1
|
Zhu L, Du Z, Kong Y, Wang X, Li H, Hou L, Kong X. The identification, evolutionary analysis, and immune roles of Rab family members in red swamp crayfish, Procambarus clarkii. Int J Biol Macromol 2024; 276:133606. [PMID: 38972658 DOI: 10.1016/j.ijbiomac.2024.133606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
The Rab GTPase constitutes the largest family of small GTPases that regulate intracellular trafficking. Different eukaryotes possess varying numbers of Rab paralogs. However, limited knowledge exists regarding the evolutionary pattern of Rab family in most major eukaryotic supergroups. This study cloned 24 Rab genes from transcriptome data of Procambarus clarkii haemocytes. The multiple sequence alignment and phylogenetic tree analysis revealed a relatively high degree of conservation for PcRab. Furthermore, PcRab exhibited similarities in motif composition with all members showing presence of G, PM, RabF, and RabSF motifs. The tertiary structure indicated that PcRab proteins mainly consisted of α-helices and β-strands, and most PcRab proteins shared similar tertiary structures, and it was indicated that they have similar protein characteristics. Protein-protein interaction prediction identified a total of 20 interacting proteins involved in vesicle trafficking, phagocytosis, and signal transduction with 193 interactions. Expression analysis showed wide expression patterns for PcRab in P. clarkii organs. Upon infection by white spot syndrome virus and Aeromonas veronii, significant induction was observed for PcRab gene expression levels, indicating their involvement in pathogen response mechanisms. The present study represents the pioneering effort in comprehensively identifying and cloning the Rab family genes in crustacean, followed by a systematic investigation into their evolutionary patterns and immune response upon pathogen infection. The results provided valuable insights for further investigation into the molecular mechanism underlying the response of P. clarkii to pathogen infection.
Collapse
Affiliation(s)
- Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Zhengyan Du
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yiming Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xinru Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Hao Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Xin Y, Yang Z, Zhu Y, Li Y, Yu J, Zhong W, Chen Y, Lv X, Hu J, Lin J, Miao Y, Wang L. Hypoxia Induces Oxidative Injury and Apoptosis via Mediating the Nrf-2/Hippo Pathway in Blood Cells of Largemouth Bass (Micropterus salmoides). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.841318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Investigating how aquatic animals respond to hypoxia brought about by changes in environmental temperature may be of great significance to avoid oxidative injury and maintain the quality of farmed fish in the background of global warming. Here, we investigated the effects of hypoxia on oxidative injury and environment-sensing pathway in blood cells of Micropterus salmoides. The total blood cell count (TBCC) and Giemsa staining showed that hypoxia could lead to damage of blood cells. Flow cytometry analysis confirmed that the apoptosis rate, Ca2+ level, NO production and ROS of blood cells were significantly increased under hypoxia stress. Environment-sensing pathways, such as Nrf2 pathway showed that hypoxia resulted in significant up-regulation of hiF-1 alpha subunit (Hif-1α), nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-1ike ECH- associated protein l (Keap1) expression. Meanwhile, the expression of Hippo pathway-related genes such as MOB kinase activator 1 (MOB1), large tumor suppressor homolog 1/2 (Lats1/2), yes-associated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ), protein phosphatase 2A (PP2A) were significantly increased in blood cells after hypoxia exposure. In addition, hypoxia stress also increased the expression of catalase (CAT) and glutathione peroxidase (GPx), but decreased the expression of superoxide dismutase (SOD). Consequently, our results suggested that hypoxia could induce oxidative injury and apoptosis via mediating environment-sensing pathway such as Nrf2/Hippo pathway in blood cells of M. salmoides.
Collapse
|
3
|
Xu Y, Hu Y, Zhou Y, Jiang C, Ye T. Rab9 defense against white spot syndrome virus by participation in autophagy in Marsupenaeus japonicas. FISH & SHELLFISH IMMUNOLOGY 2020; 104:245-251. [PMID: 32526284 DOI: 10.1016/j.fsi.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
White spot syndrome virus (WSSV) is the main pathogen of shrimp and has led to considerable economic losses to the shrimp industry around the world. However, so far there are still no effective strategies to address this problem. In this paper, the tissue distribution of Rab9 as well as its defense mechanism against WSSV in Japanese shrimp (Marsupenaeus japonicas) was investigated. The results revealed that Rab9 had a higher expression in hemocyte and gill while expression was lower in heart, muscle, intestine, liver, indicating Rab9 was involved in the innate immune process. The results showed that the Rab9 expression increased when shrimp was challenged with WSSV compared with that of control, while the silence of Rab9 led to the increase of WSSV copies. In order to explore the antiviral mechanism of Rab9, it was demonstrated that the expression level of Rab9 changed during autophagy process, which indicated that Rab9 is participated in the autophagy procedure of shrimp. The fact that autophagy decreased after Rab9 silenced, may also suggest that Rab9 protein could affect autophagy. In short, the results showed Rab9 played a key role in antivirus through regulating autophagy. The results not only enlarge the limited views about molecular mechanism of Rab in invertebrate, but also help to enrich the immunological content in marine invertebrate.
Collapse
Affiliation(s)
- Yuxue Xu
- Department of Development Technology of Marine Resources,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Laboratory of Marine Ecosystem and Biogeochemistry, SOA, Second Institute of Oceanography, SOA, Hangzhou, 310012, China
| | - Yiqi Hu
- Department of Development Technology of Marine Resources,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yadong Zhou
- Laboratory of Marine Ecosystem and Biogeochemistry, SOA, Second Institute of Oceanography, SOA, Hangzhou, 310012, China
| | - Caiying Jiang
- Department of Development Technology of Marine Resources,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Ting Ye
- Department of Development Technology of Marine Resources,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
4
|
Zhang Q, Yu Y, Wang Q, Liu F, Luo Z, Zhang C, Zhang X, Huang H, Xiang J, Li F. Identification of Single Nucleotide Polymorphisms Related to the Resistance Against Acute Hepatopancreatic Necrosis Disease in the Pacific White Shrimp Litopenaeus vannamei by Target Sequencing Approach. Front Genet 2019; 10:700. [PMID: 31428134 PMCID: PMC6688095 DOI: 10.3389/fgene.2019.00700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a major bacterial disease in Pacific white shrimp Litopenaeus vannamei farming, which is caused by Vibrio parahaemolyticus. AHPND has led to a significant reduction of shrimp output since its outbreak. Selective breeding of disease-resistant broodstock is regarded as a key strategy in solving the disease problem. Understanding the relationship between genetic variance and AHPND resistance is the basis for marker-assisted selection in shrimp. The purpose of this study was to identify single nucleotide polymorphisms (SNPs) associated with the resistance against AHPND in L. vannamei. In this work, two independent populations were used for V. parahaemolyticus challenge and the resistant or susceptible shrimp were evaluated according to the survival time after Vibrio infection. The above two populations were genotyped separately by a SNP panel designed based on the target sequencing platform using a pooling strategy. The SNP panel contained 508 amplicons from DNA fragments distributed evenly along the genome and some immune-related genes of L. vannamei. By analyzing the allele frequency in the resistant and susceptible groups, 30 SNPs were found to be significantly associated with the resistance of the shrimp against V. parahaemolyticus infection (false discovery rate corrected at P < 0.05). Three SNPs were further validated by individual genotyping in all samples of population 1. Our study illustrated that target sequencing and pooling sequencing were effective in identifying the markers associated with economic traits, and the SNPs identified in this study could be used as molecular markers for breeding disease-resistant shrimp.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quanchao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zheng Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengsong Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hao Huang
- Hainan Grand Suntop Ocean Breeding Co., Ltd., Wenchang, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
5
|
Fernandes AL, Josende ME, Nascimento JP, Santos AP, Sahoo SK, da Silva FMR, Romano LA, Furtado CA, Wasielesky W, Monserrat JM, Ventura-Lima J. Exposure to few-layer graphene through diet induces oxidative stress and histological changes in the marine shrimp Litopenaeus vannamei. Toxicol Res (Camb) 2017; 6:205-214. [PMID: 30090491 PMCID: PMC6062256 DOI: 10.1039/c6tx00380j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
The production and use of graphene-based nanomaterials is rapidly increasing. However, few data are available regarding the toxicity of these nanomaterials in aquatic organisms. In the present study, the toxicity of few-layer graphene (FLG) (obtained by chemical exfoliation) was evaluated in different tissues of the shrimp Litopenaeus vannamei following exposure to FLG through a diet for four weeks. Transmission electron microscopy and dynamic light scattering measurements showed a distribution of lateral sheet sizes between 100 and 2000 nm with the average length and width of 800 and 400 nm, respectively. Oxidative stress parameters were analyzed, indicating that FLG exposure led to an increase in the concentration of reactive oxygen species, modulated the activity of antioxidant enzymes such as glutamate cysteine ligase and glutathione-S-transferase, and reduced glutathione levels and total antioxidant capacity. However, the observed modulations were not sufficient to avoid lipid and DNA damage in both gill and hepatopancreas tissues. Furthermore, graphene exposure resulted in morphological changes in hepatopancreas tissues. These results demonstrate that exposure to FLG through the diet induces alterations in the redox state of cells, leading to a subsequent oxidative stress situation. It is therefore clear that nanomaterials presenting these physico-chemical characteristics may be harmful to aquatic biota.
Collapse
Affiliation(s)
- Amanda Lucena Fernandes
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
| | | | | | - Sangram Keshai Sahoo
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN , Belo Horizonte , MG , Brazil
| | - Flávio Manoel Rodrigues da Silva
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências da Saúde - FURG , Brasil
| | | | | | | | - José Marìa Monserrat
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
- Programa de Pós-Graduação em Aquacultura - FURG , Brasil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
| |
Collapse
|
6
|
Zhao ZX, Cao DC, Xu J, Xu R, Li JT, Zhang Y, Xu P, Sun XW. Diversification of the duplicated Rab1a genes in a hypoxia-tolerant fish, common carp (Cyprinus carpio). Comp Biochem Physiol B Biochem Mol Biol 2015; 188:54-62. [PMID: 26129846 DOI: 10.1016/j.cbpb.2015.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 11/25/2022]
Abstract
Common carp is a widely cultivated fish with longer than 2,000 years domestication history, due to its strong environmental adaptabilities, especially hypoxia tolerance. The common carp genome has experienced a very recent whole genome duplication (WGD) event. Among a large number of highly similar duplicated genes, a pair of Ras-associated binding-GTPase 1a (Rab1a) genes were found fast diverging. Four analogous Rab1a genes were identified in the common carp genome. Comparisons of gene structures and sequences indicated Rab1a-1 and Rab1a-2 was a pair of fast diverging duplicates, while Rab1a-3 and Rab1a-4 was a pair of less diverged duplicates. All putative Rab1a proteins shared conserved GTPase domain, which enabled the proteins serve as molecular switches for vesicular trafficking. Rab1a-1 and Rab1a-2 proteins varied in their C-terminal sequences, which were generally considered to encode the membrane localization signals. Differential expression patterns were observed between Rab1a-1 and Rab1a-2 genes. In blood, muscle, spleen, and heart, the mRNA level of Rab1a-1 was higher than that of Rab1a-2. In liver and intestine, the mRNA level of Rab1a-2 was higher. Expression of Rab1a-1 and Rab1a-2 showed distinct hypoxia responses. Under severe hypoxia, Rab1a-1 expression was down-regulated in blood, while Rab1a-2 expression was up-regulated in liver. Compared with the less diverged Rab1a-3/4 gene pair, common carp Rab1a-1/2 gene pair exhibited strong characteristics of sub-functionalization, which might contribute to a sophisticated and efficient Ras-dependent regulating network for the hypoxia-tolerant fish.
Collapse
Affiliation(s)
- Zi-Xia Zhao
- CAFS Key Laboratory of Aquatic Genomics, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Ding-Chen Cao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Jian Xu
- CAFS Key Laboratory of Aquatic Genomics, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Ru Xu
- CAFS Key Laboratory of Aquatic Genomics, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Jiong-Tang Li
- CAFS Key Laboratory of Aquatic Genomics, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Yan Zhang
- CAFS Key Laboratory of Aquatic Genomics, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Peng Xu
- CAFS Key Laboratory of Aquatic Genomics, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xiao-Wen Sun
- CAFS Key Laboratory of Aquatic Genomics, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China; Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|