1
|
Ma S, Zhang R, Li L, Wang J, Zheng M, Guo X, Miao S, Quan W, Liu W, Shi X. Structural characterization of an apple polysaccharide and its anti-inflammatory effect through suppressing TLR4/NF-κB signaling. Int J Biol Macromol 2025; 296:139760. [PMID: 39800032 DOI: 10.1016/j.ijbiomac.2025.139760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The current study isolated a homogeneous polysaccharide (AP) with a molecular weight of 7.9 kDa from the pomace of Fuji apples. AP was found to consists of rhamnose, galactose, arabinose, glucose, and galacturonic acid in a ratio of 4.3:5.2:2.6:1.0:11.9. Ten sugar residues in AP, including T-Araf, 1,5-Araf, 1,2-Rhap, 1,3-Rhap, T-Galp, 1,3,5-Araf, 1,4-Galp, 1,4-GalpA, 1,6-Glcp, and 1,3,6-Glcp were identified using methylation and GC-MS. Combined with 1D and 2D NMR, it was further revealed that AP possesses a backbone of α-Galp-(1 → [3)-α-Rhap-(1 → 2)-α-Rhap-(1]2 → [4)-α-GalpA-(1]10 → 3,6)-β-Glcp-(1 → 6)-β-Glcp-(1 → 4)-β-Galp-(1 → 4)-β-Galp-(1→, with two branches: α-Araf-(1 → 5)-α-Araf-(1 → 5)-α-Araf-(1 → 3,5)-α-Araf-(1 → 6)-β-Glcp-(1→ and →3)-α-Rhap-(1 → 5)-α-Araf-(1 → 3,6)-β-Glcp-(1→ bonded to the C-3 of β-1,3,6-Glcp. AP significantly inhibited the release of cytokines and inflammatory mediators, such as TNF-α, IL-1β, IL-6, reactive oxygen species (ROS) and nitric oxide (NO). Western blotting results indicated that AP treatment markedly downregulated iNOS and NF-κB protein expression in LPS-induced RAW264.7 cells, leading to decreased levels of phosphorylated proteins (p-NF-κB and p-ΙκΒα) and preventing the degradation of ΙκΒα. Furthermore, in LPS-induced RAW264.7 macrophages, AP inhibited the expression of TLR4 protein, which in turn inhibited the activity of the NF-κB pathway. The findings demonstrated that AP exhibits anti-inflammatory properties in vitro by targeting the TLR4/NF-κB signaling pathway, thus impeding the nuclear translocation of NF-κBp65, suppressing the expression of related pro-inflammatory factors.
Collapse
Affiliation(s)
- Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Rui Zhang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Long Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Jin Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Meiling Zheng
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 710426, PR China
| | - Xiaodi Guo
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Shan Miao
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Wei Quan
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, PR China.
| | - Wenjuan Liu
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 710426, PR China.
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
2
|
Yan Y, Yuan H, Yang F, Na H, Yu X, Liu J, Wang Y. Seabuckthorn polysaccharides mitigate hepatic steatosis by modulating the Nrf-2/HO-1 pathway and gut microbiota. AMB Express 2024; 14:100. [PMID: 39251509 PMCID: PMC11383914 DOI: 10.1186/s13568-024-01756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming a significant global public health threat. Seabuckthorn (Hippophae rhamnoides L.) has been used in traditional Chinese medicine (TCM). The hypolipidemic effects of Seabuckthorn polysaccharides (SP) against high-fat diets (HFD)-induced NAFLD were systematically explored and compared with that of Bifidobacterium lactis V9 (B. Lactis V9). Results showed that HFD-induced alanine transaminase (ALT) and aspartate aminotransferase (AST) levels decreased by 2.8-fold and 4.5-fold, respectively, after SP supplementation. Moreover, the alleviating effect on hepatic lipid accumulation is better than that of B. Lactis V9. The ACC and FASN mRNA levels were significantly reduced by 1.8 fold (P < 0.05) and 2.3 folds (P < 0.05), respectively, while the CPT1α and PPARα mRNA levels was significantly increased by 2.3 fold (P < 0.05) and 1.6 fold (P < 0.05), respectively, after SP administration. SP activated phosphorylated-AMPK and inhibited PPARγ protein expression, improved serum oxidative stress and inflammation (P < 0.05). SP supplementation leads to increased hepatic expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1) and Superoxide dismutase-2 (SOD-2). Furthermore, SP treatment improved HFD-induced intestinal dysbiosis. Lentisphaerae, Firmicutes, Tenericutes and Peptococcus sp., RC9_gut_group sp., and Parabacteroides sp. of the gut microbiota were significantly associated with hepatic steatosis and indicators related to oxidative stress and inflammation. Therefore, SP can mitigate hepatic lipid accumulation by regulating Nrf-2/HO-1 signaling pathways and gut microbiota. This study offers new evidence supporting the use of SP as a prebiotic treatment for NAFLD.
Collapse
Affiliation(s)
- Yan Yan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Haisheng Yuan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Fan Yang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Heiya Na
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiuling Yu
- Inner Mongolia Tianqi Biotechnology Co., Ltd, Chifeng, 024000, China
| | - Jingran Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Yuzhen Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
3
|
Hu J, Mei Y, Zhang H, Li J, Zhang M, Li Y, Yang W, Liu Y, Liang Y. Ameliorative effect of an acidic polysaccharide from Phellinus linteus on ulcerative colitis in a DSS-induced mouse model. Int J Biol Macromol 2024; 265:130959. [PMID: 38499127 DOI: 10.1016/j.ijbiomac.2024.130959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Phellinus linteus, a rare medicinal fungus, displays strong antitumor and anti-inflammatory activities because of its active metabolites, particularly polysaccharides. We investigated effects of P. linteus acidic polysaccharide (PLAP) on amelioration of dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in a mouse model, and associated mechanisms. PLAP treatment alleviated major UC symptoms (weight loss, reduced food intake, increased disease activity index), and ameliorated histopathological colon tissue damage, reduced levels of pro-inflammatory factors (TNF-α, IL-6, IL-1β), enhanced anti-inflammatory factor IL-10 level, reduced levels of oxidative stress-related enzymes iNOS and MPO, and enhanced expression of tight junction proteins (ZO-1, occludin, claudin-1). qPCR analysis revealed that PLAP downregulated phosphorylation levels of p65 and p38 and transcriptional level of TLR-4. High-throughput sequencing showed that PLAP restored gut microbiota diversity and species abundances in the UC model, and gas chromatographic analysis showed that it increased levels of beneficial short-chain fatty acids. Our findings indicate that PLAP has strong potential for development as an anti-UC agent based on its reduction of inflammation and oxidative stress levels, modulation of gut microbiota composition, and promotion of normal intestinal barrier function.
Collapse
Affiliation(s)
- Jutuan Hu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuxia Mei
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Heng Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ji Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Min Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanbin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wendi Yang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yangyang Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunxiang Liang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
4
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
5
|
Guo Q, Li Y, Dai X, Wang B, Zhang J, Cao H. Polysaccharides: The Potential Prebiotics for Metabolic Associated Fatty Liver Disease (MAFLD). Nutrients 2023; 15:3722. [PMID: 37686754 PMCID: PMC10489936 DOI: 10.3390/nu15173722] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Metabolic (dysfunction) associated fatty liver disease (MAFLD) is recognized as the most prevalent chronic liver disease globally. However, its pathogenesis remains incompletely understood. Recent advancements in the gut-liver axis offer novel insights into the development of MAFLD. Polysaccharides, primarily derived from fungal and algal sources, abundantly exist in the human diet and exert beneficial effects on glycometabolism, lipid metabolism, inflammation, immune modulation, oxidative stress, and the release of MAFLD. Numerous studies have demonstrated that these bioactivities of polysaccharides are associated with their prebiotic properties, including the ability to modulate the gut microbiome profile, maintain gut barrier integrity, regulate metabolites produced by gut microbiota such as lipopolysaccharide (LPS), short-chain fatty acids (SCFAs), and bile acids (BAs), and contribute to intestinal homeostasis. This narrative review aims to present a comprehensive summary of the current understanding of the protective effects of polysaccharides on MAFLD through their interactions with the gut microbiota and its metabolites. Specifically, we highlight the potential molecular mechanisms underlying the prebiotic effects of polysaccharides, which may give new avenues for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Qin Guo
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Yun Li
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xin Dai
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Bangmao Wang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Jie Zhang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin 300052, China; (Q.G.); (Y.L.); (X.D.); (B.W.)
| |
Collapse
|
6
|
Sun CY, Zheng ZL, Chen CW, Lu BW, Liu D. Targeting Gut Microbiota With Natural Polysaccharides: Effective Interventions Against High-Fat Diet-Induced Metabolic Diseases. Front Microbiol 2022; 13:859206. [PMID: 35369480 PMCID: PMC8965082 DOI: 10.3389/fmicb.2022.859206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Unhealthy diet, in particular high-fat diet (HFD) intake, can cause the development of several metabolic disorders, including obesity, hyperlipidemia, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS). These popular metabolic diseases reduce the quality of life, and induce premature death worldwide. Evidence is accumulating that the gut microbiota is inextricably associated with HFD-induced metabolic disorders, and dietary intervention of gut microbiota is an effective therapeutic strategy for these metabolic dysfunctions. Polysaccharides are polymeric carbohydrate macromolecules and sources of fermentable dietary fiber that exhibit biological activities in the prevention and treatment of HFD-induced metabolic diseases. Of note, natural polysaccharides are among the most potent modulators of the gut microbiota composition. However, the prebiotics-like effects of polysaccharides in treating HFD-induced metabolic diseases remain elusive. In this review, we introduce the critical role of gut microbiota human health and HFD-induced metabolic disorders. Importantly, we review current knowledge about the role of natural polysaccharides in improving HFD-induced metabolic diseases by regulating gut microbiota.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | | | - Cun-Wu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Bao-Wei Lu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| |
Collapse
|
7
|
An Insight into Antihyperlipidemic Effects of Polysaccharides from Natural Resources. Molecules 2022; 27:molecules27061903. [PMID: 35335266 PMCID: PMC8952498 DOI: 10.3390/molecules27061903] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia is a chronic metabolic disease caused by the abnormal metabolism of lipoproteins in the human body. Its main hazard is to accelerate systemic atherosclerosis, which causes cerebrovascular diseases such as coronary heart disease and thrombosis. At the same time, although the current hypolipidemic drugs have a certain therapeutic effect, they have side effects such as liver damage and digestive tract discomfort. Many kinds of polysaccharides from natural resources possess therapeutic effects on hyperlipidemia but still lack a comprehensive understanding. In this paper, the research progress of natural polysaccharides on reducing blood lipids in recent years is reviewed. The pharmacological mechanisms and targets of natural polysaccharides are mainly introduced. The relationship between structure and hypolipidemic activity is also discussed in detail. This review will help to understand the value of polysaccharides in lowering blood lipids and provide guidance for the development and clinical application of new hypolipidemic drugs.
Collapse
|
8
|
Yuan D, Li C, Huang Q, Fu X, Dong H. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Crit Rev Food Sci Nutr 2022; 63:5890-5910. [PMID: 35021901 DOI: 10.1080/10408398.2022.2025535] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, multifactorial and inflammatory disease occurring in the colon tract. Bioactive polysaccharides from natural resources have attracted extensive attention due to their safety, accessibility and good bioactivities. In recent years, a variety of natural bioactive polysaccharides have been proven to possess anti-inflammatory effects on treating acute colitis. The objective of this review was to give an up-to-date review on the anti-inflammatory effects and mechanisms of natural polysaccharides on acute colitis. The anti-inflammatory effects of natural polysaccharides on acute colitis concerning clinical symptoms amelioration, colon tissue repairment, anti-oxidative stress alleviation, anti-inflammation, immune regulation, and gut microbiota modulation were comprehensively summarized. In addition, inducible murine models for assessing the anti-inflammatory effects of natural polysaccharides on acute colitis were also concluded. This review will offer the comprehensive understanding of anti-inflammatory mechanisms of natural polysaccharides in acute colitis, and render theoretical basis for the development and application of natural polysaccharides in drug and functional food.
Collapse
Affiliation(s)
- Dan Yuan
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chao Li
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
9
|
He N, Wang S, Lv Z, Zhao W, Li S. Low molecular weight chitosan oligosaccharides (LMW-COSs) prevent obesity-related metabolic abnormalities in association with the modification of gut microbiota in high-fat diet (HFD)-fed mice. Food Funct 2021; 11:9947-9959. [PMID: 33108433 DOI: 10.1039/d0fo01871f] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
In this study, the two enzymatic low molecular weight chitosan oligosaccharides (LMW-COSs), LMW-COS-H and LMW-COS-L, were prepared with average MWs of 879.6 Da and 360.9 Da, respectively. Compared to LMW-COS-L, the LMW-COS-H was more effective in improving high-fat diet (HFD)-induced metabolic abnormalities, such as obesity, hyperlipidemia, low-grade inflammation and insulin resistance. The subsequent analysis of gut microbiota showed that the supplement of LMW-COSs caused overall structural and genus/species-specific changes in the gut microbiota, which were significantly correlated with the metabolic parameters. Specifically, both of the LMW-COSs significantly decreased the relative abundance of inflammatory bacteria such as Erysipelatoclostridium and Alistipes, whereas that of the beneficial intestinal bacteria (such as Akkermansia and Gammaproteobacteria) increased significantly. This study suggested that there were potential prebiotic functions of LMW-COSs in HFD fed mice, which regulated the dysfunctional gut microbiota, alleviated low-grade inflammation and maintained the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Ningning He
- College of Basic Medicine, Qingdao University, 266071, Qingdao, China.
| | | | | | | | | |
Collapse
|