1
|
Gurina D, Odintsova E, Kolesnikov A, Kiselev M, Budkov Y. Disjoining pressure of room temperature ionic liquid in charged slit carbon nanopore: Molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
2
|
|
3
|
Electrode surface modification of graphene-MnO 2 supercapacitors using molecular dynamics simulations. J Mol Model 2020; 26:251. [PMID: 32833166 DOI: 10.1007/s00894-020-04483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
In this study, molecular dynamics (MD) simulations have been performed to explore the variation of ion density and electric potential due to electrode surface modification. Two different surface morphologies, having planer and slit pore with different conditions of surface charge, have been studied for graphene-MnO2 surface using LAMMPS. For different pore widths, the concentration of ions in the double layer is observed to be very low when the surface of the graphene-MnO2 electrode is charged. With a view to identify the optimal pore size for the simulation domain considered, three different widths for the nano-slit type pores and the corresponding ion-ion interactions are examined. Though this effect is negligible for pores with 9.23 and 3.55 Å widths, a considerable increase in the ionic concentration within the 7.10 Å pores is observed when the electrode is kept neutral. The edge region of these nano-slit pores leads to effective energy storage by promoting ion separation and a significantly higher charge accumulation is found to occur on the edges compared to the basal planes. For the simulation domain of the present study, partition coefficient is maximum for a pore size of 7.10 Å, indicating that the ions' penetration and movement into nano-slit pores are most favorable for this optimum pore size for MnO2-graphene electrodes with aqueous NaCl electrolyte. Graphical Abstract The importance of understanding the commercial feasibility of supercapacitor material has made qualitatively predicting the optimized electrode structure one of the main targets of energy related researches. While great progress has been made in recent years, a coherent theoretical picture of the optimized electrode structure remains elusive. This article discusses the most favorable design of supercapacitor electrode for ion-electrode interaction.
Collapse
|
4
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Noferini D, Holderer O, Frielinghaus H. Effect of mild nanoscopic confinement on the dynamics of ionic liquids. Phys Chem Chem Phys 2020; 22:9046-9052. [PMID: 32296792 DOI: 10.1039/c9cp05200c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ionic liquids are molten salts without an additional solvent and are discussed as innovative solvents and electrolytes in chemical processing and electrochemistry. A thorough microscopic understanding of the structure and ionic transport processes is essential for tailored applications. Here, we study the influence of "mild" nanoscopic confinement on the structure and diffusion properties of an ionic liquid, 1-ethyl-3-methylimidazolium acetate, using scattering techniques. The structure is analyzed by X-ray diffraction, while neutron backscattering spectroscopy is used for the study of the diffusion processes in these systems. Interpreting the diffusion processes in terms of a jump-diffusion model allowed us to deduce the confinement effects on the jump length and residence time, both increased at elevated temperatures in confinement. The applied "mild" confinement, which leaves room for 10-25 times the domain spacing, allows us to observe in great detail how the onset of domain distortion decelerates the dynamics.
Collapse
Affiliation(s)
- Daria Noferini
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany.
| | | | | |
Collapse
|
6
|
Torkzadeh M, Moosavi M. A computational study of the ion gels formed by biodegradable aliphatic CBNAILs and BN nanostructures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Dai Z, You Y, Zhu Y, Wang S, Zhu W, Lu X. Atomistic Insights into the Layered Microstructure and Time-Dependent Stability of [BMIM][PF 6] Confined within the Meso-Slit of Carbon. J Phys Chem B 2019; 123:6857-6869. [PMID: 31322891 DOI: 10.1021/acs.jpcb.9b02682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clarifying the microstructures and time-dependent stability of ionic liquids (ILs) within the confinement of the meso-slit of carbon is the first step to understand the intrinsic synergy effect between ILs and a promising mesoporous carbon electrode. In this work, we adopted molecular dynamics to systematically investigate the behavior of [BMIM][PF6] in the 2.8 nm-wide meso-slit of carbon. The confined ILs formed a pronounced layered spatial distribution and can be divided into three distinct regions, namely, com-, sub-, and cen-layer, according to valley coordinates in the number density profiles. In the com-layer region, the imidazolium rings of ILs possess two dominant orientations, namely, "parallel" and "tilted standing". The rotation ability of all the ions is highly restrained. In the sub-layer and cen-layer regions, a part of the [BMIM] imidazolium ring has a preferred "tilted standing" orientation. The [BMIM] cations are still in a rotational restrain state and show a preferred rotation motion along the x-y plane. The hydrogen bond between [BMIM] cations and [PF6] anions play a crucial role in determining the confined multilayered spatial distribution and distinctive orientation properties of ILs.
Collapse
Affiliation(s)
- Zhongyang Dai
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| | - Yajing You
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| | - Yudan Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| | - Shanshan Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| | - Wei Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| | - Xiaohua Lu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| |
Collapse
|
8
|
Liu C, Feng H. Molecular Dynamic Study of the Behavior of Confined [BMIM][PF6] Ionic Liquids: Pore Size Dependence. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418120087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Shrivastav G, Remsing RC, Kashyap HK. Capillary evaporation of the ionic liquid [EMIM][BF4] in nanoscale solvophobic confinement. J Chem Phys 2018; 148:193810. [PMID: 30307173 DOI: 10.1063/1.5010259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Gourav Shrivastav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Richard C. Remsing
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Atilhan M, Costa LT, Aparicio S. Elucidating the Properties of Graphene-Deep Eutectic Solvents Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5154-5165. [PMID: 28485942 DOI: 10.1021/acs.langmuir.7b00767] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The properties of five deep eutectic solvents prepared based on the selection of choline chloride ionic liquid as hydrogen bond acceptor, which are mixed with several hydrogen bond donors with selected molecular features, were studied theoretically at graphene interfaces via both density functional theory and classical molecular dynamics methods. Molecular structuring at the interfaces, angular orientation, densification, and dynamic properties were analyzed upon adsorption on the graphene surface and when the deep eutectic solvents were confined between two graphene sheets and analyzed in terms of the role of the type of hydrogen bond donor for each solvent. Likewise, the behavior of deep eutectic solvent nanodroplets on graphene was simulated leading to the calculation of contact angles and nanowetting with further studies considering the effect of an external electric field on nanodroplet properties.
Collapse
Affiliation(s)
- Mert Atilhan
- Department of Chemical Engineering, Texas A&M University at Qatar , Doha, Qatar
| | - Luciano T Costa
- Instituto de Química - Departamento de Físico-Química, Universidade Federal Fluminense , 24020-141 Niterói, Brazil
| | | |
Collapse
|
11
|
Andreeva NA, Chaban VV. Understanding weakly coordinating anions: tetrakis(pentafluorophenyl)borate paired with inorganic and organic cations. J Mol Model 2017; 23:86. [DOI: 10.1007/s00894-017-3275-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/06/2017] [Indexed: 01/10/2023]
|
12
|
Foroutan M, Fatemi SM, Esmaeilian F. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:19. [PMID: 28229319 DOI: 10.1140/epje/i2017-11507-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/30/2017] [Indexed: 05/04/2023]
Abstract
During the past decade, the research on fluids in nanoconfined geometries has received considerable attention as a consequence of their wide applications in different fields. Several nanoconfined systems such as water and ionic liquids, together with an equally impressive array of nanoconfining media such as carbon nanotube, graphene and graphene oxide have received increasingly growing interest in the past years. Water is the first system that has been reviewed in this article, due to its important role in transport phenomena in environmental sciences. Water is often considered as a highly nanoconfined system, due to its reduction to a few layers of water molecules between the extended surface of large macromolecules. The second system discussed here is ionic liquids, which have been widely studied in the modern green chemistry movement. Considering the great importance of ionic liquids in industry, and also their oil/water counterpart, nanoconfined ionic liquid system has become an important area of research with many fascinating applications. Furthermore, the method of molecular dynamics simulation is one of the major tools in the theoretical study of water and ionic liquids in nanoconfinement, which increasingly has been joined with experimental procedures. In this way, the choice of water and ionic liquids in nanoconfinement is justified by applying molecular dynamics simulation approaches in this review article.
Collapse
Affiliation(s)
- Masumeh Foroutan
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - S Mahmood Fatemi
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farshad Esmaeilian
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Affiliation(s)
- Shiguo Zhang
- College
of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Center for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis & Selective Oxidation, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000 Lanzhou, China
| | - Jiaheng Zhang
- School
of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yan Zhang
- College
of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Youquan Deng
- Center for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis & Selective Oxidation, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000 Lanzhou, China
| |
Collapse
|
14
|
Sodium-ion electrolytes based on ionic liquids: a role of cation-anion hydrogen bonding. J Mol Model 2016; 22:172. [PMID: 27381471 DOI: 10.1007/s00894-016-3042-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/20/2016] [Indexed: 11/27/2022]
Abstract
Recent success of the sodium-ion batteries fosters an academic interest for their investigation. Room-temperature ionic liquids (RTILs) constitute universal solvents providing non-volatility and non-flammability to electrolytes. In the present work, we consider four families of RTILs as prospective solvents for NaBF4 and NaNO3 with an inorganic salt concentration of 25 and 50 mol%. We propose a methodology to rate RTILs according to their solvation capability using parameters of the computed radial distribution functions. Hydrogen bonds between the cations and the anions of RTILs were found to indirectly favor sodium solvation, irrespective of the particular RTIL and its concentration. The best performance was recorded in the case of cholinium nitrate. The reported observations and correlations of ionic structures and properties offer important assistance to an emerging field of sodium-ion batteries. Graphical Abstract Sodium-ion electrolytes.
Collapse
|