1
|
Varamogianni-Mamatsi D, Nunes MJ, Marques V, Anastasiou TI, Kagiampaki E, Vernadou E, Dailianis T, Kalogerakis N, Branco LC, Rodrigues CMP, Sobral RG, Gaudêncio SP, Mandalakis M. Comparative Chemical Profiling and Antimicrobial/Anticancer Evaluation of Extracts from Farmed versus Wild Agelas oroides and Sarcotragus foetidus Sponges. Mar Drugs 2023; 21:612. [PMID: 38132933 PMCID: PMC10744379 DOI: 10.3390/md21120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Marine sponges are highly efficient in removing organic pollutants and their cultivation, adjacent to fish farms, is increasingly considered as a strategy for improving seawater quality. Moreover, these invertebrates produce a plethora of bioactive metabolites, which could translate into an extra profit for the aquaculture sector. Here, we investigated the chemical profile and bioactivity of two Mediterranean species (i.e., Agelas oroides and Sarcotragus foetidus) and we assessed whether cultivated sponges differed substantially from their wild counterparts. Metabolomic analysis of crude sponge extracts revealed species-specific chemical patterns, with A. oroides and S. foetidus dominated by alkaloids and lipids, respectively. More importantly, farmed and wild explants of each species demonstrated similar chemical fingerprints, with the majority of the metabolites showing modest differences on a sponge mass-normalized basis. Furthermore, farmed sponge extracts presented similar or slightly lower antibacterial activity against methicillin-resistant Staphylococcus aureus, compared to the extracts resulting from wild sponges. Anticancer assays against human colorectal carcinoma cells (HCT-116) revealed marginally active extracts from both wild and farmed S. foetidus populations. Our study highlights that, besides mitigating organic pollution in fish aquaculture, sponge farming can serve as a valuable resource of biomolecules, with promising potential in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Despoina Varamogianni-Mamatsi
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Maria João Nunes
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Thekla I. Anastasiou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Eirini Kagiampaki
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Emmanouela Vernadou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Thanos Dailianis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
| | - Luís C. Branco
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Rita G. Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Manolis Mandalakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| |
Collapse
|
2
|
Pyrrole-2-carboxaldehydes: Origins and Physiological Activities. Molecules 2023; 28:molecules28062599. [PMID: 36985566 PMCID: PMC10058459 DOI: 10.3390/molecules28062599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Pyrrole-2-carboxaldehyde (Py-2-C) derivatives have been isolated from many natural sources, including fungi, plants (roots, leaves, and seeds), and microorganisms. The well-known diabetes molecular marker, pyrraline, which is produced after sequential reactions in vivo, has a Py-2-C skeleton. Py-2-Cs can be chemically produced by the strong acid-catalyzed condensation of glucose and amino acid derivatives in vitro. These observations indicate the importance of the Py-2-C skeleton in vivo and suggest that molecules containing this skeleton have various biological functions. In this review, we have summarized Py-2-C derivatives based on their origins. We also discuss the structural characteristics, natural sources, and physiological activities of isolated compounds containing the Py-2-C group.
Collapse
|
3
|
Restoration of Marine Sponges—What Can We Learn from over a Century of Experimental Cultivation? WATER 2022. [DOI: 10.3390/w14071055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Marine sponges are the driver of many critical biological processes throughout various ecosystems. But anthropogenic and environmental pressures are rapidly compromising the diversity and abundance of Porifera worldwide. In our study, we reviewed the main experiences made on their cultivation to provide a roadmap of the best methodologies that could be applied to restore coastal sponge populations. We synthesized the results of experimental trials between 1950 and today to facilitate information on promising methods and materials. We detected a strong geographical imbalance between different ecoregions, as well as a shift of scientific effort from the investigation of “bath sponge” mariculture towards the rearing of bioactive compounds from sponges. Although sponge cultivation is arguably highly species-dependent, we further found that skeletal consistency in combination with taxonomy may be used to decide on appropriate techniques for future restoration initiatives.
Collapse
|
4
|
Song Y, Qu Y, Cao X, Zhang W, Zhang F, Linhardt RJ, Yang Q. Cultivation of fractionated cells from a bioactive-alkaloid-bearing marine sponge Axinella sp. In Vitro Cell Dev Biol Anim 2021; 57:539-549. [PMID: 33948851 DOI: 10.1007/s11626-021-00578-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 01/27/2023]
Abstract
Sponges are among the most primitive multicellular organisms and well-known as a major source of marine natural products. Cultivation of sponge cells has long been an attractive topic due to the prominent evolutionary and cytological significance of sponges and as a potential approach to supply sponge-derived compounds. Sponge cell culture is carried out through culturing organized cell aggregates called 'primmorphs.' Most research culturing sponge cells has used unfractionated cells to develop primmorphs. In the current study, a tropical marine sponge Axinella sp., which contains the bioactive alkaloids, debromohymenialdisine (DBH), and hymenialdisine (HD), was used to obtain fractionated cells and the corresponding primmorphs. These alkaloids, DBH and HD, reportedly show pharmacological activities for treating osteoarthritis and Alzheimer's disease. Three different cell fractions were obtained, including enriched spherulous cells, large mesohyl cells, and small epithelial cells. These cell fractions were cultivated separately, forming aggregates that later developed into different kinds of primmorphs. The three kinds of primmorphs obtained were compared as regards to appearance, morphogenesis, and cellular composition. Additionally, the amount of alkaloid in the primmorphs-culture system was examined over a 30-d culturing period. During the culturing of enriched spherulous cells and developed primmorphs, the total amount of alkaloid declined notably. In addition, the speculation of alkaloid secretion and some phenomena that occurred during cell culturing are discussed.
Collapse
Affiliation(s)
- Yuefan Song
- College of Food Science and Engineering, Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian, China.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Yi Qu
- Dalian Environmental Monitoring Center, Dalian, China
| | - Xupeng Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Qi Yang
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Applications of microalgal paste and powder as food and feed: An update using text mining tool. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
6
|
Pérez-López P, Ternon E, González-García S, Genta-Jouve G, Feijoo G, Thomas OP, Moreira MT. Environmental solutions for the sustainable production of bioactive natural products from the marine sponge Crambe crambe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 475:71-82. [PMID: 24419288 DOI: 10.1016/j.scitotenv.2013.12.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
Crambe crambe is a Mediterranean marine sponge known to produce original natural substances belonging to two families of guanidine alkaloids, namely crambescins and crambescidins, which exhibit cytotoxic and antiviral activities. These compounds are therefore considered as potential anticancer drugs. The present study focuses on the environmental assessment of a novel in vivo process for the production of pure crambescin and crambescidin using sponge specimens cultured in aquarium. The assessment was performed following the ISO 14040 standard and extended from the production of the different mass and energy flows to the system to the growth of the sponge in indoor aquarium and further periodic extraction and purification of the bioactive compounds. According to the results, the two stages that have a remarkable contribution to all impact categories are the purification of the bioactive molecules followed by the maintenance of the sponge culture in the aquarium. Among the involved activities, the production of the chemicals (particularly methanol) together with the electricity requirements (especially due to the aquarium lighting) are responsible for up to 90% of the impact in most of the assessed categories. However, the contributions of other stages to the environmental burdens, such as the collection of sponges, considerably depend on the assumptions made during the inventory stage. The simulation of alternative scenarios has led to propose improvement alternatives that may allow significant reductions ranging from 20% to 70%, mainly thanks to the reduction of electricity requirements as well as the partial reuse of methanol.
Collapse
Affiliation(s)
- Paula Pérez-López
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Eva Ternon
- Nice Institute of Chemistry, PCRE, UMR 7272 CNRS, University of Nice Sophia-Antipolis, Faculté des Sciences, Parc Valrose, 06108 Nice, France
| | - Sara González-García
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Grégory Genta-Jouve
- Nice Institute of Chemistry, PCRE, UMR 7272 CNRS, University of Nice Sophia-Antipolis, Faculté des Sciences, Parc Valrose, 06108 Nice, France
| | - Gumersindo Feijoo
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Olivier P Thomas
- Nice Institute of Chemistry, PCRE, UMR 7272 CNRS, University of Nice Sophia-Antipolis, Faculté des Sciences, Parc Valrose, 06108 Nice, France
| | - Ma Teresa Moreira
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Luis Carballo J, Gómez P, Cruz-Barraza JA. Biodiversidad de Porifera en México. REV MEX BIODIVERS 2014. [DOI: 10.7550/rmb.32074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Ruiz C, Valderrama K, Zea S, Castellanos L. Mariculture and natural production of the antitumoural (+)-discodermolide by the Caribbean marine sponge Discodermia dissoluta. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:571-583. [PMID: 23728846 DOI: 10.1007/s10126-013-9510-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Biotechnological research on marine organisms, such as ex situ or in situ aquaculture and in vitro cell culture, is being conducted to produce bioactive metabolites for biomedical and industrial uses. The Caribbean marine sponge Discodermia dissoluta is the source of (+)-discodermolide, a potent antitumoural polyketide that has reached clinical trials. This sponge usually lives at depths greater than 30 m, but at Santa Marta (Colombia) there is a shallower population, which has made it logistically possible to investigate for the first time, on ways to supply discodermolide. We thus performed in situ, 6-month fragment culture trials to assess the performance of this sponge in terms of growth and additional discodermolide production and studied possible factors that influence the variability of discodermolide concentrations in the wild. Sponge fragments cultured in soft mesh bags suspended from horizontal lines showed high survivorship (93 %), moderate growth (28 % increase in volume) and an overall rise (33 %) in the discodermolide concentration, equivalent to average additional production of 8 μg of compound per millilitre of sponge. The concentration of discodermolide in wild sponges ranged from 8 to 40 μg mL(-1). Locality was the only factor related to discodermolide variation in the wild, and there were greater concentrations in peripheral vs. basal portions of the sponge, and in clean vs. fouled individuals. As natural growth and regeneration rates can be higher than culture growth rates, there is room for improving techniques to sustainably produce discodermolide.
Collapse
Affiliation(s)
- Cesar Ruiz
- Instituto de Investigaciones Marinas y Costeras-INVEMAR, Calle 25 2-55, Rodadero Sur - Playa Salguero, Santa Marta, Colombia
| | | | | | | |
Collapse
|
9
|
Schippers KJ, Sipkema D, Osinga R, Smidt H, Pomponi SA, Martens DE, Wijffels RH. Cultivation of sponges, sponge cells and symbionts: achievements and future prospects. ADVANCES IN MARINE BIOLOGY 2012; 62:273-337. [PMID: 22664125 DOI: 10.1016/b978-0-12-394283-8.00006-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Marine sponges are a rich source of bioactive compounds with pharmaceutical potential. Since biological production is one option to supply materials for early drug development, the main challenge is to establish generic techniques for small-scale production of marine organisms. We analysed the state of the art for cultivation of whole sponges, sponge cells and sponge symbionts. To date, cultivation of whole sponges has been most successful in situ; however, optimal conditions are species specific. The establishment of sponge cell lines has been limited by the inability to obtain an axenic inoculum as well as the lack of knowledge on nutritional requirements in vitro. Approaches to overcome these bottlenecks, including transformation of sponge cells and using media based on yolk, are elaborated. Although a number of bioactive metabolite-producing microorganisms have been isolated from sponges, and it has been suggested that the source of most sponge-derived bioactive compounds is microbial symbionts, cultivation of sponge-specific microorganisms has had limited success. The current genomics revolution provides novel approaches to cultivate these microorganisms.
Collapse
Affiliation(s)
- Klaske J Schippers
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Bergman O, Mayzel B, Anderson MA, Shpigel M, Hill RT, Ilan M. Examination of marine-based cultivation of three demosponges for acquiring bioactive marine natural products. Mar Drugs 2011; 9:2201-2219. [PMID: 22163182 PMCID: PMC3229231 DOI: 10.3390/md9112201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/08/2011] [Accepted: 10/21/2011] [Indexed: 11/16/2022] Open
Abstract
Marine sponges are an extremely rich and important source of natural products. Mariculture is one solution to the so-called "supply problem" that often hampers further studies and development of novel compounds from sponges. We report the extended culture (767 days) at sea in depths of 10 and 20 m of three sponge species: Negombata magnifica, Amphimedon chloros and Theonella swinhoei that produce latrunculin-B, halitoxin and swinholide-A, respectively. Since sponge-associated microorganisms may be the true producers of many of the natural products found in sponges and also be linked to the health of the sponges, we examined the stability of the bacterial communities in cultured versus wild sponges. Growth rate of the sponges (ranging from 308 to 61 and -19 (%)(year(-1)) in N. magnifica, A. chloros and T. swinhoei, respectively) differed significantly between species but not between the two depths at which the species were cultivated. Survivorship varied from 96% to 57%. During culture all species maintained the content of the desired natural product. Denaturing gradient gel electrophoresis analysis of the sponge-associated bacterial consortia revealed that differences existed between cultured and wild sponges in T. swinhoei and A. chloros but the communities remained quite stable in N. magnifica. The cultivation technique for production of natural products was found to be most appropriate for N. magnifica, while for T. swinhoei and A. chloros it was less successful, because of poorer growth and survival rates and shifts in their bacterial consortia.
Collapse
Affiliation(s)
- Oded Bergman
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; E-Mails: (O.B.); (B.M.)
| | - Boaz Mayzel
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; E-Mails: (O.B.); (B.M.)
| | - Matthew A. Anderson
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, Suite 236, 701 East Pratt Street, Baltimore, MD 21202, USA; E-Mails: (M.A.A.); (R.T.H.)
| | - Muki Shpigel
- National Center for Mariculture, IOLR, P.O. Box 1212, Eilat 88212, Israel; E-Mail:
| | - Russell T. Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, Suite 236, 701 East Pratt Street, Baltimore, MD 21202, USA; E-Mails: (M.A.A.); (R.T.H.)
| | - Micha Ilan
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; E-Mails: (O.B.); (B.M.)
| |
Collapse
|