Finland,
| | | | | | | | | |
Collapse
|
29
|
Walia A, Mehta P, Chauhan A, Shirkot CK. Effect of Bacillus subtilis Strain CKT1 as Inoculum on Growth of Tomato Seedlings Under Net House Conditions. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40011-013-0189-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Mehta P, Walia A, Chauhan A, Shirkot CK. Plant growth promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh. Arch Microbiol 2013; 195:357-69. [DOI: 10.1007/s00203-013-0881-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 02/04/2013] [Accepted: 02/24/2013] [Indexed: 11/28/2022]
|
31
|
Anil K, Podile AR. HarpinPss-mediated enhancement in growth and biological control of late leaf spot in groundnut by a chlorothalonil-tolerant Bacillus thuringiensis SFC24. Microbiol Res 2012; 167:194-8. [DOI: 10.1016/j.micres.2011.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/29/2011] [Accepted: 07/17/2011] [Indexed: 10/17/2022]
|
32
|
Zhao L, Xu Y, Sun R, Deng Z, Yang W, Wei G. Identification and characterization of the endophytic plant growth prompter Bacillus Cereus strain mq23 isolated from Sophora Alopecuroides root nodules. Braz J Microbiol 2011; 42:567-75. [PMID: 24031669 PMCID: PMC3769835 DOI: 10.1590/s1517-838220110002000022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 01/13/2011] [Indexed: 11/25/2022] Open
Abstract
Endophytes MQ23 and MQ23R isolated from Sophora alopecuroides root nodules were characterized by observing their ability to promote plant growth and employing molecular analysis techniques. Results showed that MQ23 and MQ23R are potential N2-fixing endophytes and belong to the same species as Bacillus cereus. MQ23 was shown to be able to produce siderophores, IAA, and demonstrate certain antifungal activity to plant pathogenic fungi. Co-inoculation with MQ23+MQ23II showed a more significant effect than inoculation alone in vitro for most of positive actions suggesting they have a cooperative interaction. Results of plant inoculation with endophytes indicated that the growth indexes of co-inoculated MQ23+MQ23II were higher than those of inoculated alone (p<0.05) (the exception being for root fresh weight) when compared to negative control. There have been little of any studies of nonrhizobial putative endophytes with growth-promotion attributes in S. alopecuroides root nodules. This could be exploited as potential bio-inoculants and biocontrol agents in agriculture.
Collapse
Affiliation(s)
- Longfei Zhao
- College of Life Sciences, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Yajun Xu
- College of Life Sciences, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Ran Sun
- College of Life Sciences, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhenshan Deng
- College of Life Sciences, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wenquan Yang
- College of Life Sciences, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- College of Life Sciences, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
33
|
Rana A, Saharan B, Joshi M, Prasanna R, Kumar K, Nain L. Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0211-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
34
|
Li J, Zhang S, Shi S, Huo P. Mutational approach for N2-fixing and P-solubilizing mutant strains of Klebsiella pneumoniae RSN19 by microwave mutagenesis. World J Microbiol Biotechnol 2010; 27:1481-9. [DOI: 10.1007/s11274-010-0600-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
|
35
|
Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS. Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9963-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|