1
|
Jing C, Lv L, Wang X. Recent advances of ratiometric sensors in food matrices: mycotoxins detection. Crit Rev Food Sci Nutr 2023; 64:10695-10713. [PMID: 37366245 DOI: 10.1080/10408398.2023.2227264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The public health problem caused by mycotoxins contamination has received a great deal of attention worldwide. Mycotoxins produced by filamentous fungi widely distributed in foodstuffs can cause adverse impacts on humans and livestock, posing serious health threats. Particularly worth mentioning is that mycotoxins can accumulate in organisms and be enriched through the food chain. Improving early trace detection and control from the source is a more desirable approach than the contaminated food disposal process to ensure food safety. Conventional sensors are susceptible to interference from various components in intricate food matrices when detecting trace mycotoxins. The application of ratiometric sensors avoids signal fluctuations, and reduce background influences, which casts new light on developing sensors with superior performance. This work is the first to provide an overview of the recent progress of ratiometric sensors in the detection of mycotoxins in intricate food matrices, and highlight the output types of ratiometric signal with respect to accurate quantitative analysis. The prospects of this field are also included in this paper and are intended to have key ramifications on the development of sensing detection conducive to food safety.
Collapse
Affiliation(s)
- Chunyang Jing
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Liangrui Lv
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaoying Wang
- Key Laboratory of the Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Jin L, Liu W, Xiao Z, Yang H, Yu H, Dong C, Wu M. Recent Advances in Electrochemiluminescence Biosensors for Mycotoxin Assay. BIOSENSORS 2023; 13:653. [PMID: 37367018 DOI: 10.3390/bios13060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Rapid and efficient detection of mycotoxins is of great significance in the field of food safety. In this review, several traditional and commercial detection methods are introduced, such as high-performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS), enzyme-linked immunosorbent assay (ELISA), test strips, etc. Electrochemiluminescence (ECL) biosensors have the advantages of high sensitivity and specificity. The use of ECL biosensors for mycotoxins detection has attracted great attention. According to the recognition mechanisms, ECL biosensors are mainly divided into antibody-based, aptamer-based, and molecular imprinting techniques. In this review, we focus on the recent effects towards the designation of diverse ECL biosensors in mycotoxins assay, mainly including their amplification strategies and working mechanism.
Collapse
Affiliation(s)
- Longsheng Jin
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Weishuai Liu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ziying Xiao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Haijian Yang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Huihui Yu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Changxun Dong
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
3
|
Li Q, Wang X, Wang X, Zheng L, Chen P, Zhang B. Novel insights into versatile nanomaterials integrated bioreceptors toward zearalenone ultrasensitive discrimination. Food Chem 2023; 410:135435. [PMID: 36641913 DOI: 10.1016/j.foodchem.2023.135435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Detrimental contamination of zearalenone (ZEN) in crops and foodstuffs has drawn intensive public attention since it poses an ongoing threat to global food security and human health. Highly sensitive and rapid response ZEN trace analysis suitable for complex matrices at different processing stages is an indispensable part of food production. Conventional detection methods for ZEN encounter many deficiencies and demerits such as sophisticated equipment and heavy labor intensity. Alternatively, the nanomaterial-based biosensors featured with high sensitivity, portability, and miniaturization are springing up and emerging as superb substitutes to monitor ZEN in recent years. Herein, we predominantly devoted to overview the progress in the fabrication strategies and applications of various nanomaterial-based biosensors, highlighting rationales on sensing mechanisms, response types, and practical analytical performance. Synchronously, the versatile nanomaterials integrating with diverse recognition elements for augmenting sensing capabilities are emphasized. Finally, critical challenges and perspectives to expedite ZEN detection are outlooked.
Collapse
Affiliation(s)
- Quanliang Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiyu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiaomeng Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Lin Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Ping Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Biying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
4
|
Lai H, Ming P, Wu M, Wang S, Sun D, Zhai H. An electrochemical aptasensor based on P-Ce-MOF@MWCNTs as signal amplification strategy for highly sensitive detection of zearalenone. Food Chem 2023; 423:136331. [PMID: 37182496 DOI: 10.1016/j.foodchem.2023.136331] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
In this research, a signal-off electrochemical aptasensor with high sensitivity was constructed for trace detection of zearalenone (ZEN). Specifically, Ce-based metal-organic framework and multi-walled carbon nanotubes nanocomposite was functionalized with polyethyleneimine (P-Ce-MOF@MWCNTs) and served as sensing platform for its high surface area and excellent electrochemical active. Subsequently, toluidine blue (TB) was electrodeposited as the signal probe, and platinum@gold nanoparticles (Pt@Au) were dropped for the attachment of aptamer (ZEA). In the presence of ZEN, the ZEA would specifically recognize and combine with the target, causing a decrease of electrochemical signal from TB. Under the optimal conditions, the aptasensor exhibited good linear relationship for ZEN in a concentration range from 5.0 × 10-5 to 50.0 ng/mL, while the limit of detection (LOD, S/N = 3) and limit of quantitation (LOQ, S/N = 10) were 1.0 × 10-5 ng/mL and 2.9 × 10-5 ng/mL, respectively. Ultimately, the aptasensor was successfully applied into ZEN detection in semen coicis real samples.
Collapse
Affiliation(s)
- Haohong Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingtao Ming
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Maoqiang Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Luo L, Liu X, Bi X, Li L, You T. Dual-quenching effects of methylene blue on the luminophore and co-reactant: Application for electrochemiluminescent-electrochemical ratiometric zearalenone detection. Biosens Bioelectron 2023; 222:114991. [PMID: 36495721 DOI: 10.1016/j.bios.2022.114991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Methylene blue (MB) is a common multifunctional indicator, which can be applied as a quencher for electrochemiluminescence (ECL) analysis as well as a classical redox probe. Although it is relatively prevalent for MB to study the mechanism with Ru-based luminophores in ECL systems, there are few studies on the effects between MB and co-reactants. In this work, we proposed the first investigation of MB on the luminophore and co-reactant of the self-enhanced ECL composites (nitrogen-doped graphene quantum dots on Ru(bpy)32+-doped silica nanoparticles, NGQDs-Ru@SiO2), respectively. The relatively narrow ECL spectrum of luminophore (Ru@SiO2) and the suitable ultraviolet-visible absorption spectrum of MB led to the ECL resonance energy transfer between them, meanwhile the appropriate energy levels among them facilitated the electron transfer, resulting in a decreased ECL signal (quench mode I). Additionally, the co-reactant (NGQDs) was prone to π-π conjugation with MB due to its abundant π-electrons, which reduced the concentration of NGQDs' intermediates and triggered a weakened ECL signal (quench mode II). Therefore, the dual-quenching effects are ingeniously integrated and designed in one ECL-electrochemical (ECL-EC) ratiometric aptasensor for zearalenone detection, for demonstrating its efficacy in enhancing the sensitivity, which is 4.8-fold higher than Ru@SiO2 alone. This innovative ratiometric aptasensor achieved a relatively wide linear range from 1.0 × 10-15 to 5.0 × 10-8 g mL-1, and obtained a low detection limit of 8.5 × 10-16 g mL-1. Our proposed dual-quenching interactions between MB and NGQDs-Ru@SiO2 will open a new prospective for ECL-EC ratiometric aptasensor, which further broaden the application in sensitive and precise analysis of mycotoxins.
Collapse
Affiliation(s)
- Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
6
|
Sun Y, Song S, Wu A, Liu L, Kuang H, Xu C. A fluorescent paper biosensor for the rapid and ultrasensitive detection of zearalenone in corn and wheat. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3970-3977. [PMID: 34528940 DOI: 10.1039/d1ay01149a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEN) is a kind of estrogen-like mycotoxin which contaminates primary crops and their products under natural conditions and becomes a serious hazard to human health. In this study, we prepared a sensitive and specific anti-ZEN monoclonal antibody (mAb) belonging to the IgG2b subclass, with a 50%-inhibitory concentration of 0.034 ng mL-1. A lateral flow fluorescence microsphere immunochromatographic test strip (FM-ICTS) for the rapid and ultrasensitive detection of zearalenone in corn and wheat samples was developed based on this mAb. After optimizing experimental parameters, the visual limit of detection (LOD) of the strip assay in both corn and wheat samples was 2.5 ng mL-1, and the cut-off value was 25 ng mL-1. The LOD was calculated to be 0.68 ng mL-1 in corn samples and 0.48 ng mL-1 in wheat samples. Recovery experiments showed that the test results of the strip were consistent with those of ic-ELISA. As a result, this FM-ICTS assay is reliable, simple and sensitive, and can be used for rapid detection of ZEN in corn and wheat.
Collapse
Affiliation(s)
- Yunjie Sun
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Aihong Wu
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
7
|
|
8
|
Nikolaou P, Valenti G, Paolucci F. Nano-structured materials for the electrochemiluminescence signal enhancement. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR, Khataee A, Woo Joo S. Emerging electrochemical sensing and biosensing approaches for detection of Fumonisins in food samples. Crit Rev Food Sci Nutr 2021; 62:8761-8776. [PMID: 34085894 DOI: 10.1080/10408398.2021.1932723] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fumonisins (FBs) can be found extensively in feedstuffs, foodstuffs, and crops. The consumption of the fumonisin-contaminated corn can result in esophageal cancer. In addition, the secondary metabolites of fungi termed mycotoxins may have some adverse effects on animals and humans such as estrogenicity, immunotoxicity, teratogenicity, mutagenicity, and carcinogenicity. Hence, developing sensitivity techniques for mycotoxins determination is of great importance. This paper reports the latest developments of nanomaterial-based electrochemical biosensing, apta-sensing, sensing, and immunosensing analyses to detect fumonisins. A concise study of the occurrence, legislations, toxicity, and distribution of FBs in levels monitoring was done. The techniques, different detection matrices, and approaches to highly selective and sensitive sensing methods were reviewed. The review also summarizes the salient features and the necessity of biosensing assessments in FBs detection, and diverse immobilization techniques. Furthermore, this review defined the performance of various electrochemical sensors using different detection elements couples with nanomaterials fabricated applying different detection elements coupled with nanomaterials (metal oxide nanoparticles (NPs), metal NPs, CNT, and graphene), the factors limiting progress, and the upcoming tasks in successful aptasensor fabrication with the functionalized nanomaterials.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Department of Environmental Engineering, Gebze Technical University, Gebze, Turkey.,Department of Materrial Science and Physical Chemistry of Materials, South Ural State University, Chelyabinsk, Russian Federation
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, North Gyeongsang, South Korea
| |
Collapse
|
10
|
Zhou Y, Liao H, Chai Y, Yuan R. Electrochemiluminescence from a biocatalysis accelerated N-(aminobutyl)-N-(ethylisoluminol)/dissolved O 2 system for microRNA detection. Mikrochim Acta 2021; 188:205. [PMID: 34046757 DOI: 10.1007/s00604-021-04854-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
A kind of biocatalyst, laccase, has been employed as a biocompatible coreactant accelerator to efficiently catalyze coreactant (dissolved O2) for generating high local concentration of superoxide radical (O2•-), acquiring high-intense electrochemiluminescence (ECL) emission of ABEI (N-(aminobutyl)-N-(ethylisoluminol))/dissolved O2 system. Furthermore, a modified strand displacement reaction with excellent amplification efficiency was constructed by replacing traditional single strand DNA to the hairpin DNA as template for triggering the immobilization of more signal probes. As a result, the biosensor for microRNA-21 determination has preeminent selectivity and favorable sensitivity with detection limit down to 80.8 aM. Significantly, the devised strategy has blazed a new path for seeking more coreaction accelerators with splendid biocompatibility thus promoting the application of ternary ECL systems in biological analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hongxia Liao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
|
12
|
Direct and Competitive Optical Grating Immunosensors for Determination of Fusarium Mycotoxin Zearalenone. Toxins (Basel) 2021; 13:toxins13010043. [PMID: 33430121 PMCID: PMC7827007 DOI: 10.3390/toxins13010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Novel optical waveguide lightmode spectroscopy (OWLS)-based immunosensor formats were developed for label-free detection of Fusarium mycotoxin zearalenone (ZON). To achieve low limits of detection (LODs), both immobilised antibody-based (direct) and immobilised antigen-based (competitive) assay setups were applied. Immunoreagents were immobilised on epoxy-, amino-, and carboxyl-functionalised sensor surfaces, and by optimising the immobilisation methods, standard sigmoid curves were obtained in both sensor formats. An outstanding LOD of 0.002 pg/mL was obtained for ZON in the competitive immunosensor setup with a dynamic detection range between 0.01 and 1 pg/mL ZON concentrations, depending on the covalent immobilisation method applied. This corresponds to a five orders of magnitude improvement in detectability of ZON relative to the previously developed enzyme-linked immonosorbent assay (ELISA) method. The selectivity of the immunosensor for ZON was demonstrated with structural analogues (α-zearalenol, α-zearalanol, and β-zearalanol) and structurally unrelated mycotoxins. The method was found to be applicable in maize extract using acetonitrile as the organic solvent, upon a dilution rate of 1:10,000 in buffer. Thus, the OWLS immunosensor method developed appears to be suitable for the quantitative determination of ZON in aqueous medium. The new technique can widen the range of sensoric detection methods of ZON for surveys in food and environmental safety assessment.
Collapse
|