1
|
Georgiou N, Kakava MG, Routsi EA, Petsas E, Stavridis N, Freris C, Zoupanou N, Moschovou K, Kiriakidi S, Mavromoustakos T. Quercetin: A Potential Polydynamic Drug. Molecules 2023; 28:8141. [PMID: 38138630 PMCID: PMC10745404 DOI: 10.3390/molecules28248141] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The study of natural products as potential drug leads has gained tremendous research interest. Quercetin is one of those natural products. It belongs to the family of flavonoids and, more specifically, flavonols. This review summarizes the beneficial pharmaceutical effects of quercetin, such as its anti-cancer, anti-inflammatory, and antimicrobial properties, which are some of the quercetin effects described in this review. Nevertheless, quercetin shows poor bioavailability and low solubility. For this reason, its encapsulation in macromolecules increases its bioavailability and therefore pharmaceutical efficiency. In this review, a brief description of the different forms of encapsulation of quercetin are described, and new ones are proposed. The beneficial effects of applying new pharmaceutical forms of nanotechnology are outlined.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Margarita Georgia Kakava
- Laboratory of Organic Chemistry and Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Efthymios Alexandros Routsi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Errikos Petsas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Nikolaos Stavridis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Christoforos Freris
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Nikoletta Zoupanou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Kalliopi Moschovou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Sofia Kiriakidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Departamento de Quimica Orgánica, Facultade de Quimica, Universidade de Vigo, 36310 Vigo, Spain
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| |
Collapse
|
2
|
Fu X, Li G, Niu Y, Xu J, Wang P, Zhou Z, Ye Z, Liu X, Xu Z, Yang Z, Zhang Y, Lei T, Zhang B, Li Q, Cao A, Jiang T, Duan X. Carbon-Based Fiber Materials as Implantable Depth Neural Electrodes. Front Neurosci 2022; 15:771980. [PMID: 35002602 PMCID: PMC8730365 DOI: 10.3389/fnins.2021.771980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
Implantable brain electrophysiology electrodes are valuable tools in both fundamental and applied neuroscience due to their ability to record neural activity with high spatiotemporal resolution from shallow and deep brain regions. Their use has been hindered, however, by the challenges in achieving chronically stable operations. Furthermore, implantable depth neural electrodes can only carry out limited data sampling within predefined anatomical regions, making it challenging to perform large-area brain mapping. Minimizing inflammatory responses and associated gliosis formation, and improving the durability and stability of the electrode insulation layers are critical to achieve long-term stable neural recording and stimulation. Combining electrophysiological measurements with simultaneous whole-brain imaging techniques, such as magnetic resonance imaging (MRI), provides a useful solution to alleviate the challenge in scalability of implantable depth electrodes. In recent years, various carbon-based materials have been used to fabricate flexible neural depth electrodes with reduced inflammatory responses and MRI-compatible electrodes, which allows structural and functional MRI mapping of the whole brain without obstructing any brain regions around the electrodes. Here, we conducted a systematic comparative evaluation on the electrochemical properties, mechanical properties, and MRI compatibility of different kinds of carbon-based fiber materials, including carbon nanotube fibers, graphene fibers, and carbon fibers. We also developed a strategy to improve the stability of the electrode insulation without sacrificing the flexibility of the implantable depth electrodes by sandwiching an inorganic barrier layer inside the polymer insulation film. These studies provide us with important insights into choosing the most suitable materials for next-generation implantable depth electrodes with unique capabilities for applications in both fundamental and translational neuroscience research.
Collapse
Affiliation(s)
- Xuefeng Fu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Gen Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yutao Niu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, China
| | - Jingcao Xu
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Puxin Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhaoxiao Zhou
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ziming Ye
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiaojun Liu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Zheng Xu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Ziqian Yang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yongyi Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, China
| | - Ting Lei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qingwen Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Tianzai Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiaojie Duan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,National Biomedical Imaging Center, Peking University, Beijing, China
| |
Collapse
|
3
|
Farooqi BA, Yar M, Ashraf A, Farooq U, Ayub K. Graphene-polyaniline composite as superior electrochemical sensor for detection of cyano explosives. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Alban L, Monteiro WF, Diz FM, Miranda GM, Scheid CM, Zotti ER, Morrone FB, Ligabue R. New quercetin-coated titanate nanotubes and their radiosensitization effect on human bladder cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110662. [PMID: 32204090 DOI: 10.1016/j.msec.2020.110662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Interest in nanostructures such as titanate nanotubes (TNT) has grown notably in recent years due to their biocompatibility and economic viability, making them promising for application in the biomedical field. Quercetin (Qc) has shown great potential as a chemopreventive agent and has been widely studied for the treatment of diseases such as bladder cancer. Motivated by the possibilities of developing a new hybrid nanostructure with potential in biomedical applications, this study aimed to investigate the incorporation of quercetin in sodium (NaTNT) and zinc (ZnTNT) titanate nanotubes, and characterize the nanostructures formed. Qc release testing was also performed and cytotoxicity in Vero and T24 cell lines evaluated by the MTT assay. The effect of TNTs on T24 bladder cancer cell radiosensitivity was also assessed, using cell proliferation and a clonogenic assay. The TNT nanostructures were synthesized and characterized by FESEM, EDS, TEM, FTIR, XRD and TGA. The results showed that the nanostructures have a tubular structure and that the exchange of Na+ ions for Zn2+ and incorporation of quercetin did not alter this morphology. In addition, interaction between Zn and Qc increased the thermal stability of the nanostructures. The release test showed that maximum Qc delivery occurred after 24 h and the presence of Zn controlled its release. Biological assays indicated that the NaTNTQc and ZnTNTQc nanostructures decreased the viability of T24 cells after 48 h at high concentrations. Furthermore, the clonogenic assay showed that NaTNT, NaTNTQc, ZnTNT and ZnTNTQc combined with 5 Gy reduced the formation of polyclonal colonies of T24 cells after 48 h. The results suggest that the nanostructures synthesized in this study interfere in cell proliferation and can therefore be a powerful tool in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Luisa Alban
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Wesley Formentin Monteiro
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Fernando Mendonça Diz
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Gabriela Messias Miranda
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Carolina Majolo Scheid
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Eduardo Rosa Zotti
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Fernanda Bueno Morrone
- School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Rosane Ligabue
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil; School of Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil.
| |
Collapse
|
5
|
Balasubramanian P, Annalakshmi M, Chen SM, Sathesh T, Balamurugan TST. Ultrasonic energy-assisted preparation of β-cyclodextrin-carbon nanofiber composite: Application for electrochemical sensing of nitrofurantoin. ULTRASONICS SONOCHEMISTRY 2019; 52:391-400. [PMID: 30591361 DOI: 10.1016/j.ultsonch.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/01/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
A simple ultrasonic energy assisted synthesis of β-cyclodextrin (β-CD) supported carbon nanofiber composite (CNF) and its potential application in electrochemical sensing of antibiotic nitrofurantoin (NFT) is reported. The elemental composition and surface morphology of the β-CD/CNF composite was validated through Field emission scanning electron microscopy, energy dispersive X-ray microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The uniform enfolding of hydrophilic β-CD over CNF enhance the aqueous dispersion and offer abundant active surface to the β-CD/CNF composite. Further, the electrocatalytic efficacy of the β-CD/CNF composite is utilized to fabricate an electrochemical sensor for the high sensitive quantitative detection of NFT. Under optimized analytical conditions, the sensor displays a broad working range of 0.004-308 µM and calculated detection limit of 1.8 nM, respectively. In addition, the sensor showcased a good selectivity, storage, and working stability, with amiable reproducibility. The point-of-care applicability of the sensor was demonstrated with NFT spiked human blood serum and urine sample with reliable analytical performance. The simple, cost-effective NFT sensor based on β-CD/CNF offered outstanding analytical performance in real-world samples with higher reliability.
Collapse
Affiliation(s)
- Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Tamilarasan Sathesh
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - T S T Balamurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| |
Collapse
|
6
|
Subhan MA, Jhuma SS, Chandra Saha P, Alam MM, Asiri AM, Al-Mamun M, Attia SA, Emon TH, Azad AK, Rahman MM. Efficient selective 4-aminophenol sensing and antibacterial activity of ternary Ag2O3·SnO2·Cr2O3 nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c9nj01760g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical oxidation of 4-AP based on Ag2O3·SnO2·Cr2O3 NPs/binder/GCE sensor.
Collapse
|
7
|
Rahman MM, Hussain MM, Arshad MN, Awual MR, Asiri AM. Arsenic sensor development based on modification with (E)-N′-(2-nitrobenzylidine)-benzenesulfonohydrazide: a real sample analysis. NEW J CHEM 2019. [DOI: 10.1039/c9nj01567a] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
(E)-N′-(2-Nitrobenzylidene)-benzenesulfonohydrazide was prepared from 2-nitrobenzaldehyde and benzenesulfonylhydrazine by using a condensation method and applied as a selective As3+ sensor.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Muhammad N. Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Md. Rabiul Awual
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| |
Collapse
|
8
|
Aqlan FM, Alam MM, Al-Bogami AS, Saleh TS, Asiri AM, Uddin J, Rahman MM. Synthesis of novel pyrazole incorporating a coumarin moiety (PC) for selective and sensitive Co2+ detection. NEW J CHEM 2019. [DOI: 10.1039/c9nj02176k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient regioselective synthesis of a novel pyrazole derivative containing a coumarin moiety was achieved, which was electrodeposited as PC/Nafion/GCE sensor probe to detect the selective Co2+ ions for the safety of environment and healthcare fields.
Collapse
Affiliation(s)
- Faisal M. Aqlan
- Chemistry Dept
- Faculty of Science
- University of Jeddah
- 21589 Jeddah
- Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | | | - Tamer S. Saleh
- Chemistry Dept
- Faculty of Science
- University of Jeddah
- 21589 Jeddah
- Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology
- Department of Natural Sciences
- Coppin State University
- Baltimore
- USA
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
9
|
Alam MM, Asiri AM, Uddin MT, Islam MA, Awual MR, Rahman MM. Detection of uric acid based on doped ZnO/Ag2O/Co3O4 nanoparticle loaded glassy carbon electrode. NEW J CHEM 2019. [DOI: 10.1039/c9nj01287g] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly sensitive and selective uric acid sensor was fabricated using facile wet-chemically prepared ternary doped ZnO/Ag2O/Co3O4 nanoparticles onto glassy carbon electrode by electrochemical approach, which introduced a prospective and reliable route to the future development of enzyme-free sensor by doped nanomaterials in broad scales.
Collapse
Affiliation(s)
- M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - M. T. Uddin
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - M. A. Islam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Md. Rabiul Awual
- Center of Excellence for Advanced Materials Research
- Chemistry Department, Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
10
|
Khan AAP, Khan A, Rahman MM, Asiri AM, Oves M. Lead sensors development and antimicrobial activities based on graphene oxide/carbon nanotube/poly(O-toluidine) nanocomposite. Int J Biol Macromol 2016; 89:198-205. [DOI: 10.1016/j.ijbiomac.2016.04.064] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022]
|
11
|
Khan A, Khan AAP, Rahman MM, Asiri AM. High performance polyaniline/vanadyl phosphate (PANI–VOPO4) nano composite sheets prepared by exfoliation/intercalation method for sensing applications. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Fritea L, Le Goff A, Putaux JL, Tertis M, Cristea C, Săndulescu R, Cosnier S. Design of a reduced-graphene-oxide composite electrode from an electropolymerizable graphene aqueous dispersion using a cyclodextrin-pyrrole monomer. Application to dopamine biosensing. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.124] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
A nanocomposite prepared from helical carbon nanotubes, polyallylamine hydrochloride and CdSe quantum dots for electrochemiluminescent determination of dopamine. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1490-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Wu LN, Tan YL, Wang L, Sun SN, Qu ZY, Zhang JM, Fan YJ. Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1455-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|