1
|
Yang L, Sun J, Zhang Y, Guo X, Zhao G. Comprehensive comparative analysis of histopathology and gene expression in subchondral bone between kashin-beck disease and primary osteoarthritis. Front Genet 2022; 13:942326. [PMID: 35923709 PMCID: PMC9339956 DOI: 10.3389/fgene.2022.942326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Kashin-Beck disease (KBD) is an endemic, degenerative osteoarthropathy that exhibits some similar characteristics to osteoarthritis (OA) but with different etiologies and pathogeneses. In addition to cartilage damage, microstructural changes of bone were observed in KBD. This study aimed to comparatively demonstrate the general histopathological changes, transcriptomics, and differentially expressed miRNAs of subchondral bone between KBD and OA. Tibial plateau subchondral bone samples were collected from eighteen patients with KBD and eighteen patients with OA. Histopathological changes were examined by hematoxylin-eosin (HE) staining, safranin O-fast green staining, and picrosirius red staining. RNA sequencing and miRNA array analysis were performed to screen the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs), respectively. The subchondral bone samples of the tibial plateau of KBD and OA both showed increased thickness and sclerosis. A total of 179 DEGs and 124 DEMs were identified in subchondral bone between KBD and OA, which were involved in several vital GO terms and KEGG signaling pathways. Our results suggest that the pathological mechanisms of subchondral bone are different between KBD and OA, although they exhibit similar histopathological features. Integrated analysis revealed several genes such as ADAMTS14, SLC13A5, and CEACAM1, that may be crucial DEGs in subchondral bone between KBD and OA, suggesting that these genes could serve as potential differential diagnostic biomarkers for subchondral bone lesions in KBD and OA. These findings provide valuable information for further clarifying pathological changes in subchondral bone in KBD and OA.
Collapse
Affiliation(s)
- Lei Yang
- School of Nursing, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi’an Jiaotong University, Xi’an, China
| | - Jingwen Sun
- School of Nursing, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Ying Zhang
- School of Nursing, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi’an Jiaotong University, Xi’an, China
| | - Xiong Guo
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi’an Jiaotong University, Xi’an, China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Guanghui Zhao,
| |
Collapse
|
2
|
Yu FF, Sun L, Zhou GY, Ping ZG, Guo X, Ba Y. Meta-analysis of Association Studies of Selenoprotein Gene Polymorphism and Kashin-Beck Disease: an Updated Systematic Review. Biol Trace Elem Res 2022; 200:543-550. [PMID: 33844169 DOI: 10.1007/s12011-021-02705-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
To evaluate the association between selenoprotein gene polymorphisms and Kashin-Beck disease (KBD) susceptibility through a systematic review and updated meta-analysis. PubMed, Google Scholar, Cochrane library, and Chinese National Knowledge Infrastructure (CNKI) were electronically searched using the terms "selenoprotein" and "Kashin-Beck disease" or "KBD" with a search time from the establishment of the database to January 2021. The Newcastle-Ottawa Scale (NOS) was used for methodological quality evaluation of the included studies. Stata 14.0 software was used to pooled odds ratio (OR) and 95% confidence interval. There were a total of eight included case-control studies covering 2025 KBD patients and 1962 controls. Meta-analysis results show that the pooled odds ratios (OR) and 95% confidence intervals (CI) for DIO2 (rs225014) were 0.69 (0.52, 0.91), 0.69 (0.50, 0.96), and 0.72 (0.52, 0.99) in the allele, heterozygote, and dominant models, respectively. The OR and 95%CI for SEPS1 (-105G>A) were 2.47 (1.85, 3.29), 9.36 (4.58, 19.12), 2.17 (1.53, 3.08), and 8.60 (4.25, 17.38) in the allele, homozygote, dominant, and recessive models, respectively. In addition, the OR and 95%CI for Sep15 (rs5859) were 2.05 (1.06, 3.96) in the allele model. These results illustrate that there was a significant association between DIO2 (rs225014), SEPS1 (-105G>A), Sep15 (rs5859), and KBD. For GPX1 (rs1050450, rs1800668, rs3811699), DIO2 (rs225014, rs1352815, rs1388382), TrxR2 (rs1139793, rs5746841), GPX4 (rs713041, rs4807542), and SEPP1 (rs7579, 25191g/a), there was no significant statistical difference between the KBD and control groups (P>0.05). We conclude that the DIO2 (rs225014), SEPS1 (-105G>A), and Sep15 (rs5859) gene polymorphism are associated with susceptibility to KBD.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Lei Sun
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Guo-Yu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhi-Guang Ping
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, 45001, China
| | - Xiong Guo
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, China
| | - Yue Ba
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
3
|
Yang X, Xiao X, Zhang L, Wang B, Li P, Cheng B, Liang C, Ma M, Guo X, Zhang F, Wen Y. An integrative analysis of DNA methylation and transcriptome showed the dysfunction of MAPK pathway was involved in the damage of human chondrocyte induced by T-2 toxin. BMC Mol Cell Biol 2022; 23:4. [PMID: 35038982 PMCID: PMC8762874 DOI: 10.1186/s12860-021-00404-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/28/2021] [Indexed: 12/05/2022] Open
Abstract
Background T-2 toxin is thought to induce the growth plate and articular cartilage damage of Kashin-Beck disease (KBD), an endemic osteochondropathy in China. This study aims to explore the potential underlying mechanism of such toxic effects by integrating DNA methylation and gene expression profiles. Methods In this study, C28/I2 chondrocytes were treated with T-2 toxin (5 ng/mL) for 24 h and 72 h. Global DNA methylation level of chondrocyte was tested by Enzyme-Linked Immuno Sorbent Assay. Genome-wide DNA methylation and expression profiles were detected using Illumina Infinium HumanMethylation850 BeadChip and RNA-seq technique, respectively. Differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were identified mainly for two stages including 24 h group versus Control group and 72 h group versus 24 h group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by Metascape. DMGs and DEGs were further validated by Sequenom MassARRAY system and quantitative real-time polymerase chain reaction. Results The global DNA methylation levels of chondrocytes exposed to T-2 toxin were significantly increased (P < 0.05). For 24 h group versus Control group (24 VS C), 189 DEGs and 590 DMGs were identified, and 4 of them were overlapping. For 72 h group versus 24 h group (72 VS 24), 1671 DEGs and 637 DMGs were identified, and 45 of them were overlapping. The enrichment analysis results of DMGs and DEGs both showed that MAPK was the one of the mainly involved signaling pathways in the regulation of chondrocytes after T-2 toxin exposure (DEGs: P24VSc = 1.62 × 10− 7; P72VS24 = 1.20 × 10− 7; DMGs: P24VSc = 0.0056; P72VS24 = 3.80 × 10− 5). Conclusions The findings depicted a landscape of genomic methylation and transcriptome changes of chondrocytes after T-2 toxin exposure and suggested that dysfunction of MAPK pathway may play important roles in the chondrocytes damage induced by T-2 toxin, which could provide new clues for understanding the potential biological mechanism of KBD cartilage damage induced by T-2 toxin. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00404-3.
Collapse
Affiliation(s)
- Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Bo Wang
- HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaan'xi, 710061, People's Republic of China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
4
|
Yang L, Wang S, Zhao G, Wang X, Guo X. Comparison of the toxic mechanism of T-2 toxin and deoxynivalenol on human chondrocytes by microarray and bioinformatics analysis. Toxicol Lett 2019; 321:61-68. [PMID: 31863870 DOI: 10.1016/j.toxlet.2019.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
T-2 toxin and deoxynivalenol (DON) are two representative mycotoxins that are commonly found in cereals and agricultural products. As T-2 toxin and DON are considered the cause of Kashin-Beck disease, a special osteoarticular disease, chondrocytes would be a vital target site for these toxins. To fully understand the toxicity effects of T-2 toxin and DON on chondrocytes, the present study investigated and compared the gene expression profiles and underlying mechanisms of T-2 toxin and DON on cultured human chondrocytes by microarray and bioinformatics analysis. Normal human chondrocytes were treated with T-2 toxin at 0.01 μg/ml and DON at 1.0 μg/ml for 72 h and analyzed by microarray using Affymetrix Human Gene Chip. Comprehensive analysis, including gene ontology, pathways and gene-gene networks was performed to identify the crucial gene functions, related signal pathways and key genes. A total of 175 and 237 differentially expressed genes were identified in human chondrocytes for T-2 toxin and DON treatment, respectively. Of these, 47 had the same expression tendencies in the two groups. The protein-protein interaction network analysis showed that the 10 hub genes were different between the two groups. Our results provide a comprehensive understanding of the toxic mechanism of T-2 toxin and DON on human chondrocytes and suggest that although T-2 toxin and DON showed some similar toxic mechanisms in human chondrocytes, they also had different toxic characteristics.
Collapse
Affiliation(s)
- Lei Yang
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, Shaanxi, PR China
| | - Suiqin Wang
- Yanan University Affiliated Hospital, Yanan, Shaanxi, PR China
| | - Guanghui Zhao
- Hong Hui Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xi Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, Shaanxi, PR China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, Shaanxi, PR China.
| |
Collapse
|
5
|
Wang K, Yu J, Liu H, Liu Y, Liu N, Cao Y, Zhang X, Sun D. Endemic Kashin-Beck disease: A food-sourced osteoarthropathy. Semin Arthritis Rheum 2019; 50:366-372. [PMID: 31548049 DOI: 10.1016/j.semarthrit.2019.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Kashin-Beck disease (KBD) is an endemic osteoarthropathy, which causes disability and heavy socioeconomic burdens. The preventive measures have been taken in the past few decades. However, recent KBD-epidemiological trend and comprehensive effect of its preventive measures need to be evaluated. METHODS By employing typical survey, cross-sectional survey, case-control study, intervention trial, and national surveillance, the present study summarizes comprehensive role of KBD-preventive measures. RESULTS The endemic KBD is distributed in a long and narrow area of the world. The latest epidemic began in the late 1950s and lasted until the end of 1980s. Epidemiology of the KBD was characterized by early-onset, gender equality, agricultural area, regional discrepancy, family aggregation, annual fluctuation, etc. Multivariate regression analysis suggested that etiology of the KBD was food-related factors such as fungal contamination of grains, selenium deficiency, imbalance of protein intake, etc. A series of intervention measures for KBD control had been implemented since 1990s, and involved more than 300 million residents. National incidences were 22.1% in 1990, 16.0% in 1995, 12.3% in 2000, 5.5% in 2005, 0.38% in 2010, and 0.18 in 2015, respectively. Although new patients were annually decreased, it still affected 22,567,600 inhabitants and there were 574,925 patients in 2016. CONCLUSIONS Etiology of the KBD is food-sourced. Its decreased incidence may attribute to an effective implementation of preventive measures. It is possible to eradicate KBD from the earth in the near future.
Collapse
Affiliation(s)
- Kewei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin 150081, People's Republic of China; Key Laboratory of Etiology and Epidemiology, National Health and Family Planning Commission, Harbin Medical University, Harbin, People's Republic of China; China and Russia Medical Research Center, Harbin Medical University, Harbin, People's Republic of China; Harbin Medical University, Harbin, People's Republic of China
| | - Jun Yu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin 150081, People's Republic of China; Key Laboratory of Etiology and Epidemiology, National Health and Family Planning Commission, Harbin Medical University, Harbin, People's Republic of China; China and Russia Medical Research Center, Harbin Medical University, Harbin, People's Republic of China; Harbin Medical University, Harbin, People's Republic of China
| | - Hui Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin 150081, People's Republic of China; Key Laboratory of Etiology and Epidemiology, National Health and Family Planning Commission, Harbin Medical University, Harbin, People's Republic of China; China and Russia Medical Research Center, Harbin Medical University, Harbin, People's Republic of China; Harbin Medical University, Harbin, People's Republic of China
| | - Yunqi Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin 150081, People's Republic of China; Key Laboratory of Etiology and Epidemiology, National Health and Family Planning Commission, Harbin Medical University, Harbin, People's Republic of China; China and Russia Medical Research Center, Harbin Medical University, Harbin, People's Republic of China; Harbin Medical University, Harbin, People's Republic of China
| | - Ning Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin 150081, People's Republic of China; Key Laboratory of Etiology and Epidemiology, National Health and Family Planning Commission, Harbin Medical University, Harbin, People's Republic of China; China and Russia Medical Research Center, Harbin Medical University, Harbin, People's Republic of China; Harbin Medical University, Harbin, People's Republic of China
| | - Yanhong Cao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin 150081, People's Republic of China; Key Laboratory of Etiology and Epidemiology, National Health and Family Planning Commission, Harbin Medical University, Harbin, People's Republic of China; China and Russia Medical Research Center, Harbin Medical University, Harbin, People's Republic of China; Harbin Medical University, Harbin, People's Republic of China
| | - Xufeng Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin 150081, People's Republic of China; Key Laboratory of Etiology and Epidemiology, National Health and Family Planning Commission, Harbin Medical University, Harbin, People's Republic of China; China and Russia Medical Research Center, Harbin Medical University, Harbin, People's Republic of China; Harbin Medical University, Harbin, People's Republic of China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin 150081, People's Republic of China; Key Laboratory of Etiology and Epidemiology, National Health and Family Planning Commission, Harbin Medical University, Harbin, People's Republic of China; China and Russia Medical Research Center, Harbin Medical University, Harbin, People's Republic of China; Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
6
|
Zhao GH, Yang L, Lammi MJ, Guo X. A preliminary analysis of microRNA profiles in the subchondral bone between Kashin-Beck disease and primary knee osteoarthritis. Clin Rheumatol 2019; 38:2637-2645. [DOI: 10.1007/s10067-019-04580-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/07/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
|