1
|
Boldrini GG, Martín Molinero G, Pérez Chaca MV, Ciminari ME, Moyano F, Córdoba ME, Pennacchio G, Fanelli M, Álvarez SM, Gómez NN. Glycine max (soy) based diet improves antioxidant defenses and prevents cell death in cadmium intoxicated lungs. Biometals 2022; 35:229-244. [PMID: 35038064 DOI: 10.1007/s10534-022-00361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2020] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
Cadmium (Cd) is a toxic metal and an important environmental contaminant. We analyzed its effects on oligoelements, oxidative stress, cell death, Hsp expression and the histoarchitecture of rat lung under different diets, using animal models of subchronic cadmium intoxication. We found that Cd lung content augmented in intoxicated groups: Zn, Mn and Se levels showed modifications among the different diets, while Cu showed no differences. Lipoperoxidation was higher in both intoxicated groups. Expression of Nrf-2 and SOD-2 increased only in SoCd. GPx levels showed a trend to increase in Cd groups. CAT activity was higher in intoxicated groups, and it was higher in Soy groups vs. Casein. LDH activity in BAL increased in CasCd and decreased in both soy-fed groups. BAX/Bcl-2 semiquantitative ratio showed similar results than LDH activity, confirmed by Caspase 3 immunofluorescence. The histological analysis revealed an infiltration process in CasCd lungs, with increased connective tissue, fused alveoli and capillary fragility. Histoarchitectural changes were less severe in soy groups. Hsp27 expression increased in both intoxicated groups, while Hsp70 only augmented in SoCd. This show that a soy-diet has a positive impact upon oxidative unbalance, cell death and morphological changes induced by Cd and it could be a good alternative strategy against Cd exposure.
Collapse
Affiliation(s)
- Gabriel Giezi Boldrini
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - Glenda Martín Molinero
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - María Verónica Pérez Chaca
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - María Eugenia Ciminari
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | | | | | | | - Mariel Fanelli
- Laboratory of Oncology, IMBECU (CCT), CONICET, Mendoza, Argentina
| | - Silvina Mónica Álvarez
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina.
- IMIBIO-SL CONICET, San Luis, Argentina.
| | - Nidia Noemí Gómez
- IMIBIO-SL CONICET, San Luis, Argentina.
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina.
| |
Collapse
|
2
|
Peng-Winkler Y, Büttgenbach A, Rink L, Weßels I. Zinc supplementation prior to heat shock enhances HSP70 synthesis through HSF1 phosphorylation at serine 326 in human peripheral mononuclear cells. Food Funct 2022; 13:9143-9152. [DOI: 10.1039/d2fo01406h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Zinc supplementation prior to heat shock increases HSP70 (Heat shock protein 70) expression, which has cytoprotective effects in tissue cells during inflammation. Effects of zinc deficiency in this regard are...
Collapse
|
3
|
Main biomarkers associated with age-related plasma zinc decrease and copper/zinc ratio in healthy elderly from ZincAge study. Eur J Nutr 2016; 56:2457-2466. [DOI: 10.1007/s00394-016-1281-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
4
|
Chen Y, Wang S, Fu X, Zhou W, Hong W, Zou D, Li X, Liu J, Ran P, Li B. tert-Butylhydroquinone mobilizes intracellular-bound zinc to stabilize Nrf2 through inhibiting phosphatase activity. Am J Physiol Cell Physiol 2015; 309:C148-58. [DOI: 10.1152/ajpcell.00031.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2014] [Accepted: 05/05/2015] [Indexed: 01/06/2023]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is required to combat increases in oxidative stress. The chemical compound tert-butylhydroquinone (tBHQ) can downregulate Kelch-like ECH-associated protein 1 (Keap1), a repressor of Nrf2, thus maintaining the stability of Nrf2. tBHQ can also increase intracellular “free” zinc in human bronchial epithelial (16HBE) cells. We aim to investigate whether the intracellular free zinc change plays a role in Nrf2 activation. tBHQ exposure dose-dependently increases intracellular free zinc concentrations within 30 min in 16HBE cells by mobilizing intracellular zinc pools. Active Nrf2 and the antioxidant enzyme heme oxygenase-1 (HO-1) increase at 3 h after tBHQ treatment. Chelating intracellular free zinc with tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) during tBHQ exposure partially abrogates the tBHQ-induced activation of Nrf2 and HO-1 expression, while Keap1 is further decreased. These results indicate that tBHQ-induced stability of Nrf2 is associated with the intracellular free zinc level. Because the activated Nrf2 is phosphorylated, the serine/threonine protein phosphatase activity, which is known to be inhibited by zinc, is assayed. The results showed that tBHQ treatment can suppress cellular protein phosphatase-2A (PP2A) and protein phosphatase-2C (PP2C) activity, which can be abrogated by adding TPEN. This finding is verified in a cell-free protein extract experiment by supplying zinc or by chelating zinc with TPEN. These results provide a novel mechanistic insight into Nrf2 activation in antioxidant enzyme induction involving zinc signaling. The increase of intracellular free zinc may be one mechanism for Nrf2 activation. The inhibition of PP2A and PP2C activity may be involved in Nrf2 phosphorylation modulation.
Collapse
Affiliation(s)
- Yunfang Chen
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Sheng Wang
- National key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xin Fu
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Wenqu Zhou
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Hong
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Dongting Zou
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Xichong Li
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Jinbao Liu
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou, China; and
| | - Pixin Ran
- National key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Bing Li
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|