1
|
Zhao S, Luo J, Tang M, Zhang C, Song M, Wu G, Yan X. Analysis of the Candidate Genes and Underlying Molecular Mechanism of P198, an RNAi-Related Dwarf and Sterile Line. Int J Mol Sci 2023; 25:174. [PMID: 38203344 PMCID: PMC10778984 DOI: 10.3390/ijms25010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The genome-wide long hairpin RNA interference (lhRNAi) library is an important resource for plant gene function research. Molecularly characterizing lhRNAi mutant lines is crucial for identifying candidate genes associated with corresponding phenotypes. In this study, a dwarf and sterile line named P198 was screened from the Brassica napus (B. napus) RNAi library. Three different methods confirmed that eight copies of T-DNA are present in the P198 genome. However, only four insertion positions were identified in three chromosomes using fusion primer and nested integrated polymerase chain reaction. Therefore, the T-DNA insertion sites and copy number were further investigated using Oxford Nanopore Technologies (ONT) sequencing, and it was found that at least seven copies of T-DNA were inserted into three insertion sites. Based on the obtained T-DNA insertion sites and hairpin RNA (hpRNA) cassette sequences, three candidate genes related to the P198 phenotype were identified. Furthermore, the potential differentially expressed genes and pathways involved in the dwarfism and sterility phenotype of P198 were investigated by RNA-seq. These results demonstrate the advantage of applying ONT sequencing to investigate the molecular characteristics of transgenic lines and expand our understanding of the complex molecular mechanism of dwarfism and male sterility in B. napus.
Collapse
Affiliation(s)
- Shengbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Junling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Min Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Chi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Miaoying Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaohong Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
2
|
Johnson A, Mcassey E, Diaz S, Reagin J, Redd PS, Parrilla DR, Nguyen H, Stec A, McDaniel LAL, Clemente TE, Stupar RM, Parrott WA, Hancock CN. Development of mPing-based activation tags for crop insertional mutagenesis. PLANT DIRECT 2021; 5:e00300. [PMID: 33506165 PMCID: PMC7814626 DOI: 10.1002/pld3.300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Modern plant breeding increasingly relies on genomic information to guide crop improvement. Although some genes are characterized, additional tools are needed to effectively identify and characterize genes associated with crop traits. To address this need, the mPing element from rice was modified to serve as an activation tag to induce expression of nearby genes. Embedding promoter sequences in mPing resulted in a decrease in overall transposition rate; however, this effect was negated by using a hyperactive version of mPing called mmPing20. Transgenic soybean events carrying mPing-based activation tags and the appropriate transposase expression cassettes showed evidence of transposition. Expression analysis of a line that contained a heritable insertion of the mmPing20F activation tag indicated that the activation tag induced overexpression of the nearby soybean genes. This represents a significant advance in gene discovery technology as activation tags have the potential to induce more phenotypes than the original mPing element, improving the overall effectiveness of the mutagenesis system.
Collapse
Affiliation(s)
- Alexander Johnson
- Institute of Plant Breeding, Genetics & Genomics/Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
| | - Edward Mcassey
- Institute of Plant Breeding, Genetics & Genomics/Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
- Present address:
School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHIUSA
| | - Stephanie Diaz
- Department of Biology and GeologyUniversity of South Carolina AikenAikenSCUSA
- Present address:
Department of BiochemistryPurdue UniversityWest LafayetteINUSA
| | - Jacob Reagin
- Department of Biology and GeologyUniversity of South Carolina AikenAikenSCUSA
| | - Priscilla S. Redd
- Department of Biology and GeologyUniversity of South Carolina AikenAikenSCUSA
| | - Daymond R. Parrilla
- Department of Biology and GeologyUniversity of South Carolina AikenAikenSCUSA
- Present address:
Department of Molecular and Comparative PathobiologyJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Hanh Nguyen
- Department of Agronomy and Horticulture/Center for Plant Science InnovationUniversity of NebraskaLincolnNEUSA
| | - Adrian Stec
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Lauren A. L. McDaniel
- Institute of Plant Breeding, Genetics & Genomics/Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
| | - Thomas E. Clemente
- Department of Agronomy and Horticulture/Center for Plant Science InnovationUniversity of NebraskaLincolnNEUSA
| | - Robert M. Stupar
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Wayne A. Parrott
- Institute of Plant Breeding, Genetics & Genomics/Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
| | - C. Nathan Hancock
- Department of Biology and GeologyUniversity of South Carolina AikenAikenSCUSA
| |
Collapse
|
3
|
Wu X, Gong D, Xia F, Dai C, Zhang X, Gao X, Wang S, Qu X, Sun Y, Liu G. A two-step mutation process in the double WS1 homologs drives the evolution of burley tobacco, a special chlorophyll-deficient mutant with abnormal chloroplast development. PLANTA 2019; 251:10. [PMID: 31776784 DOI: 10.1007/s00425-019-03312-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION The functional homologs WS1A and WS1B, identified by map-based cloning, control the burley character by affecting chloroplast development in tobacco, contributing to gene isolation and genetic improvement in polyploid crops. Burley represents a special type of tobacco (Nicotiana tabacum L.) cultivar that is characterized by a white stem with a high degree of chlorophyll deficiency. Although important progress in the research of burley tobacco has been made, the molecular mechanisms underlying this character remain unclear. Here, on the basis of our previous genetic analyses and preliminary mapping results, we isolated the White Stem 1A (WS1A) and WS1B genes using a map-based cloning approach. WS1A and WS1B are functional homologs with completely identical biological functions and highly similar expression patterns that control the burley character in tobacco. WS1A and WS1B are derived from Nicotiana sylvestris and Nicotiana tomentosiformis, the diploid ancestors of Nicotiana tabacum, respectively. The two genes encode zinc metalloproteases of the M50 family that are highly homologous to the Ethylene-dependent Gravitropism-deficient and Yellow-green 1 (EGY1) protein of Arabidopsis and the Lutescent 2 (L2) protein of tomato. Transmission electron microscopic examinations indicated that WS1A and WS1B are involved in the development of chloroplasts by controlling the formation of thylakoid membranes, very similar to that observed for EGY1 and L2. The genotyping of historical tobacco varieties revealed that a two-step mutation process occurred in WS1A and WS1B during the evolution of burley tobacco. We also discussed the strategy for gene map-based cloning in polyploid plants with complex genomes. This study will facilitate the identification of agronomically important genes in tobacco and other polyploid crops and provide insights into crop improvement via molecular approaches.
Collapse
Affiliation(s)
- Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| | - Daping Gong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Fei Xia
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Changbo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xingwei Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Shaomei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xu Qu
- Qingdao Tobacco Seed Co., Ltd, Qingdao, 266101, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
4
|
Gang H, Liu G, Zhang M, Zhao Y, Jiang J, Chen S. Comprehensive characterization of T-DNA integration induced chromosomal rearrangement in a birch T-DNA mutant. BMC Genomics 2019; 20:311. [PMID: 31014254 PMCID: PMC6480916 DOI: 10.1186/s12864-019-5636-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/24/2019] [Indexed: 11/29/2022] Open
Abstract
Background Integration of T-DNA into plant genomes via Agrobacterium may interrupt gene structure and generate numerous mutants. The T-DNA caused mutants are valuable materials for understanding T-DNA integration model in plant research. T-DNA integration in plants is complex and still largely unknown. In this work, we reported that multiple T-DNA fragments caused chromosomal translocation and deletion in a birch (Betula platyphylla × B. pendula) T-DNA mutant yl. Results We performed PacBio genome resequencing for yl and the result revealed that two ends of a T-DNA can be integrated into plant genome independently because the two ends can be linked to different chromosomes and cause chromosomal translocation. We also found that these T-DNA were connected into tandem fragment regardless of direction before integrating into plant genome. In addition, the integration of T-DNA in yl genome also caused several chromosomal fragments deletion. We then summarized three cases for T-DNA integration model in the yl genome. (1) A T-DNA fragment is linked to the two ends of a double-stranded break (DSB); (2) Only one end of a T-DNA fragment is linked to a DSB; (3) A T-DNA fragment is linked to the ends of different DSBs. All the observations in the yl genome supported the DSB repair model. Conclusions In this study, we showed a comprehensive genome analysis of a T-DNA mutant and provide a new insight into T-DNA integration in plants. These findings would be helpful for the analysis of T-DNA mutants with special phenotypes. Electronic supplementary material The online version of this article (10.1186/s12864-019-5636-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huixin Gang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Manman Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yuming Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
5
|
Xia F, Sun T, Yang S, Wang X, Chao J, Li X, Hu J, Cui M, Liu G, Wang D, Sun Y. Insight into the B3Transcription Factor Superfamily and Expression Profiling of B3 Genes in Axillary Buds after Topping in Tobacco( Nicotiana tabacum L.). Genes (Basel) 2019; 10:E164. [PMID: 30791672 PMCID: PMC6409620 DOI: 10.3390/genes10020164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the plant-specific B3 transcription factor superfamily play important roles in various growth and developmental processes in plants. Even though there are many valuable studies on B3 genes in other species, little is known about the B3 superfamily in tobacco. We identified 114 B3 proteins from tobacco using comparative genome analysis. These proteins were classified into four subfamilies based on their phylogenetic relationships, and include the ARF, RAV, LAV, and REM subfamilies. The chromosomal locations, gene structures, conserved protein motifs, and sub-cellular localizations of the tobacco B3 proteins were analyzed. The patterns of exon-intron numbers and arrangement and the protein structures of the tobacco B3 proteins were in general agreement with their phylogenetic relationships. The expression patterns of 114 B3 genes revealed that many B3 genes show tissue-specific expression. The expression levels of B3 genes in axillary buds after topping showed that the REM genes are mainly up-regulated in response to topping, while the ARF genes are down-regulated after topping.
Collapse
Affiliation(s)
- Fei Xia
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Tingting Sun
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Junhua Hu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Mengmeng Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Dawei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| |
Collapse
|
6
|
Wang D, Wang S, Chao J, Wu X, Sun Y, Li F, Lv J, Gao X, Liu G, Wang Y. Morphological phenotyping and genetic analyses of a new chemical-mutagenized population of tobacco (Nicotiana tabacum L.). PLANTA 2017; 246:149-163. [PMID: 28401357 DOI: 10.1007/s00425-017-2690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
MAIN CONCLUSION A novel tobacco mutant library was constructed, screened, and characterized as a crucial genetic resource for functional genomics and applied research. A comprehensive mutant library is a fundamental resource for investigating gene functions, especially after the completion of genome sequencing. A new tobacco mutant population induced by ethyl methane sulfonate mutagenesis was developed for functional genomics applications. We isolated 1607 mutant lines and 8610 mutant plants with altered morphological phenotypes from 5513 independent M2 families that consisted of 69,531 M2 plants. The 2196 mutations of abnormal phenotypes in the M2 putative mutants were classified into four groups with 17 major categories and 51 subcategories. More than 60% of the abnormal phenotypes observed fell within the five major categories including plant height, leaf shape, leaf surface, leaf color, and flowering time. The 465 M2 mutants exhibited multiple phenotypes, and 1054 of the 2196 mutations were pleiotropic. Verification of the phenotypes in advanced generations indicated that 70.63% of the M3 lines, 84.87% of the M4 lines, and 95.75% of the M5 lines could transmit original mutant phenotypes of the corresponding M2, M3, and M4 mutant plants. Along with the increased generation of mutants, the ratios of lines inheriting OMPs increased and lines with emerging novel mutant phenotypes decreased. Genetic analyses of 18 stably heritable mutants showed that two mutants were double recessive, five were monogenic recessive, eight presented monogenic dominant inheritance, and three presented semi-dominant inheritance. The pleiotropy pattern, saturability evaluation, research prospects of genome, and phenome of the mutant populations were also discussed. Simultaneously, this novel mutant library provided a fundamental resource for investigating gene functions in tobacco.
Collapse
Affiliation(s)
- Dawei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Shaomei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Fengxia Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Jing Lv
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| | - Yuanying Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
7
|
Yin G, Wang W, Niu H, Ding Y, Zhang D, Zhang J, Liu G, Wang S, Zhang H. Jasmonate-Sensitivity-Assisted Screening and Characterization of Nicotine Synthetic Mutants from Activation-Tagged Population of Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:157. [PMID: 28243248 PMCID: PMC5303748 DOI: 10.3389/fpls.2017.00157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Nicotine is a secondary metabolite that is important to the defense system and commercial quality of tobacco (Nicotiana tabacum L.). Jasmonate and its derivatives (JAs) are phytohormone regulators of nicotine formation; however, the underlying molecular mechanism of this process remains largely unclear. Owing to the amphitetraploid origin of N. tabacum, research on screening and identification of nicotine-synthetic mutants is relatively scarce. Here, we describe a method based on JA-sensitivity for screening nicotine mutants from an activation-tagged population of tobacco. In this approach, the mutants were first screened for abnormal JA responses in seed germination and root elongation, and then the levels of nicotine synthesis and expression of nicotine synthetic genes in the mutants with altered JA-response were measured to determine the nicotine-synthetic mutants. We successfully obtained five mutants that maintained stable nicotine contents and JA responses for three generations. This method is simple, effective and low-cost, and the finding of transcriptional changes of nicotine synthetic genes in the mutants shows potentials for identifying novel regulators involved in JA-regulated nicotine biosynthesis.
Collapse
Affiliation(s)
- Guoying Yin
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Wenjing Wang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdao, China
| | - Haixia Niu
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Yongqiang Ding
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Dingyu Zhang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Jie Zhang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdao, China
| | - Sangen Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Hongbo Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdao, China
| |
Collapse
|