1
|
Lingwood C. Is cholesterol both the lock and key to abnormal transmembrane signals in Autism Spectrum Disorder? Lipids Health Dis 2024; 23:114. [PMID: 38643132 PMCID: PMC11032007 DOI: 10.1186/s12944-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Departments of Biochemistry and Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
2
|
Mukhina T, Brezesinski G, Schneck E. Phase Behavior and Miscibility in Two-Component Glycolipid Monolayers. J Phys Chem B 2022; 126:6464-6471. [PMID: 35976765 DOI: 10.1021/acs.jpcb.2c05016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycolipids are known to be involved in the formation of ordered functional domains in biological membranes. Since the structural characterization of such domains is difficult, most studies have so far dealt with lipid mixtures containing only one glycolipid component at a time, although biological membranes usually contain several glycolipid species, which can result in more complex structures and phase behavior. Here, we combine classical isotherm measurements with surface-sensitive grazing-incidence X-ray diffraction to investigate the phase behavior and miscibility in Langmuir monolayers of binary glycolipid mixtures. We find that the phase behavior has a subtle dependence on the saccharide headgroup chemistry. For compatible chemistries, molecular superlattice structures formed by one of the glycolipid species are conserved and can host foreign glycolipids up to a defined stoichiometry. In contrast, for sterically incompatible saccharide chemistries, the superlattice is lost even if both species are able to form such structures in their pure forms. Our results suggest that related phenomena may play important roles also in biological contexts.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Gerald Brezesinski
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
3
|
Design, synthesis and neurite outgrowth activity of novel ganglioside GM1 derivatives by remodeling of the fatty acid moiety. Eur J Med Chem 2022; 241:114636. [DOI: 10.1016/j.ejmech.2022.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
4
|
Chiricozzi E. Plasma membrane glycosphingolipid signaling: a turning point. Glycoconj J 2021; 39:99-105. [PMID: 34398373 PMCID: PMC8979859 DOI: 10.1007/s10719-021-10008-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Plasma membrane interaction is highly recognized as an essential step to start the intracellular events in response to extracellular stimuli. The ways in which these interactions take place are less clear and detailed. Over the last decade my research has focused on developing the understanding of the glycosphingolipids-protein interaction that occurs at cell surface. By using chemical synthesis and biochemical approaches we have characterized some fundamental interactions that are key events both in the immune response and in the maintenance of neuronal homeostasis. In particular, for the first time it has been demonstrated that a glycolipid, present on the outer side of the membrane, the long-chain lactosylceramide, is able to directly modulate a cytosolic protein. But the real conceptual change was the demonstration that the GM1 oligosaccharide chain is able, alone, to replicate numerous functions of GM1 ganglioside and to directly interact with plasma membrane receptors by activating specific cellular signaling. In this conceptual shift, the development and application of multidisciplinary techniques in the field of biochemistry, from chemical synthesis to bioinformatic analysis, as well as discussions with several national and international colleagues have played a key role.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy.
| |
Collapse
|
5
|
Moreno MJ, Teles Martins PA, Bernardino EF, Abel B, Ambudkar SV. Characterization of the Lipidome and Biophysical Properties of Membranes from High Five Insect Cells Expressing Mouse P-Glycoprotein. Biomolecules 2021; 11:biom11030426. [PMID: 33799403 PMCID: PMC8001469 DOI: 10.3390/biom11030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
The lipid composition of biomembranes influences the properties of the lipid bilayer and that of the proteins. In this study, the lipidome and the lipid/protein ratio of membranes from High Five™ insect cells overexpressing mouse P-glycoprotein was characterized. This provides a better understanding of the lipid environment in which P-glycoprotein is embedded, and thus of its functional and structural properties. The relative abundance of the distinct phospholipid classes and their acyl chain composition was characterized. A mass ratio of 0.57 ± 0.11 phospholipids to protein was obtained. Phosphatidylethanolamines are the most abundant phospholipids, followed by phosphatidylcholines. Membranes are also enriched in negatively charged lipids (phosphatidylserines, phosphatidylinositols and phosphatidylglycerols), and contain small amounts of sphingomyelins, ceramides and monoglycosilatedceramides. The most abundant acyl chains are monounsaturated, with significant amounts of saturated chains. The characterization of the phospholipids by HPLC-MS allowed identification of the combination of acyl chains, with palmitoyl-oleoyl being the most representative for all major phospholipid classes except for phosphatidylserines, which are mostly saturated. A mixture of POPE:POPC:POPS in the ratio 45:35:20 is proposed for the preparation of simple representative model membranes. The adequacy of the model membranes was further evaluated by characterizing their surface potential and fluidity.
Collapse
Affiliation(s)
- Maria João Moreno
- Coimbra Chemistry Center, Chemistry Department, FCTUC, University of Coimbra, 3004-535 Coimbra, Portugal; (P.A.T.M.); (E.F.B.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence:
| | | | - Eva F. Bernardino
- Coimbra Chemistry Center, Chemistry Department, FCTUC, University of Coimbra, 3004-535 Coimbra, Portugal; (P.A.T.M.); (E.F.B.)
| | - Biebele Abel
- Laboratory of Cell Biology, CCR, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (B.A.); (S.V.A.)
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, CCR, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (B.A.); (S.V.A.)
| |
Collapse
|
6
|
Membrane Adhesion via Glycolipids Occurs for Abundant Saccharide Chemistries. Biophys J 2020; 118:1602-1611. [PMID: 32097623 DOI: 10.1016/j.bpj.2020.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane-bound oligosaccharides with specific chemistries are known to promote tight adhesion between adjacent membranes via the formation of weak saccharide bonds. However, in the literature, one can find scattered evidence that other, more abundant saccharide chemistries exhibit similar behavior. Here, the influence of various glycolipids on the interaction between adjacent membranes is systematically investigated with the help of small- and wide-angle x-ray scattering and complementary neutron diffraction experiments. Added electrostatic repulsion between the membrane surfaces is used to identify the formation of saccharide bonds and to challenge their stability against tensile stress. Some of the saccharide headgroup types investigated are able to bind adjacent membranes together, but this ability has no significant influence on the membrane bending rigidity. Our results indicate that glycolipid-mediated membrane adhesion is a highly abundant phenomenon and therefore potentially of great biological relevance.
Collapse
|
7
|
Calvano CD, Ventura G, Sardanelli AM, Losito I, Palmisano F, Cataldi TRI. Identification of neutral and acidic glycosphingolipids in the human dermal fibroblasts. Anal Biochem 2019; 581:113348. [PMID: 31251925 DOI: 10.1016/j.ab.2019.113348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022]
Abstract
Skin fibroblasts are recognized as a valuable model of primary human cells able of mirroring the chronological and biological aging. Here, a lipidomic study of glycosphingolipids (GSL) occurring in the easily accessible human dermal fibroblasts (HDF) is presented. Reversed-phase liquid chromatography with negative electrospray ionization (RPLC-ESI) coupled to either orbitrap or linear ion-trap multiple-stage mass spectrometry was applied to characterize GSL in commercially adult and neonatal primary human fibroblast cells and in skin samples taken from an adult volunteer. Collision-induced dissociation in negative ion mode allowed us to get information on the monosaccharide number and ceramide composition, whereas tandem mass spectra on the ceramide anion was useful to identify the sphingoid base. Nearly sixty endogenous GSL species were successfully recognized, namely 33 hexosyl-ceramides (i.e., HexCer, Hex2Cer and Hex3Cer) and 24 gangliosides as monosialic acid GM1, GM2 and GM3, along with 5 globosides Gb4. An average content of GSLs was attained and the most representative GSL in skin fibroblasts were Hex3Cer, also known as Gb3Cer, followed by Gb4, HexCer and Hex2Cer , while gangliosides were barely quantifiable. The most abundant GSLs in the examined cell lines share the same ceramide base (i.e. d18:1) and the relative content was d18:1/24:1 > d18:1/24:0 > d18:1/16:0 > d18:1/22:0.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Anna Maria Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Italy; Department of Medicine, Campus Bio-Medico University of Rome, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
8
|
Nitta T, Kanoh H, Inamori KI, Suzuki A, Takahashi T, Inokuchi JI. Globo-series glycosphingolipids enhance Toll-like receptor 4-mediated inflammation and play a pathophysiological role in diabetic nephropathy. Glycobiology 2019; 29:260-268. [PMID: 30476082 DOI: 10.1093/glycob/cwy105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
Alteration of glycosphingolipid (GSL) expression plays key roles in the pathogenesis and pathophysiology of many important human diseases, including cancer, diabetes and glycosphingolipidosis. Inflammatory processes are involved in development and progression of diabetic nephropathy, a major complication of type 2 diabetes mellitus. GSLs are known to play roles in inflammatory responses in various diseases, and levels of renal GSLs are elevated in mouse models of diabetic nephropathy; however, little is known regarding the pathophysiological role of these GSLs in this disease process. We studied proinflammatory activity of GSLs in diabetic nephropathy using spontaneously diabetic mouse strain KK. Mice were fed a high-fat diet (HFD) (60% kcal from fat) or normal diet (ND) (4.6% kcal from fat) for a period of 8 wk. HFD-feeding resulted in quantitative and qualitative changes of renal globo-series GSLs (particularly Gb3Cer), upregulation of TNF-α, and induction of renal inflammation. Gb3Cer/Gb4Cer treatment enhanced inflammatory responses via TLR4 in TLR4/MD-2 complex expressing cells, including HEK293T, mouse bone marrow-derived macrophages (BMDMs) and human monocytes. Our findings suggest that HFD-induced increase of Gb3Cer/Gb4Cer positively modulate TLR4-mediated inflammatory response, and that such GSLs play an important pathophysiological role in diabetic nephropathy.
Collapse
Affiliation(s)
- Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akemi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
9
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Fan S, Ruggiero MT, Song Z, Qian Z, Wallace VP. Correlation between saturated fatty acid chain-length and intermolecular forces determined with terahertz spectroscopy. Chem Commun (Camb) 2019; 55:3670-3673. [PMID: 30855614 DOI: 10.1039/c9cc00141g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We measured crystalline (C-form) saturated fatty acids with even carbon numbers ranging from 12 to 20 using temperature dependent terahertz time-domain spectroscopy (THz-TDS). Absorption features between 0.5 and 3 THz were identified at temperatures from 96 K to 293 K, and a systematic red-shift was obvserved with the increasing carbon chain length. The origins of these absorption bands were uncovered using state-of-the-art ab initio density functional theory (DFT) calculations. Similar vibrational motions in the absorption bands of the different materials highlight the unique role that THz-TDS has for probing weak non-covalent interactions in these materials. Our results showcase the utility of the terahertz region, which is beyond the scope of related vibrational techniques, providing direct evidence of the effect of chain length on the intermolecular interactions of these molecules.
Collapse
Affiliation(s)
- Shuting Fan
- College of Electronic Science and Technology, Shenzhen University, 3688 Nanhai Rd, Shenzhen, Guangdong Province 518060, China.
| | | | | | | | | |
Collapse
|
11
|
Aoki K, Heaps AD, Strauss KA, Tiemeyer M. Mass spectrometric quantification of plasma glycosphingolipids in human GM3 ganglioside deficiency. CLINICAL MASS SPECTROMETRY 2019; 14 Pt B:106-114. [PMID: 34917767 DOI: 10.1016/j.clinms.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 01/01/2023]
Abstract
Background Among Amish communities of North America, biallelic mutations of ST3GAL5 (c.694C > T) eliminate synthesis of GM3 and its derivative downstream a- and b-series gangliosides. Systemic ganglioside deficiency is associated with infantile onset psychomotor retardation, slow brain growth, intractable epilepsy, deafness, and cortical visual impairment. We developed a robust quantitative assay to simultaneously characterize glycan and ceramide moieties of plasma glycosphingolipids (GSLs) among ST3GAL5 c.694C > T homozygotes (n = 8), their heterozygous siblings (n = 24), and wild type control (n = 19) individuals. Methods Following extraction and saponification of total plasma lipids, GSLs were purified on a tC18 cartridge column, permethylated, and subjected to nanospray ionization mass spectrometry utilizing neutral loss scanning and data-dependent acquisition. Plasma GSLs were quantified against appropriate synthetic standards. Results Our method demonstrated linearity from 5 to 250 μl of plasma. Recovery of synthetic GSLs spiked into plasma was 99-104% with no matrix interference. Quantitative plasma GSL profiles discriminated among ST3GAL5 genotypes: GM3 and GD3 were undetectable in ST3GAL5 c.694C > T homozygotes, who had markedly elevated lactosylceramide (19.17 ± 4.20 nmol/ml) relative to heterozygous siblings (9.62 ± 2.46 nmol/ml) and wild type controls (6.55 ± 2.16 nmol/ml). Children with systemic ganglioside deficiency had a distinctive shift in ceramide composition toward higher mass species. Conclusions Our quantitative glycolipidomics method discriminates among ST3GAL5 c.694C > T genotypes, can reveal subtle structural heterogeneity, and represents a useful new strategy to diagnose and monitor GSL disorders in humans.
Collapse
Key Words
- CID, collision-induced dissociation
- Cer, ceramide
- Dp, degree of polymerization
- EGCase, endoglycosylceramidase
- ESI-MS, electrospray ionization mass spectrometry
- GD3, disialo-ganglioside GD3 (IUPAC-IUB: II3- α -(Neu5Ac)2-Gg2Cer)
- GM1b, monosialo-ganglioside GM1b (IUPAC-IUB: IV3-α-Neu5Ac-Gg4Cer)
- GM3
- GM3, monosialo-ganglioside GM3
- GSL, glycosphingolipid
- Gal, galactose
- GalNAc, N-acetylgalactosamine
- Ganglioside
- Gb3, globotriaosylceramide (IUPAC-IUB: Gb3Cer)
- Gb3-D, deuterated Gb3
- Gb4, globotetraosylceramide (IUPAC-IUB: Gb4Cer)
- Glc, glucose
- GlcCer, glucosylceramide
- Glycosphingolipid
- LacCer, lactosylceramide
- MS, mass spectrometry
- MSn, multidimensional mass spectrometry
- Mass spectrometry
- NL, neutral loss
- NSI, nanospray ionization
- Neu5Ac, sialic acid as N-5-acetylneuraminic acid
- Plasma
- ST3GAL5, CMP-Neu5Ac:Lactosylceramide alpha-2,3-sialyltransferase 5, previously known as SIAT9, SIATGM3S, ST3GalV, GM3-synthase
- TIM, total ion mapping
- UPLC, ultra-high pressure liquid chromatography
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, Greece
| | - Adam D Heaps
- Clinic for Special Children, Strasburg, PA, United States
| | - Kevin A Strauss
- Clinic for Special Children, Strasburg, PA, United States.,Lancaster General Hospital, Lancaster, PA, United States
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, Greece.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, Greece
| |
Collapse
|
12
|
Albeituni S, Stiban J. Roles of Ceramides and Other Sphingolipids in Immune Cell Function and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:169-191. [PMID: 31562630 DOI: 10.1007/978-3-030-21735-8_15] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ceramides are bioactive sphingolipids that support the structure of the plasma membrane and mediate numerous cell-signaling events in eukaryotic cells. The finding that ceramides act as second messengers transducing cellular signals has attracted substantial attention in several fields of Biology. Since all cells contain lipid plasma membranes, the impact of various ceramides, ceramide synthases, ceramide metabolites, and other sphingolipids has been implicated in a vast range of cellular functions including, migration, proliferation, response to external stimuli, and death. The roles of lipids in these functions widely differ among the diverse cell types. Herein, we discuss the roles of ceramides and other sphingolipids in mediating the function of various immune cells; particularly dendritic cells, neutrophils, and macrophages. In addition, we highlight the main studies describing effects of ceramides in inflammation, specifically in various inflammatory settings including insulin resistance, graft-versus-host disease, immune suppression in cancer, multiple sclerosis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Sabrin Albeituni
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
13
|
Worstell NC, Singla A, Saenkham P, Galbadage T, Sule P, Lee D, Mohr A, Kwon JSI, Cirillo JD, Wu HJ. Hetero-Multivalency of Pseudomonas aeruginosa Lectin LecA Binding to Model Membranes. Sci Rep 2018; 8:8419. [PMID: 29849092 PMCID: PMC5976636 DOI: 10.1038/s41598-018-26643-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022] Open
Abstract
A single glycan-lectin interaction is often weak and semi-specific. Multiple binding domains in a single lectin can bind with multiple glycan molecules simultaneously, making it difficult for the classic "lock-and-key" model to explain these interactions. We demonstrated that hetero-multivalency, a homo-oligomeric protein simultaneously binding to at least two types of ligands, influences LecA (a Pseudomonas aeruginosa adhesin)-glycolipid recognition. We also observed enhanced binding between P. aeruginosa and mixed glycolipid liposomes. Interestingly, strong ligands could activate weaker binding ligands leading to higher LecA binding capacity. This hetero-multivalency is probably mediated via a simple mechanism, Reduction of Dimensionality (RD). To understand the influence of RD, we also modeled LecA's two-step binding process with membranes using a kinetic Monte Carlo simulation. The simulation identified the frequency of low-affinity ligand encounters with bound LecA and the bound LecA's retention of the low-affinity ligand as essential parameters for triggering hetero-multivalent binding, agreeing with experimental observations. The hetero-multivalency can alter lectin binding properties, including avidities, capacities, and kinetics, and therefore, it likely occurs in various multivalent binding systems. Using hetero-multivalency concept, we also offered a new strategy to design high-affinity drug carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Nolan C Worstell
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Akshi Singla
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Panatda Saenkham
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Thushara Galbadage
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Dongheon Lee
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Alec Mohr
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Joseph Sang-Il Kwon
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
14
|
Wimalachandra D, Yang JX, Zhu L, Tan E, Asada H, Chan JY, Lee YH. Long-chain glucosylceramides crosstalk with LYN mediates endometrial cell migration. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:71-80. [DOI: 10.1016/j.bbalip.2017.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/07/2023]
|
15
|
Singh P, Li R. Emerging roles for sphingolipids in cellular aging. Curr Genet 2017; 64:761-767. [PMID: 29260307 DOI: 10.1007/s00294-017-0799-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
Abstract
Aging is a gradual loss of physiological functions as organisms' progress in age. Although aging in multicellular organisms is complex, some fundamental mechanisms and pathways may be shared from the single cellular yeast to human. Budding yeast Saccharomyces cerevisiae has been established model system for aging studies. A yeast cell divides asymmetrically to produce two cells that differ in size and age. The one that is smaller coming from bud is a newborn cell that with a full replicative potential head irrespective of the replicative age of its mother-the larger cell from which the bud grows out before division. The age asymmetry between daughter and mother is thought to be dependent on asymmetric segregation of certain factors such as protein aggregates, extrachromosomal DNA (ERCs) and dysfunctional organelles during successive cell divisions of the yeast replicative lifespan (RLS). It is also thought that certain plasma membrane proteins, in particular multidrug-resistant (MDR) proteins, asymmetrically partition between the mother and the bud based on the age of the polypeptides. Functional decline associated with the molecular aging of those proteins contributes to the fitness decline at advance age. In our recent study, we showed that sphingolipids facilitate the age-dependent segregation of MDRs between daughter and mother cell. In this review, we highlight and discuss the potential mechanisms by which sphingolipids regulate the aging process in yeast and cells of vertebrate animals including human.
Collapse
Affiliation(s)
- Pushpendra Singh
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA. .,US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA.
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
16
|
Zheng S, Eierhoff T, Aigal S, Brandel A, Thuenauer R, de Bentzmann S, Imberty A, Römer W. The Pseudomonas aeruginosa lectin LecA triggers host cell signalling by glycosphingolipid-dependent phosphorylation of the adaptor protein CrkII. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1236-1245. [PMID: 28428058 DOI: 10.1016/j.bbamcr.2017.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
Abstract
The human pathogen Pseudomonas aeruginosa induces phosphorylation of the adaptor protein CrkII by activating the non-receptor tyrosine kinase Abl to promote its uptake into host cells. So far, specific factors of P. aeruginosa, which induce Abl/CrkII signalling, are entirely unknown. In this research, we employed human lung epithelial cells H1299, Chinese hamster ovary cells and P. aeruginosa wild type strain PAO1 to study the invasion process of P. aeruginosa into host cells by using microbiological, biochemical and cell biological approaches such as Western Blot, immunofluorescence microscopy and flow cytometry. Here, we demonstrate that the host glycosphingolipid globotriaosylceramide, also termed Gb3, represents a signalling receptor for the P. aeruginosa lectin LecA to induce CrkII phosphorylation at tyrosine 221. Alterations in Gb3 expression and LecA function correlate with CrkII phosphorylation. Interestingly, phosphorylation of CrkIIY221 occurs independently of Abl kinase. We further show that Src family kinases transduce the signal induced by LecA binding to Gb3, leading to CrkY221 phosphorylation. In summary, we identified LecA as a bacterial factor, which utilizes a so far unrecognized mechanism for phospho-CrkIIY221 induction by binding to the host glycosphingolipid receptor Gb3. The LecA/Gb3 interaction highlights the potential of glycolipids to mediate signalling processes across the plasma membrane and should be further elucidated to gain deeper insights into this non-canonical mechanism of activating host cell processes.
Collapse
Affiliation(s)
- Shuangshuang Zheng
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thorsten Eierhoff
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Sahaja Aigal
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Annette Brandel
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Roland Thuenauer
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales, UPR5301 CNRS and University of Grenoble Alpes, BP53, 38041 Grenoble cédex 09, France
| | - Winfried Römer
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
17
|
Aureli M, Schiumarini D, Loberto N, Bassi R, Tamanini A, Mancini G, Tironi M, Munari S, Cabrini G, Dechecchi MC, Sonnino S. Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chem Phys Lipids 2016; 200:94-103. [DOI: 10.1016/j.chemphyslip.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
18
|
Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:688-702. [DOI: 10.1016/j.bbalip.2016.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/20/2016] [Accepted: 04/30/2016] [Indexed: 11/22/2022]
|
19
|
Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles. Biophys J 2016; 108:2212-22. [PMID: 25954879 DOI: 10.1016/j.bpj.2015.03.056] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/05/2015] [Accepted: 03/23/2015] [Indexed: 11/22/2022] Open
Abstract
Sphingolipid- and cholesterol-rich liquid-ordered (Lo) lipid domains (rafts) are thought to be important organizing elements in eukaryotic plasma membranes. How they form in the sphingolipid-poor cytosolic (inner) membrane leaflet is unclear. Here, we characterize how outer-leaflet Lo domains induce inner-leaflet-ordered domains, i.e., interleaflet coupling. Asymmetric vesicles studied contained physiologically relevant cholesterol levels (∼ 37 mol %), a mixture of SM (sphingomyelin) and DOPC (dioleoylphosphatidylcholine) in their outer leaflets, and DOPC in their inner leaflets. Lo domains were observed in both leaflets, and were in register, indicative of coupling between SM-rich outer-leaflet-ordered domains and inner-leaflet-ordered domains. For asymmetric vesicles with outer-leaflet egg SM or milk SM, a fluorescent lipid with unsaturated acyl chains (NBD-DOPE) was depleted in both the outer- and inner-leaflet-ordered domains. This suggests the inner-leaflet-ordered domains were depleted in unsaturated lipid (i.e., DOPC) and thus rich in cholesterol. For asymmetric vesicles containing egg SM, outer-leaflet Lo domains were also depleted in a saturated fluorescent lipid (NBD-DPPE), while inner-leaflet Lo domains were not. This indicates that inner- and outer-leaflet Lo domains can have significantly different physical properties. In contrast, in asymmetric vesicles containing outer-leaflet milk SM, which has long acyl chains capable of interdigitating into the inner leaflet, both outer- and inner-leaflet Lo domains were depleted, to a similar extent, in NBD-DPPE. This is indicative of interdigitation-enhanced coupling resulting in inner- and outer-leaflet Lo domains with similar physical properties.
Collapse
|
20
|
Senanayake VK, Jin W, Mochizuki A, Chitou B, Goodenowe DB. Metabolic dysfunctions in multiple sclerosis: implications as to causation, early detection, and treatment, a case control study. BMC Neurol 2015; 15:154. [PMID: 26311235 PMCID: PMC4549881 DOI: 10.1186/s12883-015-0411-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022] Open
Abstract
Background Biochemical changes associated with multiple sclerosis (MS), and its various clinical forms have not been characterized well. Therefore, we investigated the biochemistry of MS in relation to its natural history using targeted lipidomics platforms. Methods Cross-sectional serum samples from 24 secondary progressive (SPMS), 100 relapsing remitting (RRMS), 19 primary progressive MS (PPMS), and 55 age-matched control subjects were analyzed by flow injection tandem mass spectrometry for very long chain fatty acid (VLCFA) containing phosphatidyl ethanolamines (PtdEtn), plasmalogen ethanolamines (PlsEtn) and for novel anti-inflammatory gastrointestinal tract acids (GTAs). Changes in analyte levels relative to healthy controls were correlated with the disease stage and disease duration. Results RRMS subjects having <13 years disease duration had elevated levels (p < 0.05) of anti-inflammatory metabolites (GTAs) and normal levels (p > 0.05) of mitochondrial stress biomarkers (VLCFA-PtdEtn), compared to controls. SPMS subjects had statistically similar levels of anti-inflammatory metabolites (GTAs), elevated mitochondrial stress metabolites (VLCFA-PtdEtn) and elevated peroxisomal metabolites (PlsEtn) compared to controls (p < 0.05). RRMS subjects with > = 13 years disease duration exhibited metabolic profiles intermediate between short-duration RRMS and SPMS, based on statistical significance. Therefore, RRMS cohort appear to comprise of two metabolically distinct subpopulations. The key clinical discriminator of these two groups was disease duration. PPMS patients exhibited metabolic profiles distinct from RRMS and SPMS. Conclusions These data indicate that inflammation and mitochondrial stress are intricately involved in the etiology of MS and that progression in MS can potentially be monitored using serum metabolic biomarkers.
Collapse
Affiliation(s)
- Vijitha K Senanayake
- Phenomenome Discoveries Inc, 204-407 Downey Road, Saskatoon, SK, S7N 4L8, Canada
| | - Wei Jin
- Phenomenome Discoveries Inc, 204-407 Downey Road, Saskatoon, SK, S7N 4L8, Canada
| | - Asuka Mochizuki
- Phenomenome Discoveries Inc, 204-407 Downey Road, Saskatoon, SK, S7N 4L8, Canada
| | - Bassirou Chitou
- Phenomenome Discoveries Inc, 204-407 Downey Road, Saskatoon, SK, S7N 4L8, Canada
| | - Dayan B Goodenowe
- Phenomenome Discoveries Inc, 204-407 Downey Road, Saskatoon, SK, S7N 4L8, Canada.
| |
Collapse
|
21
|
Noss I, Ozment TR, Graves BM, Kruppa MD, Rice PJ, Williams DL. Cellular and molecular mechanisms of fungal β-(1→6)-glucan in macrophages. Innate Immun 2015. [PMID: 26209532 DOI: 10.1177/1753425915595874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last 40 yr, the majority of research on glucans has focused on β-(1→3)-glucans. Recent studies indicate that β-(1→6)-glucans may be even more potent immune modulators than β-(1→3)-glucans. Mechanisms by which β-(1→6)-glucans are recognized and modulate immunity are unknown. In this study, we examined the interaction of purified water-soluble β-(1→6)-glucans with macrophage cell lines and primary peritoneal macrophages and the cellular and molecular consequences of this interaction. Our results indicate the existence of a specific β-(1→6)-glucan receptor that internalizes the glucan ligand via a clathrin-dependent mechanism. We show that the known β-(1→3)-glucans receptors are not responsible for β-(1→6)-glucan recognition and interaction. The receptor-ligand uptake/interaction has an apparent dissociation constant (KD) of ∼ 4 µM, and was associated with phosphorylation of ERK and JNK but not IκB-α or p38. Our results indicate that macrophage interaction with β-(1→6)-glucans may lead to modulation of genes associated with anti-fungal immunity and recruitment/activation of neutrophils. In summary, we show that macrophages specifically bind and internalize β-(1→6)-glucans followed by activation of intracellular signaling and modulation of anti-fungal immune response-related gene regulation. Thus, we conclude that the interaction between innate immunity and β-(1→6)-glucans may play an important role in shaping the anti-fungal immune response.
Collapse
Affiliation(s)
- Ilka Noss
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tammy R Ozment
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Bridget M Graves
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Michael D Kruppa
- Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Peter J Rice
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
22
|
Yagi-Utsumi M, Kato K. Structural and dynamic views of GM1 ganglioside. Glycoconj J 2015; 32:105-12. [DOI: 10.1007/s10719-015-9587-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022]
|
23
|
Chiricozzi E, Ciampa MG, Brasile G, Compostella F, Prinetti A, Nakayama H, Ekyalongo RC, Iwabuchi K, Sonnino S, Mauri L. Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. J Lipid Res 2014; 56:129-41. [PMID: 25418321 DOI: 10.1194/jlr.m055319] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lactosylceramide [LacCer; β-Gal-(1-4)-β-Glc-(1-1)-Cer] has been shown to contain very long fatty acids that specifically modulate neutrophil properties. The interactions between LacCer and proteins and their role in cell signaling processes were assessed by synthesizing two molecular species of azide-photoactivable tritium-labeled LacCer having acyl chains of different lengths. The lengths of the two acyl chains corresponded to those of a short/medium and very long fatty acid, comparable to the lengths of stearic and lignoceric acids, respectively. These derivatives, designated C18-[(3)H]LacCer-(N3) and C24-[(3)H]LacCer-(N3), were incorporated into the lipid rafts of plasma membranes of neutrophilic differentiated HL-60 (D-HL-60) cells. C24-[(3)H]LacCer-(N3), but not C18-[(3)H]LacCer-(N3), induced the phosphorylation of Lyn and promoted phagocytosis. Incorporation of C24-[(3)H]LacCer-(N3) into plasma membranes, followed by illumination, resulted in the formation of several tritium-labeled LacCer-protein complexes, including the LacCer-Lyn complex, into plasma membrane lipid rafts. Administration of C18-[(3)H]LacCer-(N3) to cells, however, did not result in the formation of the LacCer-Lyn complex. These results suggest that LacCer derivatives mimic the biological properties of natural LacCer species and can be utilized as tools to study LacCer-protein interactions, and confirm a specific direct interaction between LacCer species containing very long fatty acids, and Lyn protein, associated with the cytoplasmic layer via myristic/palmitic chains.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Giuseppina Brasile
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Hitoshi Nakayama
- Institute for Environmental Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Roudy C Ekyalongo
- Institute for Environmental Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| |
Collapse
|
24
|
Sassa T, Kihara A. Metabolism of very long-chain Fatty acids: genes and pathophysiology. Biomol Ther (Seoul) 2014; 22:83-92. [PMID: 24753812 PMCID: PMC3975470 DOI: 10.4062/biomolther.2014.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/03/2014] [Indexed: 01/19/2023] Open
Abstract
Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, such as ichthyosis, macular degeneration, myopathy, mental retardation, and demyelination, are caused by mutations in the genes encoding VLCFA metabolizing enzymes. In this review, we describe mammalian VLCFAs by highlighting their tissue distribution and metabolic pathways, and we discuss responsible genes and enzymes with reference to their roles in pathophysiology.
Collapse
Affiliation(s)
- Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
25
|
Role of galactosylceramide and sulfatide in oligodendrocytes and CNS myelin: formation of a glycosynapse. ADVANCES IN NEUROBIOLOGY 2014; 9:263-91. [PMID: 25151383 DOI: 10.1007/978-1-4939-1154-7_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two major glycosphingolipids of myelin, galactosylceramide (GalC) and sulfatide (SGC), interact with each other by trans carbohydrate-carbohydrate interactions in vitro. They face each other in the apposed extracellular surfaces of the multilayered myelin sheath produced by oligodendrocytes and could also contact each other between apposed oligodendrocyte processes. Multivalent galactose and sulfated galactose, in the form of GalC/SGC-containing liposomes or silica nanoparticles conjugated to galactose and galactose-3-sulfate, interact with GalC and SGC in the membrane sheets of oligodendrocytes in culture. This interaction causes transmembrane signaling, loss of the cytoskeleton and clustering of membrane domains, similar to the effects of cross-linking by anti-GalC and anti-SGC antibodies. These effects suggest that GalC and SGC could participate in glycosynapses, similar to neural synapses or the immunological synapse, between GSL-enriched membrane domains in apposed oligodendrocyte membranes or extracellular surfaces of mature myelin. Formation of such glycosynapses in vivo would be important for myelination and/or oligodendrocyte/myelin function.
Collapse
|
26
|
Boccuto L, Aoki K, Flanagan-Steet H, Chen CF, Fan X, Bartel F, Petukh M, Pittman A, Saul R, Chaubey A, Alexov E, Tiemeyer M, Steet R, Schwartz CE. A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet 2013; 23:418-33. [PMID: 24026681 DOI: 10.1093/hmg/ddt434] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
'Salt & Pepper' syndrome is an autosomal recessive condition characterized by severe intellectual disability, epilepsy, scoliosis, choreoathetosis, dysmorphic facial features and altered dermal pigmentation. High-density SNP array analysis performed on siblings first described with this syndrome detected four shared regions of loss of heterozygosity (LOH). Whole-exome sequencing narrowed the candidate region to chromosome 2p11.2. Sanger sequencing confirmed a homozygous c.994G>A transition (p.E332K) in the ST3GAL5 gene, which encodes for a sialyltransferase also known as GM3 synthase. A different homozygous mutation of this gene has been previously associated with infantile-onset epilepsy syndromes in two other cohorts. The ST3GAL5 enzyme synthesizes ganglioside GM3, a glycosophingolipid enriched in neural tissue, by adding sialic acid to lactosylceramide. Unlike disorders of glycosphingolipid (GSL) degradation, very little is known regarding the molecular and pathophysiologic consequences of altered GSL biosynthesis. Glycolipid analysis confirmed a complete lack of GM3 ganglioside in patient fibroblasts, while microarray analysis of glycosyltransferase mRNAs detected modestly increased expression of ST3GAL5 and greater changes in transcripts encoding enzymes that lie downstream of ST3GAL5 and in other GSL biosynthetic pathways. Comprehensive glycomic analysis of N-linked, O-linked and GSL glycans revealed collateral alterations in response to loss of complex gangliosides in patient fibroblasts and in zebrafish embryos injected with antisense morpholinos that targeted zebrafish st3gal5 expression. Morphant zebrafish embryos also exhibited increased apoptotic cell death in multiple brain regions, emphasizing the importance of GSL expression in normal neural development and function.
Collapse
|
27
|
Chiantia S, London E. Acyl chain length and saturation modulate interleaflet coupling in asymmetric bilayers: effects on dynamics and structural order. Biophys J 2013; 103:2311-9. [PMID: 23283230 DOI: 10.1016/j.bpj.2012.10.033] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 01/03/2023] Open
Abstract
A long-standing question about membrane structure and function is the degree to which the physical properties of the inner and outer leaflets of a bilayer are coupled to one another. Using our recently developed methods to prepare asymmetric vesicles, coupling was investigated for vesicles containing phosphatidylcholine (PC) in the inner leaflet and sphingomyelin (SM) in the outer leaflet. The coupling of both lateral diffusion and membrane order was monitored as a function of PC and SM acyl chain structure. The presence in the outer leaflet of brain SM, which decreased outer-leaflet lateral diffusion, had little effect upon lateral diffusion in inner leaflets composed of dioleoyl PC (i.e., diffusion was only weakly coupled in the two leaflets) but did greatly reduce lateral diffusion in inner leaflets composed of PC with one saturated and one oleoyl acyl chain (i.e., diffusion was strongly coupled in these cases). In addition, reduced outer-leaflet diffusion upon introduction of outer-leaflet milk SM or a synthetic C24:0 SM, both of which have long interdigitating acyl chains, also greatly reduce diffusion of inner leaflets composed of dioleoyl PC, indicative of strong coupling. Strikingly, several assays showed that the ordering of the outer leaflet induced by the presence of SM was not reflected in increased lipid order in the inner leaflet, i.e., there was no detectable coupling between inner and outer leaflet membrane order. We propose a model for how lateral diffusion can be coupled in opposite leaflets and discuss how this might impact membrane function.
Collapse
Affiliation(s)
- Salvatore Chiantia
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA.
| | | |
Collapse
|
28
|
Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 2013; 70:425-57. [PMID: 22766973 PMCID: PMC11113656 DOI: 10.1007/s00018-012-1060-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 12/23/2022]
Abstract
The two major Shiga toxin (Stx) types, Stx1 and Stx2, produced by enterohemorrhagic Escherichia coli (EHEC) in particular injure renal and cerebral microvascular endothelial cells after transfer from the human intestine into the circulation. Stxs are AB(5) toxins composed of an enzymatically active A subunit and the pentameric B subunit, which preferentially binds to the glycosphingolipid globotriaosylceramide (Gb3Cer/CD77). This review summarizes the current knowledge on Stx-caused cellular injury and the structural diversity of Stx receptors as well as the initial molecular interaction of Stxs with the human endothelium of different vascular beds. The varying lipoforms of Stx receptors and their spatial organization in lipid rafts suggest a central role in different modes of receptor-mediated endocytosis and intracellular destiny of the toxins. The design and development of tailored Stx neutralizers targeting the oligosaccharide-toxin recognition event has become a very real prospect to ameliorate or prevent life-threatening renal and neurological complications.
Collapse
Affiliation(s)
- Andreas Bauwens
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Josefine Betz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Iris Meisen
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Münster, Robert-Koch-Str. 45, 48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
29
|
Chakraborty M, Jiang XC. Sphingomyelin and its role in cellular signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:1-14. [PMID: 23775687 DOI: 10.1007/978-94-007-6331-9_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sphingolipid de novo biosynthesis is related with metabolic diseases. However, the mechanism is still not quite clear. Sphingolipids are ubiquitous and critical components of biological membranes. Their biosynthesis starts with soluble precursors in the endoplasmic reticulum and culminates in the Golgi complex and plasma membrane. The interaction of sphingomyelin, cholesterol, and glycosphingolipid drives the formation of plasma membrane rafts. Lipid rafts have been shown to be involved in cell -signaling, lipid and protein sorting, and membrane trafficking. It is well known that toll-like receptors, class A and B scavenger receptors, and insulin receptor are located in lipid rafts. Sphingomyelin is also a reservoir for other sphingolipids. So, sphingomyelin has important impact in cell -signaling through its structural role in lipid rafts or its catabolic inter-mediators, such as ceramide and glycoceramide. In this chapter, we will discuss both aspects.
Collapse
Affiliation(s)
- Mahua Chakraborty
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | |
Collapse
|
30
|
Abstract
There is growing evidence that cell membranes can contain domains with different lipid and protein compositions and with different physical properties. Furthermore, it is increasingly appreciated that sphingolipids play a crucial role in the formation and properties of ordered lipid domains (rafts) in cell membranes. This review describes recent advances in our understanding of ordered membrane domains in both cells and model membranes. In addition, how the structure of sphingolipids influences their ability to participate in the formation of ordered domains, as well as how sphingolipid structure alters ordered domain properties, is described. The diversity of sphingolipid structure is likely to play an important role in modulating the biologically relevant properties of "rafts" in cell membranes.
Collapse
|
31
|
Berenson CS, Nawar HF, Kruzel RL, Mandell LM, Connell TD. Ganglioside-binding specificities of E. coli enterotoxin LT-IIc: Importance of long-chain fatty acyl ceramide. Glycobiology 2012; 23:23-31. [PMID: 22917572 DOI: 10.1093/glycob/cws123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial heat-labile (LT) enterotoxins signal through tightly regulated interactions with host cell gangliosides. LT-IIa and LT-IIb of Escherichia coli bind preferentially to gangliosides with a NeuAcα2-3Galβ1-3GalNAc terminus, with key distinctions in specificity. LT-IIc, a newly discovered E. coli LT, is comprised of an A polypeptide with high homology, and a B polypeptide with moderate homology, to LT-IIa and LT-IIb. LT-IIc is less cytotoxic than LT-IIa and LT-IIb. We theorized that LT-IIc-host cell interaction is regulated by specific structural attributes of immune cell ganglioside receptors and designed experiments to test this hypothesis. Overlay immunoblotting to a diverse array of neural and macrophage gangliosides indicated that LT-IIc bound to a restrictive range of gangliosides, each possessing a NeuAcα2-3Galβ1-3GalNAc with a requisite terminal sialic acid. LT-IIc did not bind to GM1a with short-chain fatty acyl ceramides. Affinity overlay immunoblots, constructed to a diverse array of known ganglioside structures of murine peritoneal macrophages, established that LT-IIc bound to GM1a comprised of long-chain fatty acyl ceramides. Findings were confirmed with LT-IIc also binding to GM1a of RAW264.7 cells, comprised of a long-chain fatty acyl ceramide. Thus, LT-IIc-ganglioside binding differs distinctly from that of LT-IIa and LT-IIb. LT-IIc binding is not just dependent on carbohydrate composition, but also upon the orientation of the oligosaccharide portion of GM1a by the ceramide moiety. These studies are the first demonstration of LT-ganglioside dependence upon ceramide composition and underscore the contribution of long-chain fatty acyl ceramides to host cell interactions.
Collapse
Affiliation(s)
- Charles S Berenson
- Division of Infectious Disease (151), Department of Veterans Affairs Western New York Healthcare System, State University of New York at Buffalo School of Medicine, 3495 Bailey Avenue, Buffalo, NY 14215, USA.
| | | | | | | | | |
Collapse
|
32
|
Ahmad A, Rasheed N, Gupta P, Singh S, Siripurapu KB, Ashraf GM, Kumar R, Chand K, Maurya R, Banu N, Al-Sheeha M, Palit G. Novel Ocimumoside A and B as anti-stress agents: modulation of brain monoamines and antioxidant systems in chronic unpredictable stress model in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:639-647. [PMID: 22455995 DOI: 10.1016/j.phymed.2012.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 01/04/2012] [Accepted: 02/18/2012] [Indexed: 05/31/2023]
Abstract
Therapies targeting central stress mechanisms are fundamental for the development of successful treatment strategies. Ocimum sanctum (OS) is an Indian medicinal plant traditionally used for the treatment of various stress-related conditions. Previously, we have isolated and characterized three OS compounds; Ocimarin, Ocimumoside A and Ocimumoside B. However, their role in modulating chronic stress-induced central changes is unexplored. Thus, in the present study the efficacy of these OS compounds have been evaluated on the chronic unpredictable stress (CUS)-induced alterations in the monoaminergic and antioxidant systems in the frontal cortex, striatum and hippocampus, along with the changes in the plasma corticosterone levels. CUS (two different types of stressors daily for seven days) resulted in a significant elevation of plasma corticosterone level, which was reversed to control levels by pretreatment with Ocimumoside A and B (40 mg/kg p.o.), while Ocimarin showed no effect. The levels of NA, DA and 5-HT were significantly decreased in all the three brain regions by CUS, with a selective increase of DA metabolites. A significant decrease in the glutathione (GSH) content, the activities of superoxide dismutase and catalase with a significant increase in the glutathione peroxidase activity and lipid peroxidation was observed in all the three regions of the brain by CUS. The OS compounds alone did not cause any significant change in the baseline values of these parameters. However, Ocimumoside A and B (40 mg/kg body p.o.) attenuated these CUS-induced alterations with an efficacy similar to that of standard anti-stress (Panax quinquefolium; 100 mg/kg p.o.) and antioxidant (Melatonin; 20 mg/kg i.p.) drugs. While, Ocimarin failed to modulate these CUS-induced alterations. Therefore, this is the first report which identified the anti-stress activity of novel Ocimumoside A and B at the level of central monoamines and antioxidant properties, implicating their therapeutic importance in the prevention of stress-related disorders.
Collapse
Affiliation(s)
- Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Uttar Pradesh, India.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kościelak J. The hypothesis on function of glycosphingolipids and ABO blood groups revisited. Neurochem Res 2012; 37:1170-84. [PMID: 22407244 DOI: 10.1007/s11064-012-0734-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 12/23/2011] [Accepted: 02/15/2012] [Indexed: 12/12/2022]
Abstract
Twenty-five years ago the author proposed new ideas of glycoprotein (GPs) and glycosphingolipid (GSLs) functions at the cell membrane. The GPs, apart from their glycan carrying capacity, were assumed to have specific, protein associated, functions. In contrast, GSLs such as those of globo and neolacto/lacto series, were considered to be energetically cheap membrane packing substances, filling in membrane spaces not covered with functional GPs. The terminal carbohydrate structures of the neolacto/lacto GSLs, i.e., sialic acid residues and ABH glycotopes, were postulated to have either regulatory or protective functions, respectively. A special active role was ascribed to terminal β-galactosyl residues of GSLs and GPs. Gangliosides were considered to be functional GSLs. In the present review the author discusses these old ideas in context of the contemporary knowledge and comes to the conclusion that they have not aged.
Collapse
Affiliation(s)
- Jerzy Kościelak
- Department of Biochemistry, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| |
Collapse
|
34
|
Gangliosides and the multiscale modulation of membrane structure. Chem Phys Lipids 2011; 164:796-810. [DOI: 10.1016/j.chemphyslip.2011.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 02/07/2023]
|
35
|
Thin-layer chromatography, overlay technique and mass spectrometry: A versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:875-96. [DOI: 10.1016/j.bbalip.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/18/2011] [Accepted: 04/10/2011] [Indexed: 12/16/2022]
|
36
|
Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011; 111:6387-422. [PMID: 21942574 PMCID: PMC3191729 DOI: 10.1021/cr2002917] [Citation(s) in RCA: 566] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Alfred H Merrill
- School of Biology, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|
37
|
Quinn PJ. A synchrotron X-ray diffraction characterization of the structure of complexes formed between sphingomyelin and cerebroside. FEBS J 2011; 278:3518-27. [DOI: 10.1111/j.1742-4658.2011.08273.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
Abstract
The combination of carbohydrate and lipid generates unusual molecules in which the two distinctive halves of the glycoconjugate influence the function of each other. Membrane glycolipids can act as primary receptors for carbohydrate binding proteins to mediate transmembrane signaling despite restriction to the outer bilayer leaflet. The extensive heterogeneity of the lipid moiety plays a significant, but still largely unknown, role in glycosphingolipid function. Potential interplay between glycolipids and their fatty acid isoforms, together with their preferential interaction with cholesterol, generates a complex mechanism for the regulation of their function in cellular physiology.
Collapse
Affiliation(s)
- Clifford A Lingwood
- Research Institute, Hospital for Sick Children, Molecular Structure and Function, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
39
|
Glycosphingolipids and Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 721:121-38. [PMID: 21910086 DOI: 10.1007/978-1-4614-0650-1_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Remodeling of sphingolipids by plasma membrane associated enzymes. Neurochem Res 2010; 36:1636-44. [PMID: 21181265 DOI: 10.1007/s11064-010-0360-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 12/16/2022]
Abstract
The sphingolipid plasma membrane content and pattern is the result of several processes, among which the main, in term of quantity, are: neo-biosynthesis in endoplasmic reticulum and Golgi apparatus, membrane turnover with final catabolism in lysosomes and membrane shedding. In addition to this, past and recent data suggest that the head group of sphingolipids can be opportunely modified at the plasma membrane level, probably inside specific membrane lipid domains, by the action of enzymes involved in the sphingolipids metabolism, working directly at the cell surface. The number of membrane enzymes, hydrolases and transferases, acting on membrane sphingolipids is growing very rapidly. In this report we describe some properties of these enzymes.
Collapse
|
41
|
ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc Natl Acad Sci U S A 2010; 107:18439-44. [PMID: 20937905 DOI: 10.1073/pnas.1005572107] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Very long-chain fatty acids (VLCFAs) exert a variety of cellular functions and are associated with numerous diseases. However, the precise pathway behind their elongation has remained elusive. Moreover, few regulatory mechanisms for VLCFAs synthesis have been identified. Elongases catalyze the first of four steps in the VLCFA elongation cycle; mammals have seven elongases (ELOVL1-7). In the present study, we determined the precise substrate specificities of all the ELOVLs by in vitro analyses. Particularly notable was the high activity exhibited by ELOVL1 toward saturated and monounsaturated C20- and C22-CoAs, and that it was essential for the production of C24 sphingolipids, which are unique in their capacity to interdigitate within the membrane as a result of their long chain length. We further established that ELOVL1 activity is regulated with the ceramide synthase CERS2, an enzyme essential for C24 sphingolipid synthesis. This regulation may ensure that the production of C24-CoA by elongation is coordinated with its utilization. Finally, knockdown of ELOVL1 caused a reduction in the activity of the Src kinase LYN, confirming that C24-sphingolipids are particularly important in membrane microdomain function.
Collapse
|
42
|
Hoffmann P, Hülsewig M, Duvar S, Ziehr H, Mormann M, Peter-Katalinić J, Friedrich AW, Karch H, Müthing J. On the structural diversity of Shiga toxin glycosphingolipid receptors in lymphoid and myeloid cells determined by nanoelectrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2295-2304. [PMID: 20623712 DOI: 10.1002/rcm.4636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Shiga toxin (Stx, synonymous to verotoxin, VT) binds with high and low affinity to the globo-series neutral glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer or Galalpha4Galbeta4Glcbeta1Cer, also known as CD77) and globotetraosylceramide (Gb4Cer or GalNAcbeta3Galalpha4Galbeta4Glcbeta1Cer), respectively, which represent the targets of Stxs on many different cell types. B-cell-derived Raji cells and THP-1 cells of monocytic origin are widely used for the investigation of Stx-mediated cellular response, because Stx is known to cause cell death in both cell lines. Despite their functional importance, the Stx receptors of Raji and THP-1 cells have so far not been investigated. This prompted us to explore the structures of their GSL receptors in detail by means of nanoelectrospray ionization quadrupole time-of-flight mass spectrometry (nanoESI-QTOF-MS) with collision-induced dissociation (CID) in conjunction with Stx1 as well as anti-Gb3Cer and anti-Gb4Cer antibodies. Using the combination of a thin-layer chromatography (TLC) overlay assay and MS(1) and MS(2) analysis we identified Gb3Cer (d18:1, C24:1/C24:0) as the prevalent Stx1-receptor accompanied by less abundant Gb3Cer (d18:1, C16:0) in the neutral GSL fraction of Raji cells. The same Gb3Cer species but with almost equal proportions of the C24:1/C24:0 and C16:0 variants were found in THP-1 cells. In addition, unusual hydroxylated Gb3Cer (d18:1, C24:1/C24:0) and Gb3Cer (d18:1, C26:1) could be identified in trace quantities in both cell lines. As the most obvious difference between Raji and THP-1 cells we observed the expression of Gb4Cer in THP-1 cells, whereas Raji cells failed to express this elongation product of Gb3Cer. Both short- and long-chain fatty acid carrying Gb4Cer (d18:1, C16:0) and Gb4Cer (d18:1, C24:1/C24:0), respectively, were the prevalent Gb4Cer variants. This first report on the differential expression of Gb3Cer and Gb4Cer and their structural diversity in lymphoid and myeloid cell lines supports the hypothesis that such heterogeneities might play a functional role in the molecular assembly of GSLs in membrane organization and cellular signaling of Stx-susceptible cells.
Collapse
Affiliation(s)
- Petra Hoffmann
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zancada L, Sánchez-Juanes F, Alonso JM, Hueso P. Neutral glycosphingolipid content of ovine milk. J Dairy Sci 2010; 93:19-26. [PMID: 20059899 DOI: 10.3168/jds.2009-2476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 09/30/2009] [Indexed: 01/04/2023]
Abstract
Milk glycosphingolipids (GSL) have been reported to participate in the newborn's defense against pathogens. Taking this into account, in this study we determined the neutral GSL content of ovine milk, including its fatty acid profile. Its role in bacterial adhesion was also addressed by immunodetection of separate GSL in a high-performance thin-layer chromatography overlay assay. Ovine milk has a neutral GSL pattern similar to human milk and includes lactosylceramide (LacCer; 45.7%), monohexosylceramide (glucosylceramide and galactosylceramide, 31.2%), globotriaosylceramide (Gb3; 19.1%), and globotetraosylceramide (Gb4; 3.5%). Globotriaosylceramide and Gb4 are present in human but not bovine milk. Neutral GSL contained C23:0 and C24:0 as the most abundant fatty acids, a finding consistent with its high content of very long chain fatty acids (longer than C20). Most fatty acids were saturated and had a low content of polyunsaturated fatty acids. Bovine enterotoxigenic Escherichia coli strains bound strongly to LacCer and showed a weak binding to monohexosylceramide. The K99 strain also bound strongly to Gb3, and F41 to Gb4. Lactosylceramide, monohexosylceramide, and Gb3 were also observed to bind to human uropathogenic E. coli strains. The results reported here show the ability of neutral GSL in ovine milk to bind to E. coli strains. These compounds could be used as an alternative and available source to supplement infant or bovine formulas with a view to preventing bacterial infections.
Collapse
Affiliation(s)
- L Zancada
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
44
|
Pewzner-Jung Y, Brenner O, Braun S, Laviad EL, Ben-Dor S, Feldmesser E, Horn-Saban S, Amann-Zalcenstein D, Raanan C, Berkutzki T, Erez-Roman R, Ben-David O, Levy M, Holzman D, Park H, Nyska A, Merrill AH, Futerman AH. A critical role for ceramide synthase 2 in liver homeostasis: II. insights into molecular changes leading to hepatopathy. J Biol Chem 2010; 285:10911-23. [PMID: 20110366 PMCID: PMC2856297 DOI: 10.1074/jbc.m109.077610] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/05/2010] [Indexed: 01/26/2023] Open
Abstract
We have generated a mouse that cannot synthesize very long acyl chain (C22-C24) ceramides (Pewzner-Jung, Y., Park, H., Laviad, E. L., Silva, L. C., Lahiri, S., Stiban, J., Erez-Roman, R., Brugger, B., Sachsenheimer, T., Wieland, F. T., Prieto, M., Merrill, A. H., and Futerman, A. H. (2010) J. Biol. Chem. 285, 10902-10910) due to ablation of ceramide synthase 2 (CerS2). As a result, significant changes were observed in the sphingolipid profile of livers from these mice, including elevated C16-ceramide and sphinganine levels. We now examine the functional consequences of these changes. CerS2 null mice develop severe nonzonal hepatopathy from about 30 days of age, the age at which CerS2 expression peaks in wild type mice, and display increased rates of hepatocyte apoptosis and proliferation. In older mice there is extensive and pronounced hepatocellular anisocytosis with widespread formation of nodules of regenerative hepatocellular hyperplasia. Progressive hepatomegaly and noninvasive hepatocellular carcinoma are also seen from approximately 10 months of age. Even though CerS2 is found at equally high mRNA levels in kidney and liver, there are no changes in renal function and no pathological changes in the kidney. High throughput analysis of RNA expression in liver revealed up-regulation of genes associated with cell cycle regulation, protein transport, cell-cell interactions and apoptosis, and down-regulation of genes associated with intermediary metabolism, such as lipid and steroid metabolism, adipocyte signaling, and amino acid metabolism. In addition, levels of the cell cycle regulator, the cyclin dependent-kinase inhibitor p21(WAF1/CIP1), were highly elevated, which occurs by at least two mechanisms, one of which may involve p53. We propose a functional rationale for the synthesis of sphingolipids with very long acyl chains in liver homeostasis and in cell physiology.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Hepatocytes/cytology
- Hepatocytes/enzymology
- Hepatomegaly/enzymology
- Hepatomegaly/pathology
- Homeostasis
- Lipids/analysis
- Liver/metabolism
- Liver/pathology
- Liver Function Tests
- Liver Neoplasms, Experimental/enzymology
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Oxidoreductases/antagonists & inhibitors
- Oxidoreductases/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
| | | | | | | | - Shifra Ben-Dor
- Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ester Feldmesser
- Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shirley Horn-Saban
- Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | - Michal Levy
- From the Departments of Biological Chemistry
| | | | - Hyejung Park
- the School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Abraham Nyska
- the Timrat and Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel, and
| | - Alfred H. Merrill
- the School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | | |
Collapse
|
45
|
Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett 2009; 584:1748-59. [PMID: 20006608 DOI: 10.1016/j.febslet.2009.12.010] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/03/2009] [Accepted: 12/09/2009] [Indexed: 12/22/2022]
Abstract
Simple sphingolipids such as ceramide and sphingomyelin (SM) as well as more complex glycosphingolipids play very important roles in cell function under physiological conditions and during disease development and progression. Sphingolipids are particularly abundant in the nervous system. Due to their amphiphilic nature they localize to cellular membranes and many of their roles in health and disease result from membrane reorganization and from lipid interaction with proteins within cellular membranes. In this review we discuss some of the functions of sphingolipids in processes that entail cellular membranes and their role in neurodegenerative diseases, with an emphasis on SM, ceramide and gangliosides.
Collapse
|
46
|
Berenson CS, Nawar HF, Yohe HC, Castle SA, Ashline DJ, Reinhold VN, Hajishengallis G, Connell TD. Mammalian cell ganglioside-binding specificities of E. coli enterotoxins LT-IIb and variant LT-IIb(T13I). Glycobiology 2009; 20:41-54. [PMID: 19749203 DOI: 10.1093/glycob/cwp141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
LT-IIb, a type II heat-labile enterotoxin of Escherichia coli, is a potent immunologic adjuvant with high affinity binding for ganglioside GD1a. Earlier study suggested that LT-IIb bound preferentially to the terminal sugar sequence NeuAcalpha2-3Galbeta1-3GalNAc. However, studies in our laboratory suggested a less restrictive binding epitope. LT-IIb(T13I), an LT-IIb variant, engineered by a single isoleucine-threonine substitution, retains biological activity, but with less robust inflammatory effects. We theorized that LT-IIb has a less restrictive binding epitope than previously proposed and that immunologic differences between LT-IIb and LT-IIb (T13I) correlate with subtle ganglioside binding differences. Ganglioside binding epitopes, determined by affinity overlay immunoblotting and enzymatic degradation of ganglioside components of RAW264.7 macrophages, indicated that LT-IIb bound to a broader array of gangliosides than previously recognized. Each possessed NeuAcalpha2-3Galbeta1-3GalNAc, although not necessarily as a terminal sequence. Rather, each had a requisite terminal or penultimate single sialic acid and binding was independent of ceramide composition. RAW264.7 enterotoxin-binding and non-binding ganglioside epitopes were definitively identified as GD1a and GM1a, respectively, by enzymatic degradation and mass spectroscopy. Affinity overlay immunoblots, constructed to the diverse array of known ganglioside structures of murine peritoneal macrophages, established that LT-IIb bound NeuAc- and NeuGc-gangliosides with nearly equal affinity. However, LT-IIb(T13I) exhibited enhanced affinity for NeuGc-gangliosides and more restrictive binding. These studies further elucidate the binding epitope for LT-IIb and suggest that the diminished inflammatory activity of LT-IIb(T13I) is mediated by a subtle shift in ganglioside binding. These studies underscore the high degree of specificity required for ganglioside-protein interactions.
Collapse
Affiliation(s)
- Charles S Berenson
- Infectious Disease Division, Department of Veterans Affairs Western New York Healthcare System, State University of New York at Buffalo School of Medicine, Buffalo, NY 14215, USA.
| | | | | | | | | | | | | | | |
Collapse
|