1
|
Gaur VS, Sood S, Guzmán C, Olsen KM. Molecular insights on the origin and development of waxy genotypes in major crop plants. Brief Funct Genomics 2024; 23:193-213. [PMID: 38751352 DOI: 10.1093/bfgp/elad035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 06/14/2024] Open
Abstract
Starch is a significant ingredient of the seed endosperm with commercial importance in food and industry. Crop varieties with glutinous (waxy) grain characteristics, i.e. starch with high amylopectin and low amylose, hold longstanding cultural importance in some world regions and unique properties for industrial manufacture. The waxy character in many crop species is regulated by a single gene known as GBSSI (or waxy), which encodes the enzyme Granule Bound Starch Synthase1 with null or reduced activity. Several allelic variants of the waxy gene that contribute to varying levels of amylose content have been reported in different crop plants. Phylogenetic analysis of protein sequences and the genomic DNA encoding GBSSI of major cereals and recently sequenced millets and pseudo-cereals have shown that GBSSI orthologs form distinct clusters, each representing a separate crop lineage. With the rapidly increasing demand for waxy starch in food and non-food applications, conventional crop breeding techniques and modern crop improvement technologies such as gene silencing and genome editing have been deployed to develop new waxy crop cultivars. The advances in research on waxy alleles across different crops have unveiled new possibilities for modifying the synthesis of amylose and amylopectin starch, leading to the potential creation of customized crops in the future. This article presents molecular lines of evidence on the emergence of waxy genes in various crops, including their genesis and evolution, molecular structure, comparative analysis and breeding innovations.
Collapse
Affiliation(s)
- Vikram S Gaur
- Raja Bhoj College of Agriculture, Balaghat, JNKVV, Jabalpur, Madhya Pradesh, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Shimla- 171001, Himachal Pradesh, India
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, ES-14071, Córdoba, Spain
| | | |
Collapse
|
2
|
Fukunaga K, Kawase M. Crop Evolution of Foxtail Millet. PLANTS (BASEL, SWITZERLAND) 2024; 13:218. [PMID: 38256771 PMCID: PMC10819197 DOI: 10.3390/plants13020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Studies on the domestication, genetic differentiation, and crop evolution of foxtail millet are reviewed in this paper. Several genetic studies were carried out to elucidate the genetic relationships among foxtail millet accessions originating mainly from Eurasia based on intraspecific hybrid pollen semi-sterility, isozymes, DNA markers, and single-nucleotide polymorphisms. Most studies suggest that China is the center of diversity of foxtail millet, and landraces were categorized into geographical groups. These results indicate that this millet was domesticated in China and spread over Eurasia, but independent origin in other regions cannot be ruled out. Furthermore, the evolution of genes was reviewed (i.e., the Waxy gene conferring amylose content in the endosperm, the Si7PPO gene controlling polyphenol oxidase, the HD1 and SiPRR37 genes controlling heading time, the Sh1 and SvLes1 genes involved in grain shattering, and the C gene controlling leaf sheath pigmentation), and the variation and distribution of these genes suggested complex patterns of evolution under human and/or natural selection.
Collapse
Affiliation(s)
- Kenji Fukunaga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| | - Makoto Kawase
- Faculty of Agriculture, Tokyo University of Agriculture, Atsugi 243-0034, Japan
| |
Collapse
|
3
|
Orozco-Arias S, Humberto Lopez-Murillo L, Candamil-Cortés MS, Arias M, Jaimes PA, Rossi Paschoal A, Tabares-Soto R, Isaza G, Guyot R. Inpactor2: a software based on deep learning to identify and classify LTR-retrotransposons in plant genomes. Brief Bioinform 2022; 24:6887110. [PMID: 36502372 PMCID: PMC9851300 DOI: 10.1093/bib/bbac511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
LTR-retrotransposons are the most abundant repeat sequences in plant genomes and play an important role in evolution and biodiversity. Their characterization is of great importance to understand their dynamics. However, the identification and classification of these elements remains a challenge today. Moreover, current software can be relatively slow (from hours to days), sometimes involve a lot of manual work and do not reach satisfactory levels in terms of precision and sensitivity. Here we present Inpactor2, an accurate and fast application that creates LTR-retrotransposon reference libraries in a very short time. Inpactor2 takes an assembled genome as input and follows a hybrid approach (deep learning and structure-based) to detect elements, filter partial sequences and finally classify intact sequences into superfamilies and, as very few tools do, into lineages. This tool takes advantage of multi-core and GPU architectures to decrease execution times. Using the rice genome, Inpactor2 showed a run time of 5 minutes (faster than other tools) and has the best accuracy and F1-Score of the tools tested here, also having the second best accuracy and specificity only surpassed by EDTA, but achieving 28% higher sensitivity. For large genomes, Inpactor2 is up to seven times faster than other available bioinformatics tools.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| | | | | | - Maradey Arias
- Department of Computer Science, Universidad Autónoma de Manizales, 170001, Caldas, Colombia
| | - Paula A Jaimes
- Department of Computer Science, Universidad Autónoma de Manizales, 170001, Caldas, Colombia
| | - Alexandre Rossi Paschoal
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| | - Reinel Tabares-Soto
- Department of Electronics and Automation, Universidad Autónoma de Manizales, 170001, Caldas, Colombia
| | - Gustavo Isaza
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| | - Romain Guyot
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| |
Collapse
|
4
|
Transcriptome Analysis and Intraspecific Variation in Spanish Fir ( Abies pinsapo Boiss.). Int J Mol Sci 2022; 23:ijms23169351. [PMID: 36012612 PMCID: PMC9409315 DOI: 10.3390/ijms23169351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Spanish fir (Abies pinsapo Boiss.) is an endemic, endangered tree that has been scarcely investigated at the molecular level. In this work, the transcriptome of Spanish fir was assembled, providing a large catalog of expressed genes (22,769), within which a high proportion were full-length transcripts (12,545). This resource is valuable for functional genomics studies and genome annotation in this relict conifer species. Two intraspecific variations of A. pinsapo can be found within its largest population at the Sierra de las Nieves National Park: one with standard green needles and another with bluish-green needles. To elucidate the causes of both phenotypes, we studied different physiological and molecular markers and transcriptome profiles in the needles. "Green" trees showed higher electron transport efficiency and enhanced levels of chlorophyll, protein, and total nitrogen in the needles. In contrast, needles from "bluish" trees exhibited higher contents of carotenoids and cellulose. These results agreed with the differential transcriptomic profiles, suggesting an imbalance in the nitrogen status of "bluish" trees. Additionally, gene expression analyses suggested that these differences could be associated with different epigenomic profiles. Taken together, the reported data provide new transcriptome resources and a better understanding of the natural variation in this tree species, which can help improve guidelines for its conservation and the implementation of adaptive management strategies under climatic change.
Collapse
|
5
|
Recombinant inbred lines and next-generation sequencing enable rapid identification of candidate genes involved in morphological and agronomic traits in foxtail millet. Sci Rep 2022; 12:218. [PMID: 34997038 PMCID: PMC8742101 DOI: 10.1038/s41598-021-04012-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
We constructed recombinant inbred lines (RILs) between a Japanese and a Taiwanese landrace of foxtail millet and employed next-generation sequencing, such as flexible ddRAD-seq and Nanopore sequencing to identify the candidate genes involved in the crop evolution of foxtail millet. We successfully constructed a linkage map using flexible ddRAD-seq with parents and RILs and detected major QTLs for each of three traits: leaf sheath colors, spikelet-tipped bristles (stb), and days to heading (DTH). (1) For leaf sheath colors, we identified the C gene on chromosome IV. (2) We identified a homeobox (HOX14) gene for stb on chromosome II, which shows homology with HvVrs1 in barley. (3) Finally, we identified a QTL with a large effect on DTH on chromosome II. A parent of the RILs from Taiwan and Yugu1 had a Harbinger-like TE in intron 3 of this gene. We also investigated the geographical distribution of the TE insertion type of this gene and found that the insertion type is distributed in the northern part of East Asia and intensively in South and Southeast Asia, suggesting that loss/reduction of function of this gene plays an important role in spreading into the northern part of East Asia and subtropical and tropical zones.
Collapse
|
6
|
Mokhtar MM, Alsamman AM, Abd-Elhalim HM, El Allali A. CicerSpTEdb: A web-based database for high-resolution genome-wide identification of transposable elements in Cicer species. PLoS One 2021; 16:e0259540. [PMID: 34762703 PMCID: PMC8584679 DOI: 10.1371/journal.pone.0259540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
Recently, Cicer species have experienced increased research interest due to their economic importance, especially in genetics, genomics, and crop improvement. The Cicer arietinum, Cicer reticulatum, and Cicer echinospermum genomes have been sequenced and provide valuable resources for trait improvement. Since the publication of the chickpea draft genome, progress has been made in genome assembly, functional annotation, and identification of polymorphic markers. However, work is still needed to identify transposable elements (TEs) and make them available for researchers. In this paper, we present CicerSpTEdb, a comprehensive TE database for Cicer species that aims to improve our understanding of the organization and structural variations of the chickpea genome. Using structure and homology-based methods, 3942 C. echinospermum, 3579 C. reticulatum, and 2240 C. arietinum TEs were identified. Comparisons between Cicer species indicate that C. echinospermum has the highest number of LTR-RT and hAT TEs. C. reticulatum has more Mutator, PIF Harbinger, Tc1 Mariner, and CACTA TEs, while C. arietinum has the highest number of Helitron. CicerSpTEdb enables users to search and visualize TEs by location and download their results. The database will provide a powerful resource that can assist in developing TE target markers for molecular breeding and answer related biological questions. Database URL: http://cicersptedb.easyomics.org/index.php.
Collapse
Affiliation(s)
- Morad M. Mokhtar
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- * E-mail: (AEA); (MMM)
| | | | - Haytham M. Abd-Elhalim
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- * E-mail: (AEA); (MMM)
| |
Collapse
|
7
|
Alseekh S, Scossa F, Wen W, Luo J, Yan J, Beleggia R, Klee HJ, Huang S, Papa R, Fernie AR. Domestication of Crop Metabolomes: Desired and Unintended Consequences. TRENDS IN PLANT SCIENCE 2021; 26:650-661. [PMID: 33653662 DOI: 10.1016/j.tplants.2021.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/12/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 05/02/2023]
Abstract
The majority of the crops and vegetables of today were domesticated from their wild progenitors within the past 12 000 years. Considerable research effort has been expended on characterizing the genes undergoing positive and negative selection during the processes of crop domestication and improvement. Many studies have also documented how the contents of a handful of metabolites have been altered during human selection, but we are only beginning to unravel the true extent of the metabolic consequences of breeding. We highlight how crop metabolomes have been wittingly or unwittingly shaped by the processes of domestication, and highlight how we can identify new targets for metabolite engineering for the purpose of de novo domestication of crop wild relatives.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178 Rome, Italy
| | - Weiwei Wen
- Key laboratory of Horticultural Plant Biology (MOE),College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Hubei, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University Hubei, Wuhan 430070, China; College of Tropical Crops, Hainan University, Haikou, Hainan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University Hubei, Wuhan 430070, China
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-, CI), 71122 Foggia, Italy
| | - Harry J Klee
- Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture - Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
| |
Collapse
|
8
|
Wedger MJ, Schumann AC, Gross BL. Candidate genes and signatures of directional selection on fruit quality traits during apple domestication. AMERICAN JOURNAL OF BOTANY 2021; 108:616-627. [PMID: 33837962 DOI: 10.1002/ajb2.1636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/03/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
PREMISE During plant domestication, traits can be subject to a variety of types of selection, ranging from strong directional selection for traits such as seed or fruit size to diversifying selection for traits like color or flavor. These types of selection interact with other evolutionary processes including genetic bottlenecks and interspecific gene flow to generate different levels of genetic diversity across the genome and at target genes in domesticated lineages, but little is known about the impacts of these processes in perennial fruit crops. METHODS We used sequence capture by hybridization to examine patterns of diversity at a suite of candidate domestication and anonymous background genes in domesticated apple (Malus ×domestica) in comparison to its wild relatives Malus sieversii and Malus orientalis. RESULTS We found no change in average diversity at these candidate domestication genes across the three species. However, a subset of the genes did exhibit patterns of very high or very low diversity in M. ×domestica compared to its progenitor, M. sieversii. Of the genes with characterized function, the low-diversity genes mainly contributed to fruit quality traits like color and flavor, predicted to be under conscious, directional selection relatively late in the domestication process, while the high-diversity genes included a variety of functions. CONCLUSIONS Overall, these results are consistent with predictions based on the likely timing and nature of selection during domestication and open new avenues for understanding genes with high diversity in a perennial crop compared to its wild relatives.
Collapse
Affiliation(s)
- Marshall J Wedger
- Department of Biology, Washington University, Campus Box 1137, St. Louis, MO, 63130, USA
| | - Abby C Schumann
- Minnesota Poultry Testing Laboratory, P.O. Box 126, 622 Bus. Hwy 71 NE, Wilmar, MN, 56201, USA
| | - Briana L Gross
- Department of Biology, University of Minnesota Duluth, 207 Swenson Science Building, 1035 Kirby Drive, Duluth, MN, 55812, USA
| |
Collapse
|
9
|
Seung D. Amylose in starch: towards an understanding of biosynthesis, structure and function. THE NEW PHYTOLOGIST 2020; 228:1490-1504. [PMID: 32767769 DOI: 10.1111/nph.16858] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 05/20/2023]
Abstract
Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
10
|
Abstract
Tomatoes come in a multitude of shapes and flavors despite a narrow genetic pool. Here, we leverage whole-genome resequencing data available for 602 cultivated and wild accessions to determine the contribution of transposable elements (TEs) to tomato diversity. We identify 6,906 TE insertions polymorphisms (TIPs), which result from the mobilization of 337 distinct TE families. Most TIPs are low frequency variants and TIPs are disproportionately located within or adjacent to genes involved in environmental responses. In addition, genic TE insertions tend to have strong transcriptional effects and they can notably lead to the generation of multiple transcript isoforms. Using genome-wide association studies (GWAS), we identify at least 40 TIPs robustly associated with extreme variation in major agronomic traits or secondary metabolites and in most cases, no SNP tags the TE insertion allele. Collectively, these findings highlight the unique role of TE mobilization in tomato diversification, with important implications for breeding. Transposable element insertion polymorphisms (TIPs) are a potential source of large effect alleles. Here, the authors use genome resequencing data for 602 tomato accessions together with transcriptomic and extensive phenotypic information to investigate the contribution of TIPs to tomato diversity.
Collapse
|
11
|
Abstract
Domestication is a co-evolutionary process that occurs when wild plants are brought into cultivation by humans, leading to origin of new species and/or differentiated populations that are critical for human survival. Darwin used domesticated species as early models for evolution, highlighting their variation and the key role of selection in species differentiation. Over the last two decades, a growing synthesis of plant genetics, genomics, and archaeobotany has led to challenges to old orthodoxies and the advent of fresh perspectives on how crop domestication and diversification proceed. I discuss four new insights into plant domestication - that in general domestication is a protracted process, that unconscious (natural) selection plays a prominent role, that interspecific hybridization may be an important mechanism for crop species diversification and range expansion, and that similar genes across multiple species underlies parallel/convergent phenotypic evolution between domesticated taxa. Insights into the evolutionary origin and diversification of crop species can help us in developing new varieties (and possibly even new species) to deal with current and future environmental challenges in a sustainable manner.
Collapse
Affiliation(s)
- Michael D Purugganan
- Center for Genomics and Systems Biology, Department of Biology, 12 Waverly Place New York University, New York, NY, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Abstract
Pongamia pinnata (also called Millettia pinnata), a non-edible oil yielding tree, is well known for its multipurpose benefits and acts as a potential source for medicine and biodiesel preparation. Due to increase in demand for cultivation, understanding of genetic diversity is an important parameter for further breeding and cultivation programme. Transposable elements (TEs) are a major component of plant genome but still, their evolutionary significance in Pongamia remains unexplored. In view to understand the role of TEs in genome diversity, Pongamia unigenes were screened for the presence of TE cassettes. Our analysis showed the presence of all categories of TE cassettes in unigenes with major contribution of long terminal repeat-retrotransposons towards unigene diversity. Interestingly, the insertion of some TEs was also observed in both organellar genomes. The study of insertion of TEs in coding sequence is of great interest as they may be responsible for protein diversity thereby influencing the phenotype. The present investigation confirms the exaptation phenomenon in pyruvate decarboxylase (PDC) gene where the entire exon sequence was derived from Ty3-gypsy like retrotransposon. The study of PDC protein revealed the translation of gypsy element into protein. Furthermore, the phylogenetic study confirmed the diversity in PDC gene due to insertion of the gypsy element, where the PDC genes with and without gypsy insertion were clustered separately.
Collapse
Affiliation(s)
- Rahul G Shelke
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781 039, India
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781 039, India.
| |
Collapse
|
13
|
Tanaka Y, Asano T, Kanemitsu Y, Goto T, Yoshida Y, Yasuba K, Misawa Y, Nakatani S, Kobata K. Positional differences of intronic transposons in pAMT affect the pungency level in chili pepper through altered splicing efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:693-705. [PMID: 31323150 DOI: 10.1111/tpj.14462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/10/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Capsaicinoids are unique compounds that give chili pepper fruits their pungent taste. Capsaicinoid levels vary widely among pungent cultivars, which range from low pungency to extremely pungent. However, the molecular mechanisms underlying this quantitative variation have not been elucidated. Our previous study identified various loss-of-function alleles of the pAMT gene which led to low pungency. The mutations in these alleles are commonly defined by Tcc transposon insertion and its footprint. In this study, we identified two leaky pamt alleles (pamtL1 and pamtL2 ) with different levels of putative aminotransferase (pAMT) activity. Notably, both alleles had a Tcc transposon insertion in intron 3, but the locations of the insertions within the intron were different. Genetic analysis revealed that pamtL1 , pamtL2 and a loss-of-function pamt allele reduced capsaicinoid levels to about 50%, 10% and less than 1%, respectively. pamtL1 and pamtL2 encoded functional pAMT proteins, but they exhibited lower transcript levels than the functional type. RNA sequencing analysis showed that intronic transposons disrupted splicing in intron 3, which resulted in simultaneous expression of functional pAMT mRNA and non-functional splice variants containing partial sequences of Tcc. The non-functional splice variants were more dominant in pamtL2 than in pamtL1 . This suggested that the difference in position of the intronic transposons could alter splicing efficiency, leading to different pAMT activities and reducing capsaicinoid content to different levels. Our results provide a striking example of allelic variations caused by intronic transposons; these variations contribute to quantitative differences in secondary metabolite contents.
Collapse
Affiliation(s)
- Yoshiyuki Tanaka
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takaya Asano
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yorika Kanemitsu
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Tanjuro Goto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yuichi Yoshida
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Kenichiro Yasuba
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yuki Misawa
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Sachie Nakatani
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kenji Kobata
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| |
Collapse
|
14
|
Structural Characterization of ABCB1, the Gene Underlying the d2 Dwarf Phenotype in Pearl Millet, Cenchrus Americanus (L.) Morrone. G3-GENES GENOMES GENETICS 2019; 9:2497-2509. [PMID: 31208958 PMCID: PMC6686935 DOI: 10.1534/g3.118.200846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
Pearl millet is an important food crop in arid and semi-arid regions of South Asia and sub-Saharan Africa and is grown in Australia and the United States as a summer fodder crop. The d2 dwarf germplasm has been widely used in the last half-century to develop high-performing pearl millet hybrids. We previously mapped the d2 phenotype to a 1.6 cM region in linkage group (LG) 4 and identified the ABCB1 gene as a candidate underlying the trait. Here, we report the sequence, structure and expression of ABCB1 in tall (D2D2) and d2 dwarf (d2d2) germplasm. The ABCB1 allele in d2 dwarfs differs from that in tall inbreds by the presence of two different high copy transposable elements, one in the coding region and the second located 664 bp upstream of the ATG start codon. These transposons were present in all d2 dwarfs tested that were reported to be of independent origin and absent in the analyzed wild-type tall germplasm. We also compared the expression profile of this gene in different organs of multiple tall and d2 dwarf inbreds, including the near-isogenic inbreds at the d2 locus, Tift 23B (D2D2) and Tift 23DB (d2d2). Heterologous transformation of the tall (Ca_ABCB1) and the d2 dwarf (Ca_abcb1) pearl millet alleles in the Arabidopsis double mutant abcb1abcb19 showed that the pearl millet D2 but not the d2 allele complements the Arabidopsis abcb1 mutation. Our studies also show the importance of the COOH-terminal 22 amino acids of the ABCB1 protein in either protein function or stability.
Collapse
|
15
|
Woodhouse MR, Hufford MB. Parallelism and convergence in post-domestication adaptation in cereal grasses. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180245. [PMID: 31154975 DOI: 10.1098/rstb.2018.0245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
The selection of desirable traits in crops during domestication has been well studied. Many crops share a suite of modified phenotypic characteristics collectively known as the domestication syndrome. In this sense, crops have convergently evolved. Previous work has demonstrated that, at least in some instances, convergence for domestication traits has been achieved through parallel molecular means. However, both demography and selection during domestication may have placed limits on evolutionary potential and reduced opportunities for convergent adaptation during post-domestication migration to new environments. Here we review current knowledge regarding trait convergence in the cereal grasses and consider whether the complexity and dynamism of cereal genomes (e.g., transposable elements, polyploidy, genome size) helped these species overcome potential limitations owing to domestication and achieve broad subsequent adaptation, in many cases through parallel means. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- M R Woodhouse
- Iowa State University, Ecology, Evolution, and Organismal Biology , Ames, IA 50011 , USA
| | - M B Hufford
- Iowa State University, Ecology, Evolution, and Organismal Biology , Ames, IA 50011 , USA
| |
Collapse
|
16
|
Kuo SM, Chen YR, Yin SY, Ba QX, Tsai YC, Kuo WHJ, Lin YR. Waxy allele diversification in foxtail millet (Setaria italica) landraces of Taiwan. PLoS One 2018; 13:e0210025. [PMID: 30596758 PMCID: PMC6312202 DOI: 10.1371/journal.pone.0210025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv.), the second most cultivated millet species, is well adapted to diverse environments and remains an important cereal food and forage crop in arid and semiarid regions worldwide. A symbolic crop for indigenous Austronesian peoples, foxtail millet has been cultivated in Taiwan for more than 5,000 years, and landraces reflect diversifying selection for various food applications. A total of 124 accessions collected within Taiwan were assessed for Wx genotypes. Four identified Wx alleles, I, III, IV, and IX were caused by insertion of various transposable elements (TEs) and resulted in endosperm with non-waxy, low amylose content (AC), and waxy, respectively. A total of 16.9%, 4.0%, 49.2%, and 29.8% of accessions were classified as type I, III, IV, and IX, respectively; approximately half of the accessions belonged to the waxy type, indicating that glutinous grains were favored for making traditional food and wine. The TE insertion affected splicing efficiency rather than accuracy, leading to significantly reduced expression of wx in types III, IV, and IX, although their transcripts were the same as wild-type, type I. Consequently, the granule-bound starch synthase I (GBSSI) contents of the three mutated genotypes were relatively low, leading to waxy or low AC endosperm, and the Wx genotypes could explain 78% of variance in AC. The geographic distribution of Wx genotypes are associated with culinary preferences and migration routes of Taiwanese indigenous peoples-in particular, the genotype of landraces collected from Orchid Island was distinct from those from Taiwan Island. This information on the major gene regulating starch biosynthesis in foxtail millet endosperm can be applied to breeding programs for grain quality, and contributes to knowledge of Austronesian cultures.
Collapse
Affiliation(s)
- Shu-meng Kuo
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yu-ru Chen
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Song-yu Yin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Qing-xiong Ba
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yuan-ching Tsai
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan
| | - Warren H. J. Kuo
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yann-rong Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Gaut BS, Seymour DK, Liu Q, Zhou Y. Demography and its effects on genomic variation in crop domestication. NATURE PLANTS 2018; 4:512-520. [PMID: 30061748 DOI: 10.1038/s41477-018-0210-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/11/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 05/20/2023]
Abstract
Over two thousand plant species have been modified morphologically through cultivation and human use. Here, we review three aspects of crop domestication that are currently undergoing marked revisions, due to analytical advancements and their application to whole genome resequencing (WGS) data. We begin by discussing the duration and demographic history of domestication. There has been debate as to whether domestication occurred quickly or slowly. The latter is tentatively supported both by fossil data and application of WGS data to sequentially Markovian coalescent methods that infer the history of effective population size. This history suggests the possibility of extended human impacts on domesticated lineages prior to their purposeful cultivation. We also make the point that demographic history matters, because it shapes patterns and levels of extant genetic diversity. We illustrate this point by discussing the evolutionary processes that contribute to the empirical observation that most crops examined to date have more putatively deleterious alleles than their wild relatives. These deleterious alleles may contribute to genetic load within crops and may be fitting targets for crop improvement. Finally, the same demographic factors are likely to shape the spectrum of structural variants (SVs) within crops. SVs are known to underlie many of the phenotypic changes associated with domestication and crop improvement, but we currently lack sufficient knowledge about the mechanisms that create SVs, their rates of origin, their population frequencies and their phenotypic effects.
Collapse
Affiliation(s)
- Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Danelle K Seymour
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Qingpo Liu
- College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Yongfeng Zhou
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
18
|
|
19
|
|
20
|
Vinoth A, Ravindhran R. Biofortification in Millets: A Sustainable Approach for Nutritional Security. FRONTIERS IN PLANT SCIENCE 2017; 8:29. [PMID: 28167953 PMCID: PMC5253353 DOI: 10.3389/fpls.2017.00029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/22/2016] [Accepted: 01/05/2017] [Indexed: 05/04/2023]
Abstract
Nutritional insecurity is a major threat to the world's population that is highly dependent on cereals-based diet, deficient in micronutrients. Next to cereals, millets are the primary sources of energy in the semi-arid tropics and drought-prone regions of Asia and Africa. Millets are nutritionally superior as their grains contain high amount of proteins, essential amino acids, minerals, and vitamins. Biofortification of staple crops is proved to be an economically feasible approach to combat micronutrient malnutrition. HarvestPlus group realized the importance of millet biofortification and released conventionally bred high iron pearl millet in India to tackle iron deficiency. Molecular basis of waxy starch has been identified in foxtail millet, proso millet, and barnyard millet to facilitate their use in infant foods. With close genetic-relatedness to cereals, comparative genomics has helped in deciphering quantitative trait loci and genes linked to protein quality in finger millet. Recently, transgenic expression of zinc transporters resulted in the development of high grain zinc while transcriptomics revealed various calcium sensor genes involved in uptake, translocation, and accumulation of calcium in finger millet. Biofortification in millets is still limited by the presence of antinutrients like phytic acid, polyphenols, and tannins. RNA interference and genome editing tools [zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)] needs to be employed to reduce these antinutrients. In this review paper, we discuss the strategies to accelerate biofortification in millets by summarizing the opportunities and challenges to increase the bioavailability of macro and micronutrients.
Collapse
Affiliation(s)
- A Vinoth
- T. A. Lourdusamy Unit for Plant Tissue Culture and Molecular Biology, Department of Plant Biology and Biotechnology, Loyola College Chennai, India
| | - R Ravindhran
- T. A. Lourdusamy Unit for Plant Tissue Culture and Molecular Biology, Department of Plant Biology and Biotechnology, Loyola College Chennai, India
| |
Collapse
|
21
|
Borrayo E, Machida-Hirano R, Takeya M, Kawase M, Watanabe K. Principal components analysis--K-means transposon element based foxtail millet core collection selection method. BMC Genet 2016; 17:42. [PMID: 26880119 PMCID: PMC4754896 DOI: 10.1186/s12863-016-0343-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2015] [Accepted: 02/01/2016] [Indexed: 11/21/2022] Open
Abstract
Background Core collections are important tools in genetic resources research and administration. At present, most core collection selection criteria are based on one of the following item characteristics: passport data, genetic markers, or morphological traits, which may lead to inadequate representations of variability in the complete collection. The development of a comprehensive methodology that includes as much element data as possible has been explored poorly. Using a collection of (Setaria italica sbsp. italica (L.) P. Beauv.) as a model, we developed a method for core collection construction based on genotype data and numerical representations of agromorphological traits, thereby improving the selection process. Results Principal component analysis allows the selection of the most informative discriminators among the various elements evaluated, regardless of whether they are genetic or morphological, thereby providing an adequate criterion for further K-mean clustering. Overall, the core collections of S. italica constructed using only genotype data demonstrated overall better validation scores than other core collections that we generated. However, core collection based on both genotype and agromorphological characteristics represented the overall diversity adequately. Conclusions The inclusion of both genotype and agromorphological characteristics as a comprehensive dataset in this methodology ensures that agricultural traits are considered in the core collection construction. This approach will be beneficial for genetic resources management and research activities for S. italica as well as other genetic resources. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0343-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ernesto Borrayo
- Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, 305-8571, Ibaraki, Japan. .,Genetc Resources Center, National Institute of Agrobiological Sciences, 2-1-2 Kannodai, Tsukuba City, 305-8602, Ibaraki, Japan.
| | - Ryoko Machida-Hirano
- Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, 305-8571, Ibaraki, Japan.
| | - Masaru Takeya
- Genetc Resources Center, National Institute of Agrobiological Sciences, 2-1-2 Kannodai, Tsukuba City, 305-8602, Ibaraki, Japan.
| | - Makoto Kawase
- Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, 305-8571, Ibaraki, Japan.
| | - Kazuo Watanabe
- Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, 305-8571, Ibaraki, Japan.
| |
Collapse
|
22
|
Hsu YC, Wang CS, Lin YR, Wu YP. Structural Diversity of a Novel LTR Retrotransposon, RTPOSON, in the Genus Oryza. Evol Bioinform Online 2016; 12:29-40. [PMID: 26819544 PMCID: PMC4718150 DOI: 10.4137/ebo.s35158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022] Open
Abstract
Retrotransposons with long terminal repeats (LTRs) are the most abundant transposable elements in plant genomes. A novel LTR retrotransposon named RTPOSON primarily occurs in the genus Oryza and in several species of the Poaceae family. RTPOSON has been identified in the Ty1-copia group of retrotransposons because two of its open reading frames encode an uncharacterized protein and UBN2_2 and zinc knuckle, respectively. More than 700 RTPOSONs were identified in Oryza genomes; 127 RTPOSONs with LTRs and gag-pol elements were classified into three subgroups. The subgroup RTPOSON_sub3 had the smallest DNA size and 97% (32/33) of RTPOSON elements from Oryza punctata are classified in this group. The insertion time of these RTPOSONs varied and their proliferation occurred within the last 8 Mya, with two bursting periods within the last 1.5–5.0 Mya. A total of 37 different orthologous insertions of RTPOSONs, with different nested transposable elements and gene fragments, were identified by comparing the genomes of ssp. japonica cv. Nipponbare and ssp. indica cv. 93–11. A part of intact RTPOSON elements was evolved independently after the divergence of indica and japonica. In addition, intact RTPOSONs and homologous fragments were preferentially retained or integrated in genic regions. This novel LTR retrotransposon, RTPOSON, might have an impact on genome evolution, genic innovation, and genetic variation.
Collapse
Affiliation(s)
- Yu-Chia Hsu
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yong-Pei Wu
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| |
Collapse
|
23
|
Wei L, Cao X. The effect of transposable elements on phenotypic variation: insights from plants to humans. SCIENCE CHINA-LIFE SCIENCES 2016; 59:24-37. [PMID: 26753674 DOI: 10.1007/s11427-015-4993-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/12/2015] [Accepted: 12/16/2015] [Indexed: 11/25/2022]
Abstract
Transposable elements (TEs), originally discovered in maize as controlling elements, are the main components of most eukaryotic genomes. TEs have been regarded as deleterious genomic parasites due to their ability to undergo massive amplification. However, TEs can regulate gene expression and alter phenotypes. Also, emerging findings demonstrate that TEs can establish and rewire gene regulatory networks by genetic and epigenetic mechanisms. In this review, we summarize the key roles of TEs in fine-tuning the regulation of gene expression leading to phenotypic plasticity in plants and humans, and the implications for adaption and natural selection.
Collapse
Affiliation(s)
- Liya Wei
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
24
|
Muthamilarasan M, Dhaka A, Yadav R, Prasad M. Exploration of millet models for developing nutrient rich graminaceous crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:89-97. [PMID: 26566827 DOI: 10.1016/j.plantsci.2015.08.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/22/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 05/20/2023]
Abstract
Protein-energy malnutrition and micronutrient deficiencies contribute to high mortality among considerable proportion of the current 7.2 billion global populations, especially children. Although poverty and diets poor in nutrition are prime reasons for prevalence of malnutrition, nutritionally dense crops offer an inexpensive and sustainable solution to the problem of malnutrition. Remarkably, millets are nutritionally superior to major non-millet cereals. They especially are rich in dietary fibers, antioxidants, phytochemicals and polyphenols, which contribute broad-spectrum positive impacts to human health. However, millets have received lesser research attention universally, and considering this, the present review was planned to summarize the reports available on nutrition profile of millets and non-millet cereals to provide a comparative insight on importance of millets. It also emphasizes the need for research on deciphering nutritional traits present in millets and to develop strategies for introgressing these traits into other conventional staple crops using germplasm and 'omics' technologies. In some millet species, excellent 'omics' and germplasm panels have started to get available which can act as a starting point for understanding as well as of introgressing healthful traits across millets and non-millet cereals.
Collapse
Affiliation(s)
| | - Annvi Dhaka
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Rattan Yadav
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Goggerdan, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
25
|
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. FRONTIERS IN PLANT SCIENCE 2015; 6:157. [PMID: 25852710 PMCID: PMC4371761 DOI: 10.3389/fpls.2015.00157] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/21/2014] [Accepted: 02/27/2015] [Indexed: 05/20/2023]
Abstract
Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
26
|
Multiple origins of the phenol reaction negative phenotype in foxtail millet, Setaria italica (L.) P. Beauv., were caused by independent loss-of-function mutations of the polyphenol oxidase (Si7PPO) gene during domestication. Mol Genet Genomics 2015; 290:1563-74. [PMID: 25740049 DOI: 10.1007/s00438-015-1022-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2014] [Accepted: 02/25/2015] [Indexed: 01/26/2023]
Abstract
Foxtail millet shows variation in positive phenol color reaction (Phr) and negative Phr in grains, but predominant accessions of this crop are negative reaction type, and the molecular genetic basis of the Phr reaction remains unresolved. In this article, we isolated polyphenol oxidase (PPO) gene responsible for Phr using genome sequence information and investigated molecular genetic basis of negative Phr and crop evolution of foxtail millet. First of all, we searched for PPO gene homologs in a foxtail millet genome database using a rice PPO gene as a query and successfully found three copies of the PPO gene. One of the PPO gene homologs on chromosome 7 showed the highest similarity with PPO genes expressed in hulls (grains) of other cereal species including rice, wheat, and barley and was designated as Si7PPO. Phr phenotypes and Si7PPO genotypes completely co-segregated in a segregating population. We also analyzed the genetic variation conferring negative Phr reaction. Of 480 accessions of the landraces investigated, 87 (18.1 %) showed positive Phr and 393 (81.9 %) showed negative Phr. In the 393 Phr negative accessions, three types of loss-of-function Si7PPO gene were predominant and independently found in various locations. One of them has an SNP in exon 1 resulting in a premature stop codon and was designated as stop codon type, another has an insertion of a transposon (Si7PPO-TE1) in intron 2 and was designated as TE1-insertion type, and the other has a 6-bp duplication in exon 3 resulting in the duplication of 2 amino acids and was designated as 6-bp duplication type. As a rare variant of the stop codon type, one accession additionally has an insertion of a transposon, Si7PPO-TE2, in intron 2 and was designated as "stop codon +TE2 insertion type". The geographical distribution of accessions with positive Phr and those with three major types of negative Phr was also investigated. Accessions with positive Phr were found in subtropical and tropical regions at frequencies of ca. 25-67 % and those with negative Phr were broadly found in Europe and Asia. The stop codon type was found in 285 accessions and was broadly distributed in Europe and Asia, whereas the TE-1 insertion type was found in 99 accessions from Europe and Asia but was not found in India. The 6-bp duplication type was found in only 8 accessions from Nansei Islands (Okinawa Prefecture) of Japan. We also analyzed Phr in the wild ancestor and concluded that the negative Phr type was likely to have originated after domestication of foxtail millet. It was also implied that negative Phr of foxtail millet arose by multiple independent loss of function of PPO gene through dispersal because of some advantages under some environmental conditions and human selection as in rice and barley.
Collapse
|
27
|
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 25852710 DOI: 10.3389/fpl.2015.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Indexed: 05/04/2023]
Abstract
Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.
Collapse
Affiliation(s)
- Travis L Goron
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada
| |
Collapse
|
28
|
Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 2014; 5:1886-901. [PMID: 24065734 PMCID: PMC3814199 DOI: 10.1093/gbe/evt141] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a dominant feature of most flowering plant genomes. Together with other accepted facilitators of evolution, accumulating data indicate that TEs can explain much about their rapid evolution and diversification. Genome size in angiosperms is highly correlated with TE content and the overwhelming bulk (>80%) of large genomes can be composed of TEs. Among retro-TEs, long terminal repeats (LTRs) are abundant, whereas DNA-TEs, which are often less abundant than retro-TEs, are more active. Much adaptive or evolutionary potential in angiosperms is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array of genetic changes, including gene modifications, duplications, altered expression patterns, and exaptation to create novel genes, with occasional gene disruption. TEs implicated in the earliest origins of the angiosperms include the exapted Mustang, Sleeper, and Fhy3/Far1 gene families. Passive TE-Thrust can create a high degree of adaptive or evolutionary potential by engendering ectopic recombination events resulting in deletions, duplications, and karyotypic changes. TE activity can also alter epigenetic patterning, including that governing endosperm development, thus promoting reproductive isolation. Continuing evolution of long-lived resprouter angiosperms, together with genetic variation in their multiple meristems, indicates that TEs can facilitate somatic evolution in addition to germ line evolution. Critical to their success, angiosperms have a high frequency of polyploidy and hybridization, with resultant increased TE activity and introgression, and beneficial gene duplication. Together with traditional explanations, the enhanced genomic plasticity facilitated by TE-Thrust, suggests a more complete and satisfactory explanation for Darwin's "abominable mystery": the spectacular success of the angiosperms.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | |
Collapse
|
29
|
Abstract
The past decades have revealed an unexpected yet prominent role of so-called 'junk DNA' in the regulation of gene expression, thereby challenging our view of the mechanisms underlying phenotypic evolution. In particular, several mechanisms through which transposable elements (TEs) participate in functional genome diversity have been depicted, bringing to light the 'TEs bright side'. However, the relative contribution of those mechanisms and, more generally, the importance of TE-based polymorphisms on past and present phenotypic variation in crops species remain poorly understood. Here, we review current knowledge on both issues, and discuss how analyses of massively parallel sequencing data combined with statistical methodologies and functional validations will help unravelling the impact of TEs on crop evolution in a near future.
Collapse
|
30
|
Vendramin E, Pea G, Dondini L, Pacheco I, Dettori MT, Gazza L, Scalabrin S, Strozzi F, Tartarini S, Bassi D, Verde I, Rossini L. A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach. PLoS One 2014; 9:e90574. [PMID: 24595269 PMCID: PMC3940905 DOI: 10.1371/journal.pone.0090574] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2013] [Accepted: 02/01/2014] [Indexed: 12/30/2022] Open
Abstract
Nectarines play a key role in peach industry; the fuzzless skin has implications for consumer acceptance. The peach/nectarine (G/g) trait was described as monogenic and previously mapped on chromosome 5. Here, the position of the G locus was delimited within a 1.1 cM interval (635 kb) based on linkage analysis of an F2 progeny from the cross ‘Contender’ (C, peach) x ‘Ambra’ (A, nectarine). Careful inspection of the genes annotated in the corresponding genomic sequence (Peach v1.0), coupled with variant discovery, led to the identification of MYB gene PpeMYB25 as a candidate for trichome formation on fruit skin. Analysis of genomic re-sequencing data from five peach/nectarine accessions pointed to the insertion of a LTR retroelement in exon 3 of the PpeMYB25 gene as the cause of the recessive glabrous phenotype. A functional marker (indelG) developed on the LTR insertion cosegregated with the trait in the CxA F2 progeny and was validated on a broad panel of genotypes, including all known putative donors of the nectarine trait. This marker was shown to efficiently discriminate between peach and nectarine plants, indicating that a unique mutational event gave rise to the nectarine trait and providing a useful diagnostic tool for early seedling selection in peach breeding programs.
Collapse
Affiliation(s)
- Elisa Vendramin
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura – Centro di Ricerca per la Frutticoltura (CRA-FRU), Rome, Italy
| | - Giorgio Pea
- Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, Lodi, Italy
| | | | - Igor Pacheco
- Università degli Studi di Milano, DiSAA, Milan, Italy
| | - Maria Teresa Dettori
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura – Centro di Ricerca per la Frutticoltura (CRA-FRU), Rome, Italy
| | - Laura Gazza
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura – Centro di Ricerca per la Frutticoltura (CRA-FRU), Rome, Italy
| | | | - Francesco Strozzi
- Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, Lodi, Italy
| | | | - Daniele Bassi
- Università degli Studi di Milano, DiSAA, Milan, Italy
| | - Ignazio Verde
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura – Centro di Ricerca per la Frutticoltura (CRA-FRU), Rome, Italy
- * E-mail: (IV); (LR)
| | - Laura Rossini
- Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, Lodi, Italy
- Università degli Studi di Milano, DiSAA, Milan, Italy
- * E-mail: (IV); (LR)
| |
Collapse
|
31
|
Fang C, Li C, Li W, Wang Z, Zhou Z, Shen Y, Wu M, Wu Y, Li G, Kong LA, Liu C, Jackson SA, Tian Z. Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:700-12. [PMID: 24372721 DOI: 10.1111/tpj.12419] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/14/2013] [Revised: 12/06/2013] [Accepted: 12/17/2013] [Indexed: 05/19/2023]
Abstract
Polyploidy is a common phenomenon, particularly in plants. The soybean (Glycine max [L.] Merr.) genome has undergone two whole genome duplication (WGD) events. The conservation and divergence of duplicated gene pairs are major contributors to genome evolution. D1 and D2 are two unlinked, paralogous nuclear genes, whose double-recessive mutant (d1d1d2d2) results in chlorophyll retention, called 'stay-green'. Through molecular cloning and functional analyses, we demonstrated that D1 and D2 are homologs of the STAY-GREEN (SGR) genes from other plant species and were duplicated as a result of the most recent WGD in soybean. Transcriptional analysis showed that both D1 and D2 were more highly expressed in older tissues, and chlorophyll degradation and programmed cell death-related genes were suppressed in a d1d2 double mutant, this situation indicated that these genes are probably involved in the early stages of tissue senescence. Investigation of genes that flank D1 and D2 revealed that evolution within collinear duplicated blocks may affect the conservation of individual gene pairs within the blocks. Moreover, we found that a long terminal repeat retrotransposon, GmD2IN, resulted in the d2 mutation. Further analysis of this retrotransposon family showed that insertion in or near the coding regions can affect gene expression or splicing patterns, and may be an important force to promote the divergence of duplicated gene pairs.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 2014; 14:840-52. [PMID: 24240513 DOI: 10.1038/nrg3605] [Citation(s) in RCA: 621] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Domestication is a good model for the study of evolutionary processes because of the recent evolution of crop species (<12,000 years ago), the key role of selection in their origins, and good archaeological and historical data on their spread and diversification. Recent studies, such as quantitative trait locus mapping, genome-wide association studies and whole-genome resequencing studies, have identified genes that are associated with the initial domestication and subsequent diversification of crops. Together, these studies reveal the functions of genes that are involved in the evolution of crops that are under domestication, the types of mutations that occur during this process and the parallelism of mutations that occur in the same pathways and proteins, as well as the selective forces that are acting on these mutations and that are associated with geographical adaptation of crop species.
Collapse
Affiliation(s)
- Rachel S Meyer
- Center for Genomics and Systems Biology, Department of Biology, 12 Waverly Place, New York University, New York 10003, USA
| | | |
Collapse
|
33
|
Lenser T, Theißen G. Molecular mechanisms involved in convergent crop domestication. TRENDS IN PLANT SCIENCE 2013; 18:704-14. [PMID: 24035234 DOI: 10.1016/j.tplants.2013.08.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/20/2013] [Revised: 08/12/2013] [Accepted: 08/21/2013] [Indexed: 05/21/2023]
Abstract
Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Teresa Lenser
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | | |
Collapse
|
34
|
Bai H, Cao Y, Quan J, Dong L, Li Z, Zhu Y, Zhu L, Dong Z, Li D. Identifying the genome-wide sequence variations and developing new molecular markers for genetics research by re-sequencing a Landrace cultivar of foxtail millet. PLoS One 2013; 8:e73514. [PMID: 24039970 PMCID: PMC3769310 DOI: 10.1371/journal.pone.0073514] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2013] [Accepted: 07/21/2013] [Indexed: 11/18/2022] Open
Abstract
Foxtail millet (Setariaitalica) is a drought-resistant, barren-tolerant grain crop and forage. Currently, it has become a new model plant for cereal crops and biofuel grasses. Although two reference genome sequences were released recently, comparative genomics research on foxtail millet is still in its infancy. Using the Solexa sequencing technology, we performed genome re-sequencing on one important foxtail millet Landrace, Shi-Li-Xiang (SLX). Compared with the two reference genome sequences, the following genetic variation patterns were identified: 762,082 SNPs, 26,802 insertion/deletion polymorphisms of 1 to 5 bp in length (indels), and 10,109 structural variations (SVs) between SLX and Yugu1 genomes; 915,434 SNPs, 28,546 indels and 12,968 SVs between SLX and Zhang gu genomes. Furthermore, based on the Yugu1 genome annotation, we found out that ~ 40% SNPs resided in genes containing NB-ARC domain, protein kinase or leucine-rich repeats, which had higher non-synonymous to synonymous SNPs ratios than average, suggesting that the diversification of plant disease resistance proteins might be caused by pathogen pressure. In addition, out of the polymorphisms identified between SLX and Yugu1, 465 SNPs and 146 SVs were validated with more than 90% accuracy, which could be used as DNA markers for whole-genome genotyping and marker-assisted breeding. Here, we also represented an example of fine mapping and identifying a waxy locus in SLX using these newly developed DNA markers. This work provided important information that will allow a deeper understanding of the foxtail millet genome and will be helpful for dissecting the genetic basis of important traits in foxtail millet.
Collapse
Affiliation(s)
- Hui Bai
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- National Foxtail Millet Improvement Center, Shijiazhuang, Hebei, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianzhang Quan
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- National Foxtail Millet Improvement Center, Shijiazhuang, Hebei, China
- Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Li Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- National Foxtail Millet Improvement Center, Shijiazhuang, Hebei, China
- Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Zhiyong Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- National Foxtail Millet Improvement Center, Shijiazhuang, Hebei, China
- Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Yanbin Zhu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- National Foxtail Millet Improvement Center, Shijiazhuang, Hebei, China
- College of Life Sciences, Agricultural University of Hebei, Baoding, Hebei, China
- Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhiping Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- National Foxtail Millet Improvement Center, Shijiazhuang, Hebei, China
- Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- * E-mail: (ZD); (DL)
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (ZD); (DL)
| |
Collapse
|
35
|
Abstract
For decades, transposable elements have been known to produce a wide variety of changes in plant gene expression and function. This has led to the idea that transposable element activity has played a key part in adaptive plant evolution. This Review describes the kinds of changes that transposable elements can cause, discusses evidence that those changes have contributed to plant evolution and suggests future strategies for determining the extent to which these changes have in fact contributed to plant adaptation and evolution. Recent advances in genomics and phenomics for a range of plant species, particularly crops, have begun to allow the systematic assessment of these questions.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
36
|
Kim EJ, Sa KJ, Park KC, Lee JK. Study of genetic diversity and relationships among accessions of foxtail millet [Setaria italica (L.) P. Beauv.] in Korea, China, and Pakistan using SSR markers. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0074-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|
37
|
Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 2012; 33:328-43. [PMID: 22985089 DOI: 10.3109/07388551.2012.716809] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
Abstract
Foxtail millet is one of the oldest domesticated diploid C4 Panicoid crops having a comparatively small genome size of approximately 515 Mb, short life cycle, and inbreeding nature. Its two species, Setaria italica (domesticated) and Setaria viridis (wild progenitor), have characteristics that classify them as excellent model systems to examine several aspects of architectural, evolutionary, and physiological importance in Panicoid grasses especially the biofuel crops such as switchgrass and napiergrass. Foxtail millet is a staple crop used extensively for food and fodder in parts of Asia and Africa. In its long history of cultivation, it has been adapted to arid and semi-arid areas of Asia, North Africa, South and North America. Foxtail millet has one of the largest collections of cultivated as well as wild-type germplasm rich with phenotypic variations and hence provides prospects for association mapping and allele-mining of elite and novel variants to be incorporated in crop improvement programs. Most of the foxtail millet accessions can be primarily abiotic stress tolerant particularly to drought and salinity, and therefore exploiting these agronomic traits can enhance its efficacy in marker-aided breeding as well as in genetic engineering for abiotic stress tolerance. In addition, the release of draft genome sequence of foxtail millet would be useful to the researchers worldwide in not only discerning the molecular basis of biomass production in biofuel crops and the methods to improve it, but also for the introgression of beneficial agronomically important characteristics in foxtail millet as well as in related Panicoid bioenergy grasses.
Collapse
Affiliation(s)
- Charu Lata
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
38
|
The building block structure of barley amylopectin. Int J Biol Macromol 2011; 49:900-9. [DOI: 10.1016/j.ijbiomac.2011.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 11/24/2022]
|
39
|
Bertoft E, Källman A, Koch K, Andersson R, Åman P. The cluster structure of barley amylopectins of different genetic backgrounds. Int J Biol Macromol 2011; 49:441-53. [DOI: 10.1016/j.ijbiomac.2011.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2011] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 11/27/2022]
|
40
|
Hirano R, Naito K, Fukunaga K, Watanabe KN, Ohsawa R, Kawase M. Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome 2011; 54:498-506. [PMID: 21623678 DOI: 10.1139/g11-015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Although the origin and domestication process of foxtail millet (Setaria italica subsp. italica (L.) P. Beauv.) has been studied by several groups, the issue is still ambiguous. It is essential to resolve this issue by studying a large number of accessions with sufficient markers covering the entire genome. Genetic structures were analyzed by transposon display (TD) using 425 accessions of foxtail millet and 12 of the wild ancestor green foxtail (Setaria italica subsp. viridis (L.) P. Beauv.). We used three recently active transposons (TSI-1, TSI-7, and TSI-10) as genome-wide markers and succeeded in demonstrating geographical structures of the foxtail millet. A neighbor-joining dendrogram based on TD grouped the foxtail millet accessions into eight major clusters, each of which consisted of accessions collected from adjacent geographical areas. Eleven out of 12 green foxtail accessions were grouped separately from the clusters of foxtail millet. These results indicated strong regional differentiations and a long history of cultivation in each region. Furthermore, we discuss the relationship between foxtail millet and green foxtail and suggest a monophyletic origin of foxtail millet domestication.
Collapse
Affiliation(s)
- Ryoko Hirano
- a Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Gross BL, Steffen FT, Olsen KM. The molecular basis of white pericarps in African domesticated rice: novel mutations at the Rc gene. J Evol Biol 2011; 23:2747-53. [PMID: 21121088 DOI: 10.1111/j.1420-9101.2010.02125.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Repeated phenotypic evolution can occur at both the inter- and intraspecific level and is especially prominent in domesticated plants, where artificial selection has favoured the same traits in many different species and varieties. The question of whether repeated evolution reflects changes at the same or different genes in each lineage can now be addressed using the domestication and improvement genes that have been identified in a variety of crops. Here, we document the genetic basis of nonpigmented ('white') pericarps in domesticated African rice (Oryza glaberrima) and compare it with the known genetic basis of the same trait in domesticated Asian rice (Oryza sativa). In some cases, white pericarps in African rice are apparently caused by unique mutations at the Rc gene, which also controls pericarp colour variation in Asian rice. In one case, white pericarps appear to reflect changes at a different gene or potentially a cis-regulatory region.
Collapse
Affiliation(s)
- B L Gross
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
42
|
Hunt HV, Denyer K, Packman LC, Jones MK, Howe CJ. Molecular basis of the waxy endosperm starch phenotype in broomcorn millet (Panicum miliaceum L.). Mol Biol Evol 2010; 27:1478-94. [PMID: 20139147 PMCID: PMC2884200 DOI: 10.1093/molbev/msq040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Waxy varieties of the tetraploid cereal broomcorn millet (Panicum miliaceum L.) have endosperm starch granules lacking detectable amylose. This study investigated the basis of this phenotype using molecular and biochemical methods. Iodine staining of starch granules in 72 plants from 38 landrace accessions found 58 nonwaxy and 14 waxy phenotype plants. All waxy types were in plants from Chinese and Korean accessions, a distribution similar to that of the waxy phenotype in other cereals. Granule-bound starch synthase I (GBSSI) protein was present in the endosperm of both nonwaxy and waxy individuals, but waxy types had little or no granule-bound starch synthase activity compared with the wild types. Sequencing of the GBSSI (Waxy) gene showed that this gene is present in two different forms (L and S) in P. miliaceum, which probably represent homeologues derived from two distinct diploid ancestors. Protein products of both these forms are present in starch granules. We identified three polymorphisms in the exon sequence coding for mature GBSSI peptides. A 15-bp deletion has occurred in the S type GBSSI, resulting in the loss of five amino acids from glucosyl transferase domain 1 (GTD1). The second GBSSI type (L) shows two sequence polymorphisms. One is the insertion of an adenine residue that causes a reading frameshift, and the second causes a cysteine–tyrosine amino acid polymorphism. These mutations appear to have occurred in parallel from the ancestral allele, resulting in three GBSSI-L alleles in total. Five of the six possible genotype combinations of the S and L alleles were observed. The deletion in the GBSSI-S gene causes loss of protein activity, and there was 100% correspondence between this deletion and the waxy phenotype. The frameshift mutation in the L gene results in the loss of L-type protein from starch granules. The L isoform with the tyrosine residue is present in starch granules but is nonfunctional. This loss of function may result from the substitution of tyrosine for cysteine, although it could not be determined whether the cysteine isoform of L represents the functional type. This is the first characterization of mutations that occur in combination in a functionally polyploid species to give a fully waxy phenotype.
Collapse
Affiliation(s)
- Harriet V Hunt
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
43
|
MUTO C, KAWANO K, BOUNPHANOUSAY C, TANISAKA T, SATO YI. Variation and dispersal of landraces in northern Laos based on the differentiation of waxy gene in rice (O. sativa L.). TROPICS 2010. [DOI: 10.3759/tropics.18.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
44
|
Prathepha P. Molecular analysis of utility of a retrotransposon, p-SINE1-r2 in the Asian wild rice and weedy rice populations. Pak J Biol Sci 2009; 12:270-5. [PMID: 19579957 DOI: 10.3923/pjbs.2009.270.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
The distribution of a retrotransposon, p-SINE1-r2 located at the waxy locus was analyzed by the PCR assay in the perennial wild rice (Oryza rufipogon) which inhabited in four isolated and six disturbed populations and in the weedy rice population. The level of clonality of the wild rice species was determined in populations subject to level of water supply and another disturbance. The results showed that all four isolated populations carried the genotype (-/-) and (-/+), while three genotypes (-/-), (-/+) and (+/+) was found on the six populations which grown near by rice fields. This finding was strongly supported the idea that the original wild rice populations of O. rufipogon exhibited prominent genotype (-/-) and (-/+) and mainly propagated by vegetative reproduction and the allele (+) which found in the wild rice plant with the genotype (+/+) may originated from gene flow from cultivated rice to wild rice. Weedy rice accessions used in this study showed the three genotypes based on this DNA locus. The distribution of this DNA locus in wild rice and weedy rice populations were deviated from the Hardy-Weinberg equilibrium. The perennial wild rice populations were annually under season drought (March to May of the year in Thailand, Laos and Cambodia), they tended to have small size clones with relatively high clonal diversity (i.e., number of genotypes), except for the population from Cambodia, which carried only the genotype (-/+). Although DNA maker used to detect genetic variation at population levels is too small, but this locus is very sensitive enough to be a useful indicator for genetic variation at the population level.
Collapse
Affiliation(s)
- Preecha Prathepha
- Rice Genetics Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Maha Sarakham Province 4400, Thailand
| |
Collapse
|
45
|
Shapter F, Eggler P, Lee L, Henry R. Variation in Granule Bound Starch Synthase I (GBSSI) loci amongst Australian wild cereal relatives (Poaceae). J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2008.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|
46
|
Doust AN, Kellogg EA, Devos KM, Bennetzen JL. Foxtail millet: a sequence-driven grass model system. PLANT PHYSIOLOGY 2009; 149:137-41. [PMID: 19126705 PMCID: PMC2613750 DOI: 10.1104/pp.108.129627] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/08/2008] [Accepted: 11/06/2008] [Indexed: 05/20/2023]
Affiliation(s)
- Andrew N Doust
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
Crop grasses were among the first plants to be domesticated c. 12,000 yr ago, and they still represent the main staple crops for humans. During domestication, as did many other crops, grasses went through dramatic genetic and phenotypic changes. The recent massive increase in genomic data has provided new tools to investigate the genetic basis and consequences of domestication. Beyond the genetics of domestication, many aspects of grass biology, including their phylogeny and developmental biology, are also increasingly well studied, offering a unique opportunity to analyse the domestication process in a comparative way. Taking such a comparative point of view, we review the history of domesticated grasses and how domestication affected their phenotypic and genomic diversity. Considering recent theoretical developments and the accumulation of genetic data, we revisit more specifically the role of mating systems in the domestication process. We close by suggesting future directions for the study of domestication in grasses.
Collapse
Affiliation(s)
- Sylvain Glémin
- Institut des Sciences de l'Evolution (UM2-CNRS), Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Thomas Bataillon
- Institute of Biology, Section of Genetics and Ecology and Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
- INRA, UMR 1097 Diversité et Adaptation des Plantes Cultivées, Montpellier, France
| |
Collapse
|
48
|
Xu Z, Ramakrishna W. Retrotransposon insertion polymorphisms in six rice genes and their evolutionary history. Gene 2008; 412:50-8. [PMID: 18291601 DOI: 10.1016/j.gene.2008.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2007] [Revised: 01/05/2008] [Accepted: 01/08/2008] [Indexed: 01/08/2023]
Abstract
Retrotransposons are abundant in higher plant genomes. Although retrotransposons associated with plant genes have been identified, little is known about their evolutionary conservation at the level of species and subspecies. In the present study, we investigated the phylogenetic distribution of long terminal repeat (LTR) retrotransposon, long interspersed nuclear element (LINE) and short interspersed nuclear element (SINE) insertions in six genes in 95 cultivated and wild rice genotypes. These six genes are likely to be functional based on nonsynonymous (Ka) to synonymous (Ks) substitution ratios which were found to be significantly <1. Different conservation patterns of these retrotransposons in genes were observed in cultivated and wild rice species. Four out of seven retrotransposon insertions appear to predate the ancestral Oryza AA genome. Two of these insertions in genes 4 and 5 occurred early in the evolutionary history of Oryza. Two retrotransposon insertions in gene 1 arose after the divergence of Asian cultivated rice from its wild ancestor. Furthermore, the retrotransposon insertion in gene 3 appears to have occurred in the ancestral lineage leading to temperate japonicas. Conservation of retrotransposon insertions in genes in specific groups, species, and lineages might be related to their specific function.
Collapse
Affiliation(s)
- Zijun Xu
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, USA
| | | |
Collapse
|
49
|
Van K, Onoda S, Kim MY, Kim KD, Lee SH. Allelic variation of the Waxy gene in foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms. Mol Genet Genomics 2007; 279:255-66. [PMID: 18157676 DOI: 10.1007/s00438-007-0310-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2007] [Accepted: 11/28/2007] [Indexed: 11/29/2022]
Abstract
The Waxy (Wx) gene product controls the formation of a straight chain polymer of amylose in the starch pathway. Dominance/recessiveness of the Wx allele is associated with amylose content, leading to non-waxy/waxy phenotypes. For a total of 113 foxtail millet accessions, agronomic traits and the molecular differences of the Wx gene were surveyed to evaluate genetic diversities. Molecular types were associated with phenotypes determined by four specific primer sets (non-waxy, Type I; low amylose, Type VI; waxy, Type IV or V). Additionally, the insertion of transposable element in waxy was confirmed by ex1/TSI2R, TSI2F/ex2, ex2int2/TSI7R and TSI7F/ex4r. Seventeen single nucleotide polymorphims (SNPs) were observed from non-coding regions, while three SNPs from coding regions were non-synonymous. Interestingly, the phenotype of No. 88 was still non-waxy, although seven nucleotides (AATTGGT) insertion at 2,993 bp led to 78 amino acids shorter. The rapid decline of r (2) in the sequenced region (exon 1-intron 1-exon 2) suggested a low level of linkage disequilibrium and limited haplotype structure. K (s) values and estimation of evolutionary events indicate early divergence of S. italica among cereal crops. This study suggested the Wx gene was one of the targets in the selection process during domestication.
Collapse
Affiliation(s)
- K Van
- Department of Plant Science, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-921, The Republic of Korea
| | | | | | | | | |
Collapse
|
50
|
Ross-Ibarra J, Morrell PL, Gaut BS. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci U S A 2007; 104 Suppl 1:8641-8. [PMID: 17494757 PMCID: PMC1876441 DOI: 10.1073/pnas.0700643104] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
Despite the fundamental role of plant domestication in human history and the critical importance of a relatively small number of crop plants to modern societies, we still know little about adaptation under domestication. Here we focus on efforts to identify the genes responsible for adaptation to domestication. We start from a historical perspective, arguing that Darwin's conceptualization of domestication and unconscious selection provides valuable insight into the evolutionary history of crops and also provides a framework to evaluate modern methods used to decipher the genetic mechanisms underlying phenotypic change. We then review these methods, framing the discussion in terms of the phenotype-genotype hierarchy. Top-down approaches, such as quantitative trait locus and linkage disequilibrium mapping, start with a phenotype of interest and use genetic analysis to identify candidate genes. Bottom-up approaches, alternatively, use population genetic analyses to identify potentially adaptive genes and then rely on standard bioinformatics and reverse genetic tools to connect selected genes to a phenotype. We discuss the successes, advantages, and challenges of each, but we conclude that bottom-up approaches to understanding domestication as an adaptive process hold greater promise both for the study of adaptation and as a means to identify genes that contribute to agronomically important traits.
Collapse
Affiliation(s)
- Jeffrey Ross-Ibarra
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525
| | - Peter L. Morrell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|