1
|
Chengcheng M, Panpan A, Yalong Y, Mingyu S, Wei X, Jing C, Chuanxi T. GDNF improves the cognitive ability of PD mice by promoting glycosylation and membrane distribution of DAT. Sci Rep 2024; 14:17845. [PMID: 39090173 PMCID: PMC11294596 DOI: 10.1038/s41598-024-68609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
The core of clinic treatment of Parkinson's disease (PD) is to enhance dopamine (DA) signaling within the brain. The regulation of dopamine transporter (DAT) is integral to this process. This study aims to explore the regulatory mechanism of glial cell line-derived neurotrophic factor (GDNF) on DAT, thereby gaining a profound understanding its potential value in treating PD. In this study, we investigated the effects of GDNF on both cellular and mouse models of PD, including the glycosylation and membrane transport of DAT detected by immunofluorescence and immunoblotting, DA signal measured by neurotransmitter fiber imaging technology, Golgi morphology observed by electron microscopic, as well as cognitive ability assessed by behavior tests. This study revealed that in animal trials, MPTP-induced Parkinson's Disease (PD) mice exhibited a marked decline in cognitive function. Utilizing ELISA and neurotransmitter fiber imaging techniques, we observed a decrease in dopamine levels and a significant reduction in the intensity of dopamine signal release in the Prefrontal Cortex (PFC) of PD mice induced by MPTP. Intriguingly, these alterations were reversed by Glial Cell Line-Derived Neurotrophic Factor (GDNF). In cellular experiments, following MPP + intervention, there was a decrease in Gly-DAT modification in both the cell membrane and cytoplasm, coupled with an increase in Nongly-DAT expression and aggregation of DAT within the cytoplasm. Conversely, GDNF augmented DAT glycosylation and facilitated its membrane transport in damaged dopaminergic neurons, concurrently reversing the effects of GRASP65 depletion and Golgi fragmentation, thereby reducing the accumulation of DAT in the Golgi apparatus. Furthermore, overexpression of GRASP65 enhanced DAT transport in PD cells and mice, while suppression of GRASP65 attenuated the efficacy of GDNF on DAT. Additionally, GDNF potentiated the reutilization of neurotransmitters by the PFC presynaptic membrane, boosting the effective release of dopamine following a single electrical stimulation, ultimately ameliorating the cognitive impairments in PD mice.Therefore, we propose that GDNF enhances the glycosylation and membrane trafficking of DAT by facilitating the re-aggregation of the Golgi apparatus, thereby amplifying the utilization of DA signals. This ultimately leads to the improvement of cognitive abilities in PD mouse models. Our study illuminates, from a novel angle, the beneficial role of GDNF in augmenting DA utilization and cognitive function in PD, providing fresh insights into its therapeutic potential.
Collapse
Affiliation(s)
- Ma Chengcheng
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - An Panpan
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yan Yalong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Su Mingyu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xu Wei
- Jinhu County People's Hospital, 160 Shenhua Avenue, Jinhu County, Huai'an City, Jiangsu, China
| | - Chen Jing
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Tang Chuanxi
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Hastings A, Cullinane P, Wrigley S, Revesz T, Morris HR, Dickson JC, Jaunmuktane Z, Warner TT, De Pablo-Fernández E. Neuropathologic Validation and Diagnostic Accuracy of Presynaptic Dopaminergic Imaging in the Diagnosis of Parkinsonism. Neurology 2024; 102:e209453. [PMID: 38759132 DOI: 10.1212/wnl.0000000000209453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Degeneration of the presynaptic nigrostriatal dopaminergic system is one of the main biological features of Parkinson disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which can be measured using single-photon emission CT imaging for diagnostic purposes. Despite its widespread use in clinical practice and research, the diagnostic properties of presynaptic nigrostriatal dopaminergic (DAT) imaging in parkinsonism have never been evaluated against the diagnostic gold standard of neuropathology. The aim of this study was to evaluate the diagnostic parameters of DAT imaging compared with pathologic diagnosis in patients with parkinsonism. METHODS Retrospective cohort study of patients with DAT imaging for the investigation of a clinically uncertain parkinsonism with brain donation between 2010 and 2021 to the Queen Square Brain Bank (London). Patients with DAT imaging for investigation of pure ataxia or dementia syndromes without parkinsonism were excluded. Those with a pathologic diagnosis of PD, MSA, PSP, or CBD were considered presynaptic dopaminergic parkinsonism, and other pathologies were considered postsynaptic for the analysis. DAT imaging was performed in routine clinical practice and visually classified by hospital nuclear medicine specialists as normal or abnormal. The results were correlated with neuropathologic diagnosis to calculate diagnostic accuracy parameters for the diagnosis of presynaptic dopaminergic parkinsonism. RESULTS All of 47 patients with PD, 41 of 42 with MSA, 68 of 73 with PSP, and 6 of 10 with CBD (sensitivity 100%, 97.6%, 93.2%, and 60%, respectively) had abnormal presynaptic dopaminergic imaging. Eight of 17 patients with presumed postsynaptic parkinsonism had abnormal scans (specificity 52.9%). DISCUSSION DAT imaging has very high sensitivity and negative predictive value for the diagnosis of presynaptic dopaminergic parkinsonism, particularly for PD. However, patients with CBD, and to a lesser extent PSP (of various phenotypes) and MSA (with predominant ataxia), can show normal DAT imaging. A range of other neurodegenerative disorders may have abnormal DAT scans with low specificity in the differential diagnosis of parkinsonism. DAT imaging is a useful diagnostic tool in the differential diagnosis of parkinsonism, although clinicians should be aware of its diagnostic properties and limitations. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that DAT imaging does not accurately distinguish between presynaptic dopaminergic parkinsonism and non-presynaptic dopaminergic parkinsonism.
Collapse
Affiliation(s)
- Alexandra Hastings
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Patrick Cullinane
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Sarah Wrigley
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Tamas Revesz
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Huw R Morris
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - John C Dickson
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Zane Jaunmuktane
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Thomas T Warner
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Eduardo De Pablo-Fernández
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| |
Collapse
|
3
|
Simuni T, Chahine LM, Poston K, Brumm M, Buracchio T, Campbell M, Chowdhury S, Coffey C, Concha-Marambio L, Dam T, DiBiaso P, Foroud T, Frasier M, Gochanour C, Jennings D, Kieburtz K, Kopil CM, Merchant K, Mollenhauer B, Montine T, Nudelman K, Pagano G, Seibyl J, Sherer T, Singleton A, Stephenson D, Stern M, Soto C, Tanner CM, Tolosa E, Weintraub D, Xiao Y, Siderowf A, Dunn B, Marek K. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol 2024; 23:178-190. [PMID: 38267190 DOI: 10.1016/s1474-4422(23)00405-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 01/26/2024]
Abstract
Parkinson's disease and dementia with Lewy bodies are currently defined by their clinical features, with α-synuclein pathology as the gold standard to establish the definitive diagnosis. We propose that, given biomarker advances enabling accurate detection of pathological α-synuclein (ie, misfolded and aggregated) in CSF using the seed amplification assay, it is time to redefine Parkinson's disease and dementia with Lewy bodies as neuronal α-synuclein disease rather than as clinical syndromes. This major shift from a clinical to a biological definition of Parkinson's disease and dementia with Lewy bodies takes advantage of the availability of tools to assess the gold standard for diagnosis of neuronal α-synuclein (n-αsyn) in human beings during life. Neuronal α-synuclein disease is defined by the presence of pathological n-αsyn species detected in vivo (S; the first biological anchor) regardless of the presence of any specific clinical syndrome. On the basis of this definition, we propose that individuals with pathological n-αsyn aggregates are at risk for dopaminergic neuronal dysfunction (D; the second biological anchor). Our biological definition establishes a staging system, the neuronal α-synuclein disease integrated staging system (NSD-ISS), rooted in the biological anchors (S and D) and the degree of functional impairment caused by clinical signs or symptoms. Stages 0-1 occur without signs or symptoms and are defined by the presence of pathogenic variants in the SNCA gene (stage 0), S alone (stage 1A), or S and D (stage 1B). The presence of clinical manifestations marks the transition to stage 2 and beyond. Stage 2 is characterised by subtle signs or symptoms but without functional impairment. Stages 2B-6 require both S and D and stage-specific increases in functional impairment. A biological definition of neuronal α-synuclein disease and an NSD-ISS research framework are essential to enable interventional trials at early disease stages. The NSD-ISS will evolve to include the incorporation of data-driven definitions of stage-specific functional anchors and additional biomarkers as they emerge and are validated. Presently, the NSD-ISS is intended for research use only; its application in the clinical setting is premature and inappropriate.
Collapse
Affiliation(s)
- Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen Poston
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Teresa Buracchio
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Michelle Campbell
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sohini Chowdhury
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | | | - Peter DiBiaso
- Patient Advisory Council, New York, NY, USA; Clinical Solutions and Strategic Partnerships, WCG Clinical, Princeton, NJ, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Mark Frasier
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Gochanour
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | - Karl Kieburtz
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine M Kopil
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen and Paracelsus-Elena-Klinik, Kassel, Germany
| | - Thomas Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly Nudelman
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | | | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Singleton
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Diane Stephenson
- Critical Path for Parkinson's, Critical Path Institute, Tucson, AZ, USA
| | - Matthew Stern
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Soto
- Amprion, San Diego, CA, USA; Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Caroline M Tanner
- Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA; Parkinson's Disease Research Education and Clinical Center, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Eduardo Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Weintraub
- University of Pennsylvania and the Parkinson's Disease and Mental Illness Research, Education and Clinical Centers, Philadelphia Veterans Affairs Medical Center Philadelphia, PA, USA
| | - Yuge Xiao
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy Dunn
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
4
|
Filippi M, Balestrino R, Agosta F. Editorial: Biomarkers of non-motor symptoms in Parkinson's disease and parkinsonisms. Front Neurol 2023; 14:1257064. [PMID: 37767533 PMCID: PMC10520349 DOI: 10.3389/fneur.2023.1257064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Affiliation(s)
- Massimo Filippi
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Lombardy, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Balestrino
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Lombardy, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Lombardy, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Flaus A, Philippe R, Thobois S, Janier M, Scheiber C. Semi-quantitative analysis of visually normal 123I-FP-CIT across three large databases revealed no difference between control and patients. EJNMMI Res 2023; 13:37. [PMID: 37117951 PMCID: PMC10147889 DOI: 10.1186/s13550-023-00983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND To show the equivalence between the specific binding ratios (SBR) of visually normal 123I-FP-CIT SPECT scans from patients to those from healthy volunteers (Hv) or patients without dopaminergic degeneration to allow their use as a reference database. METHODS The SBR values of visually normal SPECT scans from 3 groups were studied: (1) suspected Parkinsonism and no diagnostic follow-up (ScanOnlyDB: n = 764, NM/CT 670 CZT, GE Healthcare), (2) no degenerative dopaminergic pathology after a 5-year follow-up (NoDG5YearsDB: n = 237, Symbia T2, Siemens Medical Solutions), and 3) Hv (HvDB: n = 118, commercial GE database). A general linear model (GLM) was constructed with caudate, putamen, and striatum SBR as the dependent variables, and age and gender as the independent variables. Following post-reconstruction harmonization of the data, DB were combined in pairs, ScanOnlyDB&NoDG5yearsDG and ScanOnlyDB&HvDB before performing GLM analysis. Additionally, ScanOnlyDB GLM estimates were compared to those published from Siemens commercial DB (SiemensDB) and ENC-DAT. RESULTS The dispersion parameters, R2 and the SBR coefficients of variation, did not differ between databases. For all volumes of interest and all databases, SBR decreased significantly with age (e.g., decrease per decade for the striatum: - 4.94% for ScanOnlyDB, - 4.65% for NoDG5YearsDB, - 5.69% for HvDB). There was a significant covariance between SBR and gender for ScanOnlyDB (P < 10-5) and NoDG5YearsDB (P < 10-2). The age-gender interaction was significant only for ScanOnlyDB (P < 10-2), and the p-value decreased to 10-6 after combining ScanOnlyDB with NoDG5YearsDB. ScanOnlyDB GLM estimates were not significantly different from those from SiemensDB or ENC-DAT except for age-gender interaction. CONCLUSION SBR values distribution from visually normal scans were not different from the existing reference database, enabling this method to create a reference database by expert nuclear physicians. In addition, it showed a rarely described age-gender interaction related to its size. The proposed post-reconstruction harmonization method can also facilitate the use of semi-quantitative analysis.
Collapse
Affiliation(s)
- Anthime Flaus
- Department of Nuclear Medicine, Hospices Civils de Lyon, Bron, Rhône, France
- Faculté de Médecine Lyon Est, Université Claude Bernard, Lyon 1, Lyon, France
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, Lyon, France
| | - Remi Philippe
- Institut des Sciences, Cognitives Marc Jeannerod, UMR 5229, CNRS, CRNL, Université Claude Bernard, Lyon 1, Lyon, France
| | - Stephane Thobois
- Institut des Sciences, Cognitives Marc Jeannerod, UMR 5229, CNRS, CRNL, Université Claude Bernard, Lyon 1, Lyon, France
- Movement Disorder Clinic, Department of Neurology C, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, Rhône, France
| | - Marc Janier
- Department of Nuclear Medicine, Hospices Civils de Lyon, Bron, Rhône, France
- Faculté de Médecine Lyon Est, Université Claude Bernard, Lyon 1, Lyon, France
| | - Christian Scheiber
- Department of Nuclear Medicine, Hospices Civils de Lyon, Bron, Rhône, France.
- Institut des Sciences, Cognitives Marc Jeannerod, UMR 5229, CNRS, CRNL, Université Claude Bernard, Lyon 1, Lyon, France.
| |
Collapse
|