1
|
Xu Y, Zhang Z, Bian Y, Wang Y, Deng Z, Luo R, Li W, Yan J, Zhao B, Sun D. Regulatory Mechanisms of EPA and DHA Proportions in a PUFA-Producing Microalga, Schizochytrium sp. ATCC 20888: From the Biosynthesis and Storage Distribution Aspects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4137-4151. [PMID: 39907569 DOI: 10.1021/acs.jafc.4c12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2025]
Abstract
Schizochytrium sp. ATCC 20888 is an important species for industrial polyunsaturated fatty acids (PUFA) production. This study investigated the regulatory mechanisms affecting the proportions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in terms of biosynthesis and storage distribution. EPA and DHA possessed different accumulation patterns: EPA proportion increased over time, while DHA peaked at 48 h. EPA was predominantly integrated into triacylglycerol during the logarithmic phase and phosphatidylcholine during the stationary phase. Transcriptome analysis revealed that EPA synthesis involved the fatty acid synthase-elongase/desaturase system, while DHA depended mainly on PUFA synthase. Key enzymes, including elongase ELOVL7, diacylglycerol acyltransferase (g10562), and lysophosphatidylcholine acyltransferases (g8836 and g7540), show a positive correlation with EPA yield, highlighting their roles in its biosynthesis and storage. Additionally, phosphopantetheine adenylyl transferase (PPAT/COASY) and ADP-ribosylation factor 1_2 (ARF1_2) were identified as potential regulators of PUFA proportions. This study provided insights for genetic optimization of PUFA production inSchizochytrium.
Collapse
Affiliation(s)
- Yaqi Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanqing Bian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuanhao Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziliang Deng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Rui Luo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weijia Li
- Hebei Ruilong Biotechnology Co., Ltd., Shijiazhuang 050024, China
| | - Jingyi Yan
- Hebei Ruilong Biotechnology Co., Ltd., Shijiazhuang 050024, China
| | - Baohua Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
2
|
Zhuang XY, Zhang YH, Xiao AF, Zhang AH, Fang BS. Key Enzymes in Fatty Acid Synthesis Pathway for Bioactive Lipids Biosynthesis. Front Nutr 2022; 9:851402. [PMID: 35284441 PMCID: PMC8905437 DOI: 10.3389/fnut.2022.851402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary bioactive lipids, one of the three primary nutrients, is not only essential for growth and provides nutrients and energy for life's activities but can also help to guard against disease, such as Alzheimer's and cardiovascular diseases, which further strengthen the immune system and maintain many body functions. Many microorganisms, such as yeast, algae, and marine fungi, have been widely developed for dietary bioactive lipids production. These biosynthetic processes were not limited by the climate and ground, which are also responsible for superiority of shorter periods and high conversion rate. However, the production process was also exposed to the challenges of low stability, concentration, and productivity, which was derived from the limited knowledge about the critical enzyme in the metabolic pathway. Fortunately, the development of enzymatic research methods provides powerful tools to understand the catalytic process, including site-specific mutagenesis, protein dynamic simulation, and metabolic engineering technology. Thus, we review the characteristics of critical desaturase and elongase involved in the fatty acids' synthesis metabolic pathway, which aims to not only provide extensive data for enzyme rational design and modification but also provides a more profound and comprehensive understanding of the dietary bioactive lipids' synthetic process.
Collapse
Affiliation(s)
- Xiao-Yan Zhuang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yong-Hui Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - An-Feng Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Ai-Hui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- *Correspondence: Ai-Hui Zhang
| | - Bai-Shan Fang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Heterologous Production of Polyunsaturated Fatty Acids in E. coli Using Δ5-Desaturase Gene from Microalga Isochrysis Sp. Appl Biochem Biotechnol 2020; 193:869-883. [PMID: 33200268 DOI: 10.1007/s12010-020-03460-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2020] [Accepted: 11/08/2020] [Indexed: 10/23/2022]
Abstract
Eicosapentaenoic acid (EPA) and arachidonic acid (ARA) are long-chain polyunsaturated fatty acids (PUFAs) that play a significant role in human growth and development, which deficiency can trigger several metabolic-related diseases. Since the availability of PUFA sources is limited, there arises a need to explore alternative sources. Therefore, the present study aimed to investigate whether an Escherichia coli which are engineered with Δ5Des-Iso gene isolated from Isochrysis sp. could be utilized to synthesize PUFAs. Full-length gene Δ5Des-Iso (1149 bp) was isolated from Isochrysis sp. that encodes 382 amino acids and identified as Δ5-desatruase gene using different bioinformatic analysis. Heterologous gene expression was carried out in E. coli having Δ5Des-Iso with precursor fatty acids. The Δ5Des-Iso produced novel fatty acids of EPA (ω-3) and ARA (ω-6) as respective products were identified by GC-MS. Gene expression and PUFA synthesis in E. coli were optimized by temperature, time, and concentrations of precursor fatty acid substrates. Δ5Des-Iso RNA transcript level was inversely proportional to the time and fatty acid synthesis. And, the significant production of EPA (4.1 mg/g) and ARA (8.3 mg/g) in total fatty acids was observed in E. coli grown at 37 °C for 24 h with 25 μM of external fatty acid substrate as an optimum growth conditions. E. coli could be used as alternative organism to synthesis PUFAs and widely applicable in many nutraceuticals and pharmaceuticals industry for human use.
Collapse
|
4
|
Czumaj A, Śledziński T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020; 12:E356. [PMID: 32013225 PMCID: PMC7071289 DOI: 10.3390/nu12020356] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered one of the most important components of cells that influence normal development and function of many organisms, both eukaryotes and prokaryotes. Unsaturated fatty acid desaturases play a crucial role in the synthesis of PUFAs, inserting additional unsaturated bonds into the acyl chain. The level of expression and activity of different types of desaturases determines profiles of PUFAs. It is well recognized that qualitative and quantitative changes in the PUFA profile, resulting from alterations in the expression and activity of fatty acid desaturases, are associated with many pathological conditions. Understanding of underlying mechanisms of fatty acid desaturase activity and their functional modification will facilitate the development of novel therapeutic strategies in diseases associated with qualitative and quantitative disorders of PUFA.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki, 80-211 Gdansk, Poland;
| | | |
Collapse
|
5
|
Thiyagarajan S, Arumugam M, Kathiresan S. Identification and Functional Characterization of Two Novel Fatty Acid Genes from Marine Microalgae for Eicosapentaenoic Acid Production. Appl Biochem Biotechnol 2019; 190:1371-1384. [DOI: 10.1007/s12010-019-03176-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022]
|
6
|
Functional identification and regulatory analysis of Δ6-fatty acid desaturase from the oleaginous fungus Mucor sp. EIM-10. Biotechnol Lett 2016; 39:453-461. [DOI: 10.1007/s10529-016-2268-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2016] [Accepted: 12/05/2016] [Indexed: 01/10/2023]
|
7
|
Lee JM, Lee H, Kang S, Park WJ. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients 2016; 8:nu8010023. [PMID: 26742061 PMCID: PMC4728637 DOI: 10.3390/nu8010023] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2015] [Revised: 12/07/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.
Collapse
Affiliation(s)
- Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea.
| | - Hyungjae Lee
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Korea.
| | - SeokBeom Kang
- Citrus Research Station, National Institute of Horticultural & Herbal Science, RDA, Seogwipo 63607, Korea.
| | - Woo Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| |
Collapse
|
8
|
Tan L, Li S, Zhang X, Ma F. Cloning and functional analysis of Δ6-desaturase gene and its upstream region from Mortierella sp. AGED. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:3077-3083. [PMID: 25504265 DOI: 10.1002/jsfa.7043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/10/2014] [Revised: 12/04/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Δ6-desaturase belonging to membrane-bound enzyme is a key enzyme involved in the synthesis of polyunsaturated fatty acids (PUFAs). This study aimed to clone and characterise Δ6-desaturase gene and its upstream regulatory region of Mortierella sp. AGED. RESULTS Glucose and soybean meal are best for lipid and arachidonic acid accumulation of Mortierella sp. AGED. A 1375-bp Δ6-desaturase gene AGfad6 which contains a 1275-bp open reading frame encoding 424 amino acids without signal peptide was cloned. The putative protein contained three conserved histidine-rich motifs and a conserved cytochrome b5 HPGG (H: Histine, P: Proline, G: Glycine, G: Glycine) motif, with a mass of 48.3 kDa and an isoelectric point of 5.96. AGfad6 was successfully expressed in Pichia pastoris GS115, which exerted the effect on converting linoleic acid to γ-linolenic acid. The 1712-bp upstream region contained basic transcriptional elements including TATA, GC and GATA box, putative target-binding sites for transcription factors such as TATA binding protein, transcription activator, CCAAT-enhancer-binding protein, activator protein 1, alcohol dehydrogenase gene regulator 1 and metabolic regulators p40x in fungi, stress-related elements including GT-1 (light-responsive, salicylic acid-inducible), stress response element, heat stress-responsive element, which might participate in regulation of PUFAs synthesis. CONCLUSION The present finding could enable us to understand the evolution and regulatory mechanism of Δ6-desaturase gene.
Collapse
Affiliation(s)
- Li Tan
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Shue Li
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| |
Collapse
|
9
|
Mechanisms of fatty acid synthesis in marine fungus-like protists. Appl Microbiol Biotechnol 2015; 99:8363-75. [DOI: 10.1007/s00253-015-6920-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023]
|
10
|
Abstract
This review summarizes usage of genome-editing technologies for metagenomic studies; these studies are used to retrieve and modify valuable microorganisms for production, particularly in marine metagenomics. Organisms may be cultivable or uncultivable. Metagenomics is providing especially valuable information for uncultivable samples. The novel genes, pathways and genomes can be deducted. Therefore, metagenomics, particularly genome engineering and system biology, allows for the enhancement of biological and chemical producers and the creation of novel bioresources. With natural resources rapidly depleting, genomics may be an effective way to efficiently produce quantities of known and novel foods, livestock feed, fuels, pharmaceuticals and fine or bulk chemicals.
Collapse
Affiliation(s)
- Rimantas Kodzius
- Computational Bioscience Research Center (CBRC), Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Saudi Arabia; Biological and Environmental Sciences and Engineering Division (BESE), Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| |
Collapse
|
11
|
Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl Microbiol Biotechnol 2014; 98:5789-805. [DOI: 10.1007/s00253-014-5780-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
12
|
Fungal microsomes in a biotransformation perspective: protein nature of membrane-associated reactions. Appl Microbiol Biotechnol 2013; 97:10263-73. [DOI: 10.1007/s00253-013-5347-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/27/2022]
|
13
|
Matsuda T, Sakaguchi K, Hamaguchi R, Kobayashi T, Abe E, Hama Y, Hayashi M, Honda D, Okita Y, Sugimoto S, Okino N, Ito M. Analysis of Δ12-fatty acid desaturase function revealed that two distinct pathways are active for the synthesis of PUFAs in T. aureum ATCC 34304. J Lipid Res 2012; 53:1210-22. [PMID: 22368282 DOI: 10.1194/jlr.m024935] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023] Open
Abstract
Thraustochytrids are known to synthesize PUFAs such as docosahexaenoic acid (DHA). Accumulating evidence suggests the presence of two synthetic pathways of PUFAs in thraustochytrids: the polyketide synthase-like (PUFA synthase) and desaturase/elongase (standard) pathways. It remains unclear whether the latter pathway functions in thraustochytrids. In this study, we report that the standard pathway produces PUFA in Thraustochytrium aureum ATCC 34304. We isolated a gene encoding a putative Δ12-fatty acid desaturase (TauΔ12des) from T. aureum. Yeasts transformed with the tauΔ12des converted endogenous oleic acid (OA) into linoleic acid (LA). The disruption of the tauΔ12des in T. aureum by homologous recombination resulted in the accumulation of OA and a decrease in the levels of LA and its downstream PUFAs. However, the DHA content was increased slightly in tauΔ12des-disruption mutants, suggesting that DHA is primarily produced in T. aureum via the PUFA synthase pathway. The transformation of the tauΔ12des-disruption mutants with a tauΔ12des expression cassette restored the wild-type fatty acid profiles. These data clearly indicate that TauΔ12des functions as Δ12-fatty acid desaturase in the standard pathway of T. aureum and demonstrate that this thraustochytrid produces PUFAs via both the PUFA synthase and the standard pathways.
Collapse
Affiliation(s)
- Takanori Matsuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|