1
|
Chen Y, Gao T, Bai J, Yu L, Liu Y, Li Y, Zhang W, Niu S, Liu S, Guo J. Ge-Zhi-Jie-Jiu decoction alleviates alcoholic liver disease through multiple signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118840. [PMID: 39313140 DOI: 10.1016/j.jep.2024.118840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alcoholic liver disease (ALD) is a growing public health concern caused by excessive alcohol consumption, but effective treatments are limited. Ge-Zhi-Jie-Jiu decoction (JJY) is a modified traditional Chinese herbal remedy that aims to alleviate ALD. This formula contains various components such as Ge Hua, Ge Gen, Zhi Ju Zi, and other medicinal-food herbs. However, the specific pharmacotherapeutic compounds of JJY and its pharmacological mechanisms remain unclear. AIM OF THE STUDY This study aimed to elucidate the molecular mechanism and pharmacodynamic basis of JJY in treating ALD. MATERIALS AND METHODS UPLC-Q-Orbitrap HRMS, HPLC fingerprinting, and LC-MS techniques were used for the composition identification and quality control of JJY. The pharmacological components and molecular mechanisms of JJY in anti-ALD were then predicted using network pharmacology and molecular docking approaches. Ultimately, an acute alcoholic liver injury mouse model was developed, and the potential mechanisms were verified by hematoxylin-eosin (H&E), Oil Red O, and TUNEL staining, real-time fluorescence quantitative PCR (RT-qPCR), Western blot (WB) and molecular docking analysis. RESULTS The results showed that the main components of JJY are organic acids, flavonoids, and isoflavonoids, in which puerarin, daidzein, glycitein, ononin, quercetin, and tectorigenin can be used as the indicator components of JJY. In addition, JJY might ameliorate ALD through several pathways, including potentially promoting alcohol metabolism via alcohol-metabolizing enzymes, and possibly inhibiting oxidative stress, inflammation and apoptosis via the Nrf2/Keap1/HO-1 and MAPK signaling pathways. Furthermore, JJY may also alleviated hepatic lipid accumulation through the PPARα signaling pathway. CONCLUSIONS JJY has significant anti-ALD efficacy with multiple mechanisms. This study offers a solid experimental foundation for JJY's development as a medicine with anti-ALD characteristics and elucidates its probable active components.
Collapse
Affiliation(s)
- Yangyang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tinghui Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lilu Yu
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yixin Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yaoguang Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Wenjing Zhang
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shuqi Niu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sijing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinlin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Ma L, Zhao Z, Zhao Y, Gao Y, Zhao L, Li S. Weizmannia coagulans JA845 improves atherosclerosis induced by vitamin D3 and high-fat diet in rats through modulating lipid metabolism, oxidative stress, and endothelial vascular injury. J Appl Microbiol 2023; 134:lxad165. [PMID: 37516440 DOI: 10.1093/jambio/lxad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
AIMS Probiotics have been proved to be strongly linked to the occurrence and progression of atherosclerosis. This study aimed to investigate the improved effects and mechanisms underlying a potential probiotic, Weizmannia coagulans JA845, on atherosclerosis. METHODS AND RESULTS Male Sprague-Dawley rats supported on a high-fat diet with vitamin D3 supplementation were subjected to W. coagulans JA845 treatment. W. coagulans JA845 obviously alleviated histological abnormalities of the abdominal aorta. After 6 weeks of W. coagulans JA845 administration, levels of TG, TC, LDL, ox-LDL, ROS, and MDA in the JA845 group decreased significantly, and those of HDL, GSH-Px, and SOD were markedly elevated. Treatment with W. coagulans JA845 also inhibited the secretion of ICAM-1 and VCAM-1 and regulated the plasma NO and eNOS content. In brief, administration of W. coagulans JA845 promoted the expression of the SIRT3/SOD2/FOXO3A pathway, inhibited the lipid metabolism pathway, SREBP-1c/FAS/DGAT2, and suppressed the JNK2/P38 MAPK/VEGF pathway implicated in endothelial injury. CONCLUSIONS These results indicated W. coagulans JA845 improved atherosclerosis by regulating lipid metabolism, antioxidative stress, and protecting against endothelial injury.
Collapse
Affiliation(s)
- Liying Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P.R. China
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences /National R&D Center for Milk Processing, Changchun 130033, P.R. China
| | - Zijian Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences /National R&D Center for Milk Processing, Changchun 130033, P.R. China
| | - Yujuan Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences /National R&D Center for Milk Processing, Changchun 130033, P.R. China
| | - Yansong Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences /National R&D Center for Milk Processing, Changchun 130033, P.R. China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Shengyu Li
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences /National R&D Center for Milk Processing, Changchun 130033, P.R. China
| |
Collapse
|
3
|
Du T, Xiang L, Zhang J, Yang C, Zhao W, Li J, Zhou Y, Ma L. Vitamin D improves hepatic steatosis in NAFLD via regulation of fatty acid uptake and β-oxidation. Front Endocrinol (Lausanne) 2023; 14:1138078. [PMID: 37033263 PMCID: PMC10074590 DOI: 10.3389/fendo.2023.1138078] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION The study aimed to explore the association of serum 25(OH)D3 and hepatic steatosis in non-alcoholic fatty liver disease (NAFLD) patients and to determine whether the effect of vitamin D (VD) is mediated by activation of the peroxisome proliferator-activated receptor α (PPARα) pathway. METHODS The study contained a case-control study, in vivo and in vitro experiments. A case-control study was conducted to compare serum parameters between NAFLD patients and controls and to evaluate the association of 25(OH)D3 and NAFLD. In vivo study, male Wistar rats were randomly divided into control and model groups, fed a standard chow diet and a high-fat diet (HFD), respectively, for 7 weeks to generate an NAFLD model. Then, the rats were treated with VD and a PPARα antagonist (MK886) for 7 weeks. Tissue and serum were collected and assessed by biochemical assays, morphological analysis, histological analysis, and western blot analysis. In vitro, HepG2 cells were incubated with oleic acid (OA) to induce steatosis, which was evaluated by staining. HepG2 cells were pretreated with MK886 followed by calcitriol treatment, and differences in lipid metabolism-related proteins were detected by western blot. RESULTS NAFLD patients were characterized by impaired liver function, dyslipidemia, and insulin resistance. Serum 25(OH)D3 was negatively associated with alanine aminotransferase (ALT) in NAFLD. VD deficiency was a risk factor for patients with no advanced fibrosis. Adequate VD status (25(OH)D3 >20 ng/mL) had a protective effect in patients after adjustment for confounding variables. NAFLD rats showed hyperlipidemia with severe hepatic steatosis, systematic inflammation, and lower serum 25(OH)D3. VD treatment ameliorated hepatic steatosis both in NAFLD rats and OA-induced HepG2 cells. Further, MK886 inhibited the anti-steatosis effect of VD. CONCLUSION The study revealed that an adequate VD level may act as a protective factor in NAFLD and that VD may alleviate hepatic steatosis via the PPARα signaling pathway.
Collapse
Affiliation(s)
- Tingwan Du
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Lian Xiang
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Jingjing Zhang
- Department of Clinical Nutrition, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunmei Yang
- Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenxin Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Jialu Li
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Southwest Medical University, Luzhou, China
- *Correspondence: Yong Zhou, ; Ling Ma,
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
- *Correspondence: Yong Zhou, ; Ling Ma,
| |
Collapse
|
4
|
Inhibition effect of PPAR-γ signaling on mast cell-mediated allergic inflammation through down-regulation of PAK1/ NF-κB activation. Int Immunopharmacol 2022; 108:108692. [DOI: 10.1016/j.intimp.2022.108692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
5
|
Antraco VJ, Hirata BKS, de Jesus Simão J, Cruz MM, da Silva VS, da Cunha de Sá RDC, Abdala FM, Armelin-Correa L, Alonso-Vale MIC. Omega-3 Polyunsaturated Fatty Acids Prevent Nonalcoholic Steatohepatitis (NASH) and Stimulate Adipogenesis. Nutrients 2021; 13:nu13020622. [PMID: 33671850 PMCID: PMC7918199 DOI: 10.3390/nu13020622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
The increasing impact of obesity on global human health intensifies the importance of studies focusing on agents interfering with the metabolism and remodeling not only of the white adipose tissue (WAT) but also of the liver. In the present study, we have addressed the impact of n-3 PUFA in adipose cells' proliferation and adipogenesis, as well as in the hepatic lipid profile and morphology. Mice were induced to obesity by the consumption of a high-fat diet (HFD) for 16 weeks. At the 9th week, the treatment with fish oil (FO) was initiated and maintained until the end of the period. The FO treatment reduced the animals' body mass, plasma lipids, glucose, plasma transaminases, liver mass, triacylglycerol, and cholesterol liver content when compared to animals consuming only HFD. FO also decreased the inguinal (ing) WAT mass, reduced adipocyte volume, increased adipose cellularity (hyperplasia), and increased the proliferation of adipose-derived stromal cells (AdSCs) which corroborates the increment in the proliferation of 3T3-L1 pre-adipocytes or AdSCs treated in vitro with n-3 PUFA. After submitting the in vitro treated (n-3 PUFA) cells, 3T3-L1 and AdSCs, to an adipogenic cocktail, there was an increase in the mRNA expression of adipogenic transcriptional factors and other late adipocyte markers, as well as an increase in lipid accumulation when compared to not treated cells. Finally, the expression of browning-related genes was also higher in the n-3 PUFA treated group. We conclude that n-3 PUFA exerts an attenuating effect on body mass, dyslipidemia, and hepatic steatosis induced by HFD. FO treatment led to decreasing adiposity and adipocyte hypertrophy in ingWAT while increasing hyperplasia. Data suggest that FO treatment might induce recruitment (by increased proliferation and differentiation) of new adipocytes (white and/or beige) to the ingWAT, which is fundamental for the healthy expansion of WAT.
Collapse
|
6
|
Xiong G, Deng Y, Liao X, Zhang J, Cheng B, Cao Z, Lu H. Graphene oxide nanoparticles induce hepatic dysfunction through the regulation of innate immune signaling in zebrafish (Danio rerio). Nanotoxicology 2020; 14:667-682. [DOI: 10.1080/17435390.2020.1735552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guanghua Xiong
- Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, The Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, China
| | - Yunyun Deng
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, The Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, China
| | - Jun’e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Bo Cheng
- Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, The Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, China
| | - Zigang Cao
- Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, The Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, The Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, China
| |
Collapse
|
7
|
Wu B, Sheng X, Xu Z, Zhang Y, Dan Y, Guo J, Peng H, Liang S, Li G. Osthole relieves diabetics cardiac autonomic neuropathy associated with P2X3 receptor in ratstellate ganglia. Brain Res Bull 2020; 157:90-99. [PMID: 32017970 DOI: 10.1016/j.brainresbull.2020.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 01/09/2023]
Abstract
Diabetic cardiac autonomic neuropathy (DCAN) is a serious complication of diabetes mellitus, which often leads to cardiac dysfunction and even threatens patients' life. Osthole, a natural coumarin derivative, has anti-inflammatory, anti-oxidant and antihypertensive effects. The P2X3 receptor is related to DCAN. The objective of this study will investigate whether osthole relieves DCAN associated with the P2X3 receptor in the stellate ganglia of diabetic rats. A type 2 diabetes mellitus rat model was induced by a combination of diet and streptozotocin. Our results showed that osthole improved the abnormal changes of blood pressure, heart rate, and heart rate variability in diabetic rats and significantly reduced the up-regulated expression levels of the P2X3 receptor, tumor necrosis factor-α and interleukin-1β in stellate ganglia of diabetic rats. Meanwhile, osthole significantly decreased the elevated serum adrenaline concentration and phosphorylation level of extracellular regulated protein kinase 1/2. In addition, the molecular docking result indicated that osthole was a perfect fit for interacting with the P2X3 receptor. Overall, osthole alleviates the sympathetic relative excitation via inhibiting the expression of P2X3 receptors in the stellate ganglia, to achieve a balance between sympathetic and parasympathetic nerves, relieves the DCAN.
Collapse
Affiliation(s)
- Baoguo Wu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Xuan Sheng
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Zixi Xu
- Department of the First Clinical, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Yuanruohan Zhang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Yu Dan
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Jingjing Guo
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Hao Peng
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
8
|
Zhou RJ, Zhao Y, Fan K, Xie ML. Protective effect of apigenin on d-galactosamine/LPS-induced hepatocellular injury by increment of Nrf-2 nucleus translocation. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:929-936. [PMID: 31758207 DOI: 10.1007/s00210-019-01760-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
Apigenin has a protective effect on D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced mouse liver injury through the increments of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and peroxisome proliferator-activated receptor γ (PPARγ) expressions, but its exact mechanisms are still uncertain. This study aimed to further verify its protective effect on hepatocytes and to determine its target of action. The results showed that after treatment of D-GalN/LPS-stimulated hepatocytes with 2.5-20 μM apigenin, the supernatant alanine aminotransferase, aspartate aminotransferasein, tumor necrosis factor-α, and malondialdehyde levels and intracellular nuclear factor-κB protein expression were decreased, while the supernatant superoxide dismutase (SOD) and catalase (CAT) levels, intracellular PPARγ and inhibitor of kappa B-alpha protein expressions, and nucleus Nrf-2 protein expression were increased. After pretreatment with BML-111 or GW9662, the apigenin-induced nucleus Nrf-2 or intracellular PPARγ protein expressions were completely inhibited, respectively, but the both pretreatment differently affected the protective effect of apigenin on hepatocytes. The former completely canceled the protective effect, whereas the latter did not. These findings further demonstrate that apigenin can exert a protective effect on D-GalN/LPS-induced hepatocellular injury via the increment of Nrf-2 nucleus translocation, which may increase the SOD and CAT levels and PPARγ protein expression and subsequently inhibit the inflammatory response.
Collapse
Affiliation(s)
- Rui-Jun Zhou
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China
| | - Ying Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China
| | - Ke Fan
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China
| | - Mei-Lin Xie
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|
9
|
Attenuation of high-fat diet-induced fatty liver through PPARα activation by stevioside. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Yao Y, Wang Y, Kong L, Chen Y, Yang J. RETRACTED: Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β signaling pathway in Alzheimer's disease. Life Sci 2019; 217:16-24. [PMID: 30471283 DOI: 10.1016/j.lfs.2018.11.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/10/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of Editor-in-Chief. The corresponding author notified the journal of image duplications within the published article and requested a corrigendum. Specifically, the ‘APP/PS1’ plot in Figure 1A had appeared in a previous publication [Panaxadiol inhibits synaptic dysfunction in Alzheimer's disease and targets the Fyn protein in APP/PS1 mice and APP-SH-SY5Y cells, Life Sciences (DOI: 10.1016/j.lfs.2019.03.070)], as the ‘TG’ plot in Figure 2A. In addition, several image duplications were identified within the panels of Figure 2. These issues, and others relating to unusual characteristics within the western blots, have been detailed here: https://pubpeer.com/publications/892AF7E4913255548C1446247FC65A#. As per journal policy when considering corrigendum requests, the journal requested the authors to provide explanations and source data relating to these affected figures. Upon receipt of additional source data, the editorial team noticed additional suspected image duplications. In relation to Figure 1A, the corresponding author stated that “…we mistakenly used the same Morris Water Maze data”, and a corrected figure was submitted. In relation to the image duplications within Figure 2, the corresponding author stated “…we mistakenly used the copy-and-paste tool instead of a color adjustment tool” during image post-processing. The corresponding author was unable to produce original unaltered and uncropped western blot source data. The editorial team have concerns about the provenance of the data and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Yingjia Yao
- Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yameng Wang
- Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Liang Kong
- Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yuqing Chen
- Dalian University of Technology, Dalian 116024, China
| | - Jingxian Yang
- Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
11
|
Osthole Protects against Acute Lung Injury by Suppressing NF- κB-Dependent Inflammation. Mediators Inflamm 2018; 2018:4934592. [PMID: 30057486 PMCID: PMC6051001 DOI: 10.1155/2018/4934592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/13/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.
Collapse
|