1
|
Abstract
Since their initial description in 2005, biomaterials that are patterned to contain microfluidic networks ("microfluidic biomaterials") have emerged as promising scaffolds for a variety of tissue engineering and related applications. This class of materials is characterized by the ability to be readily perfused. Transport and exchange of solutes within microfluidic biomaterials is governed by convection within channels and diffusion between channels and the biomaterial bulk. Numerous strategies have been developed for creating microfluidic biomaterials, including micromolding, photopatterning, and 3D printing. In turn, these materials have been used in many applications that benefit from the ability to perfuse a scaffold, including the engineering of blood and lymphatic microvessels, epithelial tubes, and cell-laden tissues. This article reviews the current state of the field and suggests new areas of exploration for this unique class of materials.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts, USA
| | - Yoseph W. Dance
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Morss Clyne A, Swaminathan S, Díaz Lantada A. Biofabrication strategies for creating microvascular complexity. Biofabrication 2019; 11:032001. [PMID: 30743247 DOI: 10.1088/1758-5090/ab0621] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Design and fabrication of effective biomimetic vasculatures constitutes a relevant and yet unsolved challenge, lying at the heart of tissue repair and regeneration strategies. Even if cell growth is achieved in 3D tissue scaffolds or advanced implants, tissue viability inevitably requires vascularization, as diffusion can only transport nutrients and eliminate debris within a few hundred microns. This engineered vasculature may need to mimic the intricate branching geometry of native microvasculature, referred to herein as vascular complexity, to efficiently deliver blood and recreate critical interactions between the vascular and perivascular cells as well as parenchymal tissues. This review first describes the importance of vascular complexity in labs- and organs-on-chips, the biomechanical and biochemical signals needed to create and maintain a complex vasculature, and the limitations of current 2D, 2.5D, and 3D culture systems in recreating vascular complexity. We then critically review available strategies for design and biofabrication of complex vasculatures in cell culture platforms, labs- and organs-on-chips, and tissue engineering scaffolds, highlighting their advantages and disadvantages. Finally, challenges and future directions are outlined with the hope of inspiring researchers to create the reliable, efficient and sustainable tools needed for design and biofabrication of complex vasculatures.
Collapse
Affiliation(s)
- Alisa Morss Clyne
- Vascular Kinetics Laboratory, Mechanical Engineering & Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
3
|
Zhong Y, Motavalli M, Wang KC, Caplan AI, Welter JF, Baskaran H. Dynamics of Intrinsic Glucose Uptake Kinetics in Human Mesenchymal Stem Cells During Chondrogenesis. Ann Biomed Eng 2018; 46:1896-1910. [PMID: 29948374 DOI: 10.1007/s10439-018-2067-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/04/2018] [Indexed: 01/25/2023]
Abstract
Chondrogenesis of human mesenchymal stem cells (hMSCs) is an important biological process in many applications including cartilage tissue engineering. We investigated the glucose uptake characteristics of aggregates of hMSCs undergoing chondrogenesis over a 3-week period both experimentally and by using a mathematical model. Initial concentrations of glucose in the medium were varied from 1 to 4.5 g/L to mimic limiting conditions and glucose uptake profiles were obtained. A reaction-diffusion mathematical model was implemented and solved to estimate kinetic parameters. Experimental glucose uptake rates increased with culture time for aggregates treated with higher initial glucose concentrations (3 and 4.5 g/L), whereas they decreased or remained constant for those treated with lower initial glucose concentrations (1 and 2 g/L). Lactate production rate increased by as much as 40% for aggregates treated with higher initial glucose concentrations (2, 3 and 4.5 g/L), whereas it remained constant for those treated with 1 g/L initial glucose concentration. The estimated DNA-normalized maximum glucose uptake rate decreased by a factor of 9 from day 0-2 (12.5 mmol/s/g DNA) to day 6-8 (1.5 mmol/s/g DNA), after which it started to increase. On day 18-20, its value (17.5 mmol/s/g DNA) was about 11 times greater than its lowest value. Further, the extracellular matrix levels of aggregates at day 14 and day 21 correlated with their overall glucose uptake and lactate production. The results suggest that during chondrogenesis, for optimal results, cells require increasing amounts of glucose. Our results also suggest that diffusion limitations play an important role in glucose uptake even in the smaller size aggregate model of chondrogenesis. Further, the results indicate that glucose uptake or lactate production can be a tool for predicting the end quality of tissue during the process of chondrogenesis. The estimated kinetic parameters can be used to model glucose requirements in cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mostafa Motavalli
- Department of Biology, The Skeletal Research Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kuo-Chen Wang
- Department of Biology, The Skeletal Research Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Arnold I Caplan
- Department of Biology, The Skeletal Research Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jean F Welter
- Department of Biology, The Skeletal Research Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, 141C, A.W. Smith Building, 2102 Adelbert Road, Cleveland, OH, 44106-7217, USA. .,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
|
5
|
Kang TY, Hong JM, Jung JW, Yoo JJ, Cho DW. Design and assessment of a microfluidic network system for oxygen transport in engineered tissue. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:701-709. [PMID: 23234496 DOI: 10.1021/la303552m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oxygen and nutrients cannot be delivered to cells residing in the interior of large-volume scaffolds via diffusion alone. Several efforts have been made to meet the metabolic needs of cells in a scaffold by constructing mass transport channels, particularly in the form of bifurcated networks. In contrast to progress in fabrication technologies, however, an approach to designing an optimal network based on experimental evaluation has not been actively reported. The main objective of this study was to establish a procedure for designing an effective microfluidic network system for a cell-seeded scaffold and to develop an experimental model to evaluate the design. We proposed a process to design a microfluidic network by combining an oxygen transport simulation with biomimetic principles governing biological vascular trees. The simulation was performed with the effective diffusion coefficient (D(e,s)), which was experimentally measured in our previous study. Porous scaffolds containing an embedded microfluidic network were fabricated using the lost mold shape-forming process and salt leaching method. The reliability of the procedure was demonstrated by experiments using the scaffolds. This approach established a practical basis for designing an effective microfluidic network in a cell-seeded scaffold.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea
| | | | | | | | | |
Collapse
|
6
|
Truslow JG, Tien J. Perfusion systems that minimize vascular volume fraction in engineered tissues. BIOMICROFLUIDICS 2011; 5:22201. [PMID: 21799708 PMCID: PMC3145227 DOI: 10.1063/1.3576926] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/02/2011] [Indexed: 05/22/2023]
Abstract
This study determines the optimal vascular designs for perfusing engineered tissues. Here, "optimal" describes a geometry that minimizes vascular volume fraction (the fractional volume of a tissue that is occupied by vessels) while maintaining oxygen concentration above a set threshold throughout the tissue. Computational modeling showed that optimal geometries depended on parameters that affected vascular fluid transport and oxygen consumption. Approximate analytical expressions predicted optima that agreed well with the results of modeling. Our results suggest one basis for comparing the effectiveness of designs for microvascular tissue engineering.
Collapse
Affiliation(s)
- James G Truslow
- Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston, Massachusetts 02215, USA
| | | |
Collapse
|
7
|
Hoganson DM, Pryor HI, Bassett EK, Spool ID, Vacanti JP. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform. LAB ON A CHIP 2011; 11:700-7. [PMID: 21152606 DOI: 10.1039/c0lc00158a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
There is no technology available to support failing lung function for patients outside the hospital. An implantable lung assist device would augment lung function as a bridge to transplant or possible destination therapy. Utilizing biomimetic design principles, a microfluidic vascular network was developed for blood inflow from the pulmonary artery and blood return to the left atrium. Computational fluid dynamics analysis was used to optimize blood flow within the vascular network. A micro milled variable depth mold with 3D features was created to achieve both physiologic blood flow and shear stress. Gas exchange occurs across a thin silicone membrane between the vascular network and adjacent alveolar chamber with flowing oxygen. The device had a surface area of 23.1 cm(2) and respiratory membrane thickness of 8.7 ± 1.2 μm. Carbon dioxide transfer within the device was 156 ml min(-1) m(-2) and the oxygen transfer was 34 ml min(-1) m(-2). A lung assist device based on tissue engineering architecture achieves gas exchange comparable to hollow fiber oxygenators yet does so while maintaining physiologic blood flow. This device may be scaled up to create an implantable ambulatory lung assist device.
Collapse
Affiliation(s)
- David M Hoganson
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
8
|
Sefcik LS, Wilson JL, Papin JA, Botchwey EA. Harnessing systems biology approaches to engineer functional microvascular networks. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:361-70. [PMID: 20121415 DOI: 10.1089/ten.teb.2009.0611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Microvascular remodeling is a complex process that includes many cell types and molecular signals. Despite a continued growth in the understanding of signaling pathways involved in the formation and maturation of new blood vessels, approximately half of all compounds entering clinical trials will fail, resulting in the loss of much time, money, and resources. Most pro-angiogenic clinical trials to date have focused on increasing neovascularization via the delivery of a single growth factor or gene. Alternatively, a focus on the concerted regulation of whole networks of genes may lead to greater insight into the underlying physiology since the coordinated response is greater than the sum of its parts. Systems biology offers a comprehensive network view of the processes of angiogenesis and arteriogenesis that might enable the prediction of drug targets and whether or not activation of the targets elicits the desired outcome. Systems biology integrates complex biological data from a variety of experimental sources (-omics) and analyzes how the interactions of the system components can give rise to the function and behavior of that system. This review focuses on how systems biology approaches have been applied to microvascular growth and remodeling, and how network analysis tools can be utilized to aid novel pro-angiogenic drug discovery.
Collapse
Affiliation(s)
- Lauren S Sefcik
- Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, Pennsylvania, USA
| | | | | | | |
Collapse
|
9
|
Hoganson DM, Pryor HI, Spool ID, Burns OH, Gilmore JR, Vacanti JP. Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold. Tissue Eng Part A 2010; 16:1469-77. [PMID: 20001254 DOI: 10.1089/ten.tea.2009.0118] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow.
Collapse
Affiliation(s)
- David M Hoganson
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Huang CY, Trask RS, Bond IP. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature. J R Soc Interface 2010; 7:1229-41. [PMID: 20150337 DOI: 10.1098/rsif.2009.0534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A study of the influence of embedded circular hollow vascules on structural performance of a fibre-reinforced polymer (FRP) composite laminate is presented. Incorporating such vascules will lead to multi-functional composites by bestowing functions such as self-healing and active thermal management. However, the presence of off-axis vascules leads to localized disruption to the fibre architecture, i.e. resin-rich pockets, which are regarded as internal defects and may cause stress concentrations within the structure. Engineering approaches for creating these simple vascule geometries in conventional FRP laminates are proposed and demonstrated. This study includes development of a manufacturing method for forming vascules, microscopic characterization of their effect on the laminate, finite element (FE) analysis of crack initiation and failure under load, and validation of the FE results via mechanical testing observed using high-speed photography. The failure behaviour predicted by FE modelling is in good agreement with experimental results. The reduction in compressive strength owing to the embedding of circular vascules ranges from 13 to 70 per cent, which correlates with vascule dimension.
Collapse
Affiliation(s)
- C-Y Huang
- Advanced Composites Centre for Innovation and Science (ACCIS), Department of Aerospace Engineering, University of Bristol, Queen's Buildings, University Walk, Bristol BS8 1TR, UK
| | | | | |
Collapse
|
11
|
Truslow JG, Price GM, Tien J. Computational design of drainage systems for vascularized scaffolds. Biomaterials 2009; 30:4435-43. [PMID: 19481796 DOI: 10.1016/j.biomaterials.2009.04.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/28/2009] [Indexed: 01/09/2023]
Abstract
This computational study analyzes how to design a drainage system for porous scaffolds so that the scaffolds can be vascularized and perfused without collapse of the vessel lumens. We postulate that vascular transmural pressure--the difference between lumenal and interstitial pressures--must exceed a threshold value to avoid collapse. Model geometries consisted of hexagonal arrays of open channels in an isotropic scaffold, in which a small subset of channels was selected for drainage. Fluid flow through the vessels and drainage channel, across the vascular wall, and through the scaffold were governed by Navier-Stokes equations, Starling's Law of Filtration, and Darcy's Law, respectively. We found that each drainage channel could maintain a threshold transmural pressure only in nearby vessels, with a radius-of-action dependent on vascular geometry and the hydraulic properties of the vascular wall and scaffold. We illustrate how these results can be applied to microvascular tissue engineering, and suggest that scaffolds be designed with both perfusion and drainage in mind.
Collapse
Affiliation(s)
- James G Truslow
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
| | | | | |
Collapse
|
12
|
Janakiraman V, Sastry S, Kadambi JR, Baskaran H. Experimental investigation and computational modeling of hydrodynamics in bifurcating microchannels. Biomed Microdevices 2008; 10:355-65. [PMID: 18175219 DOI: 10.1007/s10544-007-9143-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Methods involving microfluidics have been used in several chemical, biological and medical applications. In particular, a network of bifurcating microchannels can be used to distribute flow in a large space. In this work, we carried out experiments to determine hydrodynamic characteristics of bifurcating microfluidic networks. We measured pressure drop across bifurcating networks of various complexities for various flow rates. We also measured planar velocity fields in these networks by using particle image velocimetry. We further analyzed hydrodynamics in these networks using mathematical and computational modeling. Our results show that the experimental frictional resistances of complex bifurcating microchannels are 25-30% greater than that predicted by Navier-Stokes equations. Experimentally measured velocity profiles indicate that flow distributes equally at a bifurcation regardless of the complexity of the network. Flow division other than bifurcation such as trifurcation or quadruplication can lead to heterogeneities. These findings were verified by the results from the numerical simulations.
Collapse
Affiliation(s)
- Vijayakumar Janakiraman
- Department of Chemical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | | | | | | |
Collapse
|
13
|
Hoganson DM, Pryor HI, Vacanti JP. Tissue engineering and organ structure: a vascularized approach to liver and lung. Pediatr Res 2008; 63:520-6. [PMID: 18427297 DOI: 10.1203/01.pdr.0000305879.38476.0c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Over the past two decades, great strides have been made in the field of tissue engineering. Many of the initial attempts to develop an engineered tissue construct were based on the concept of seeding cells onto an avascular scaffold. Using advanced manufacturing technologies, the creation of a preformed vascular scaffold has become a reality. This article discusses some of the issues surrounding the development of such a vascular scaffold. We then examine of the challenges associated with applying this scaffold technology to two vital organ constructs: liver and lung.
Collapse
Affiliation(s)
- David M Hoganson
- Department of Pediatric Surgery, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
14
|
Janakiraman V, Kienitz BL, Baskaran H. Lithography Technique for Topographical Micropatterning of Collagen-Glycosaminoglycan Membranes for Tissue Engineering Applications. J Med Device 2007; 1:233-237. [PMID: 19823602 DOI: 10.1115/1.2775937] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND: An adaptable technique for micropatterning biomaterial scaffolds has enormous implications in controlling cell function and in the development of tissue-engineered (TE) microvasculature. In this paper, we report a technique to embed microscale patterns onto a collagen-glycosaminoglycan (CG) membrane as a first step towards the creation of TE constructs with built-in microvasculature. METHOD OF APPROACH: The CG membranes were fabricated by homogenizing a solution of Type I bovine collagen and chondroitin 6-sulfate in acetic acid and vacuum filtering the solution subsequently. The micropatterning technique consisted of three steps: surface dissolution of base matrix using acetic acid solution, feature resolution by application of uniform pressure and feature stability by glutaraldehyde crosslinking. RESULTS: Application of the new technique yielded patterns in CG membranes with a spatial resolution in the order of 2-3 microns. We show that such a patterned matrix is conducive to the attachment of bovine aortic endothelial cells (BAEC's). CONCLUSIONS: The patterned membranes can be used for the development of complex three-dimensional TE products with built-in flow channels, as templates for topographically directed cell growth, or as a model system to study various microvascular disorders where feature scales are important. The new technique is versatile; topographical patterns can be custom-made for any predetermined design with high spatial resolution and the technique itself can be adapted for use with other scaffold materials.
Collapse
|