1
|
Frans G, Michiels B, Picard C, Ampofo L, Raes M, Toelen J, Bucciol G, van der Werff Ten Bosch J, Moens L, Wuyts G, Dillaerts D, Casanova JL, Schrijvers R, Meyts I, Bossuyt X. Diagnosis of IRAK-4-deficiency by flow cytometric measurement of IκB-α degradation. Clin Chem Lab Med 2024; 62:e102-e105. [PMID: 37929815 DOI: 10.1515/cclm-2023-0999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Glynis Frans
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Birthe Michiels
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Capucine Picard
- Necker Medical School, Paris Descartes University, Paris, France
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
- Imagine Institute, Paris Descartes University Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP Paris, France
| | - Louanne Ampofo
- Department of Pharmaceutical and Pharmacological Sciences, Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven, Belgium
| | - Marc Raes
- Department of Pediatrics, Jessa Hospital, Hasselt, Belgium
| | - Jaan Toelen
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Giorgia Bucciol
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | | | - Leen Moens
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Greet Wuyts
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Doreen Dillaerts
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- Imagine Institute, Paris Descartes University Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, and Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Freigeh GE, Michniacki TF. NF-κB and Related Autoimmune and Autoinflammatory Diseases. Rheum Dis Clin North Am 2023; 49:805-823. [PMID: 37821197 DOI: 10.1016/j.rdc.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The NF-κB pathway is a cardinal signaling pathway that has been implicated in the development of a diverse range of clinical diseases. Numerous cellular processes converge on this pathway, which results in cell proliferation and survival. Defects in this pathway and in its upstream regulators have been described as causing immunodeficiency. However, there is a growing body of literature connecting autoimmune and autoinflammatory conditions to NF-κB pathway dysfunction. This review serves as a current appraisal of the literature of these disorders.
Collapse
Affiliation(s)
- George E Freigeh
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Lobby H Suite 2100, 24 Frank Lloyd Wright Drive, Ann Arbor, MI 48105, USA.
| | - Thomas F Michniacki
- Division of Hematology and Oncology, Department of Pediatrics, University of Michigan, 1522 Simpson Road East, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Sharfe N, Dalal I, Naghdi Z, Lefaudeux D, Vong L, Dadi H, Navarro H, Tasher D, Ovadia A, Zangen T, Ater D, Ngan B, Hoffmann A, Roifman CM. NFκB pathway dysregulation due to reduced RelB expression leads to severe autoimmune disorders and declining immunity. J Autoimmun 2023; 137:102946. [PMID: 36402602 DOI: 10.1016/j.jaut.2022.102946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Genetic aberrations in the NFκB pathway lead to primary immunodeficiencies with various degrees of severity. We previously demonstrated that complete ablation of the RelB transcription factor, a key component of the alternative pathway, results in an early manifested combined immunodeficiency requiring stem cell transplantation. OBJECTIVE To study the molecular basis of a progressive severe autoimmunity and immunodeficiency in three patients. METHODS Whole exome sequencing was performed to identify the genetic defect. Molecular and cellular techniques were utilized to assess the variant impact on NFκB signaling, canonical and alternative pathway crosstalk, as well as the resultant effects on immune function. RESULTS Patients presented with multiple autoimmune progressive severe manifestations encompassing the liver, gut, lung, and skin, becoming debilitating in the second decade of life. This was accompanied by a deterioration of the immune system, demonstrating an age-related decline in naïve T cells and responses to mitogens, accompanied by a gradual loss of all circulating CD19+ cells. Whole exome sequencing identified a novel homozygous c. C1091T (P364L) transition in RELB. The P364L RelB protein was unstable, with extremely low expression, but retained some function and could be transiently and partially upregulated following Toll-like receptor stimulation. Stimulation of P364L patient fibroblasts resulted in a marked rise in a cluster of pro-inflammatory hyper-expressed transcripts consistent with the removal of RelB inhibitory effect on RelA function. This is likely the main driver of autoimmune manifestations in these patients. CONCLUSION Incomplete loss of RelB provided a unique opportunity to gain insights into NFκB's pathway interactions as well as the pathogenesis of autoimmunity. The P364L RelB mutation leads to gradual decline in immune function with progression of severe debilitating autoimmunity.
Collapse
Affiliation(s)
- Nigel Sharfe
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Ilan Dalal
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Zahra Naghdi
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Diane Lefaudeux
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Linda Vong
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Harjit Dadi
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Hector Navarro
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Diana Tasher
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Ovadia
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tzili Zangen
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Ater
- Pediatric Pulmonology Unit, Assuta Medical Center, Tel Aviv, Israel
| | - Bo Ngan
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Chaim M Roifman
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
A Novel De Novo NFKBIA Missense Mutation Associated to Ectodermal Dysplasia with Dysgammaglobulinemia. Genes (Basel) 2022; 13:genes13101900. [PMID: 36292785 PMCID: PMC9602067 DOI: 10.3390/genes13101900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Inborn errors of immunity (IEIs) are comprised of heterogeneous groups of genetic disorders affecting immune function. In this report, a 17-month-old Malay patient suspected of having Hyper IgM syndrome, a type of IEIs, was described. However, the diagnosis of Hyper IgM syndrome was excluded by the normal functional studies and the mild features of ectodermal dysplasia observed from a further clinical phenotype inspection. Methods: Whole-exome sequencing (WES) was performed to unravel the causative mutation in this patient. Results: The variant analysis demonstrated a novel missense mutation in NFKBIA (NM_020529:c.94A > T,NP_065390:p.Ser32Cys) and was predicted as damaging by in silico prediction tools. The NFKBIA gene encodes for IκBα, a member of nuclear factor kappa B (NF-κB) inhibitors, playing an important role in regulating NF-κB activity. The mutation occurred at the six degrons (Asp31-Ser36) in IκBα which were evolutionarily conserved across several species. Prediction analysis suggested that the substitution of Ser32Cys may cause a loss of the phosphorylation site at residue 32 and a gain of the sumoylation site at residue 38, resulting in the alteration of post-translational modifications of IκBα required for NF-κB activation. Conclusion: Our analysis hints that the post-translational modification in the NFKBIA Ser32Cys mutant would alter the signaling pathway of NF-κB. Our findings support the usefulness of WES in diagnosing IEIs and suggest the role of post-translational modification of IκBα.
Collapse
|
5
|
Wen W, Wang L, Deng M, Li Y, Tang X, Mao H, Zhao X. A heterozygous N-terminal truncation mutation of NFKBIA results in an impaired NF-κB dependent inflammatory response. Genes Dis 2022; 9:176-186. [PMID: 35005117 PMCID: PMC8720704 DOI: 10.1016/j.gendis.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/21/2021] [Accepted: 03/24/2021] [Indexed: 11/19/2022] Open
Abstract
Germline heterozygous gain-of-function (GOF) mutation of NFKBIA, encoding IκBα, would affect the activation of NF-κB pathway and cause an autosomal dominant (AD) form of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID). Here we reported a Chinese patient with a heterozygous N-terminal truncation mutation of NFKBIA/IκBα. She presented recurrent fever, infectious pneumonia and chronic diarrhea with EDA-ID. Impaired NF-κB translocation and IL1R and TLR4 pathway activation were revealed in this patient. The findings suggested that the truncation mutation of IκBα caused medium impaired of activation of NF-κB but the early death. Furthermore, we reviewed all the reported patients with NFKBIA mutation to learn more about this disease.
Collapse
Affiliation(s)
- Wen Wen
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
- Pediatric Research Institute, Chongqing, 400014 PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014 PR China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
- Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Li Wang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014 PR China
- Pediatric Research Institute, Chongqing, 400014 PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014 PR China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
- Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Mengyue Deng
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
- Pediatric Research Institute, Chongqing, 400014 PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014 PR China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
- Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yue Li
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
- Pediatric Research Institute, Chongqing, 400014 PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014 PR China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
- Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Xuemei Tang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014 PR China
- Pediatric Research Institute, Chongqing, 400014 PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014 PR China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
- Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Huawei Mao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014 PR China
- Pediatric Research Institute, Chongqing, 400014 PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014 PR China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
- Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014 PR China
- Pediatric Research Institute, Chongqing, 400014 PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014 PR China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
- Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| |
Collapse
|
6
|
Aluri J, Cooper MA, Schuettpelz LG. Toll-Like Receptor Signaling in the Establishment and Function of the Immune System. Cells 2021; 10:cells10061374. [PMID: 34199501 PMCID: PMC8228919 DOI: 10.3390/cells10061374] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that play a central role in the development and function of the immune system. TLR signaling promotes the earliest emergence of hematopoietic cells during development, and thereafter influences the fate and function of both primitive and effector immune cell types. Aberrant TLR signaling is associated with hematopoietic and immune system dysfunction, and both loss- and gain-of- function variants in TLR signaling-associated genes have been linked to specific infection susceptibilities and immune defects. Herein, we will review the role of TLR signaling in immune system development and the growing number of heritable defects in TLR signaling that lead to inborn errors of immunity.
Collapse
|
7
|
Tan EE, Hopkins RA, Lim CK, Jamuar SS, Ong C, Thoon KC, Koh MJ, Shin EM, Lian DW, Weerasooriya M, Lee CZ, Soetedjo AAP, Lim CS, Au VB, Chua E, Lee HY, Jones LA, James SS, Kaliaperumal N, Kwok J, Tan ES, Thomas B, Wu LX, Ho L, Fairhurst AM, Ginhoux F, Teo AK, Zhang YL, Ong KH, Yu W, Venkatesh B, Tergaonkar V, Reversade B, Chin KC, Tan AM, Liew WK, Connolly JE. Dominant-negative NFKBIA mutation promotes IL-1β production causing hepatic disease with severe immunodeficiency. J Clin Invest 2021; 130:5817-5832. [PMID: 32750042 DOI: 10.1172/jci98882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Although IKK-β has previously been shown as a negative regulator of IL-1β secretion in mice, this role has not been proven in humans. Genetic studies of NF-κB signaling in humans with inherited diseases of the immune system have not demonstrated the relevance of the NF-κB pathway in suppressing IL-1β expression. Here, we report an infant with a clinical pathology comprising neutrophil-mediated autoinflammation and recurrent bacterial infections. Whole-exome sequencing revealed a de novo heterozygous missense mutation of NFKBIA, resulting in a L34P IκBα variant that severely repressed NF-κB activation and downstream cytokine production. Paradoxically, IL-1β secretion was elevated in the patient's stimulated leukocytes, in her induced pluripotent stem cell-derived macrophages, and in murine bone marrow-derived macrophages containing the L34P mutation. The patient's hypersecretion of IL-1β correlated with activated neutrophilia and liver fibrosis with neutrophil accumulation. Hematopoietic stem cell transplantation reversed neutrophilia, restored a resting state in neutrophils, and normalized IL-1β release from stimulated leukocytes. Additional therapeutic blockade of IL-1 ameliorated liver damage, while decreasing neutrophil activation and associated IL-1β secretion. Our studies reveal a previously unrecognized role of human IκBα as an essential regulator of canonical NF-κB signaling in the prevention of neutrophil-dependent autoinflammatory diseases. These findings also highlight the therapeutic potential of IL-1 inhibitors in treating complications arising from systemic NF-κB inhibition.
Collapse
Affiliation(s)
- Enrica Ek Tan
- Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | - Richard A Hopkins
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Chrissie K Lim
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Saumya S Jamuar
- Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | - Christina Ong
- Duke-NUS Medical School, Singapore.,Department of Paediatrics and
| | - Koh C Thoon
- Duke-NUS Medical School, Singapore.,Department of Paediatrics and
| | - Mark Ja Koh
- Duke-NUS Medical School, Singapore.,Dermatology Service, KK Women's and Children's Hospital, Singapore
| | - Eun Mong Shin
- Institute of Molecular and Cell Biology, A*STAR, Singapore.,Cancer Science Institute of Singapore, Singapore.,National University of Singapore, Singapore
| | - Derrick Wq Lian
- Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Madhushanee Weerasooriya
- Department of Microbiology and Immunology and.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | | | | | | | - Veonice B Au
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Edmond Chua
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Hui Yin Lee
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Leigh Ann Jones
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Sharmy S James
- Department of Microbiology and Immunology and.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Nivashini Kaliaperumal
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Jeffery Kwok
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Ee Shien Tan
- Duke-NUS Medical School, Singapore.,Department of Paediatrics and
| | - Biju Thomas
- Duke-NUS Medical School, Singapore.,Department of Paediatrics and
| | - Lynn Xue Wu
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Lena Ho
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | | | | | - Adrian Kk Teo
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Yong Liang Zhang
- Department of Microbiology and Immunology and.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Kok Huar Ong
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | | | - Vinay Tergaonkar
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, A*STAR, Singapore.,Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Bruno Reversade
- Institute of Molecular and Cell Biology, A*STAR, Singapore.,Department of Medical Genetics, School of Medicine, Koç University, Istanbul, Turkey.,Department of Paediatrics, National University of Singapore, Singapore.,Institute of Medical Biology, A*STAR, Singapore
| | - Keh Chuang Chin
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A*STAR, Singapore.,Department of Physiology and
| | | | - Woei Kang Liew
- Duke-NUS Medical School, Singapore.,Department of Paediatrics and
| | - John E Connolly
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A*STAR, Singapore.,Department of Paediatrics and.,Department of Microbiology and Immunity, National University of Singapore, Singapore.,Institute of Biomedical Studies, Baylor University Medical Center, Waco, Texas, USA
| |
Collapse
|
8
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 915] [Impact Index Per Article: 228.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
9
|
Schnappauf O, Aksentijevich I. Mendelian diseases of dysregulated canonical NF-κB signaling: From immunodeficiency to inflammation. J Leukoc Biol 2020; 108:573-589. [PMID: 32678922 DOI: 10.1002/jlb.2mr0520-166r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
NF-κB is a master transcription factor that activates the expression of target genes in response to various stimulatory signals. Activated NF-κB mediates a plethora of diverse functions including innate and adaptive immune responses, inflammation, cell proliferation, and NF-κB is regulated through interactions with IκB inhibitory proteins, which are in turn regulated by the inhibitor of κB kinase (IKK) complex. Together, these 3 components form the core of the NF-κB signalosomes that have cell-specific functions which are dependent on the interactions with other signaling molecules and pathways. The activity of NF-κB pathway is also regulated by a variety of post-translational modifications including phosphorylation and ubiquitination by Lys63, Met1, and Lys48 ubiquitin chains. The physiologic role of NF-κB is best studied in the immune system due to discovery of many human diseases caused by pathogenic variants in various proteins that constitute the NF-κB pathway. These disease-causing variants can act either as gain-of-function (GoF) or loss-of-function (LoF) and depending on the function of mutated protein, can cause either immunodeficiency or systemic inflammation. Typically, pathogenic missense variants act as GoF and they lead to increased activity in the pathway. LoF variants can be inherited as recessive or dominant alleles and can cause either a decrease or an increase in pathway activity. Dominantly inherited LoF variants often result in haploinsufficiency of inhibitory proteins. Here, we review human Mendelian immunologic diseases, which results from mutations in different molecules in the canonical NF-κB pathway and surprisingly present with a continuum of clinical features including immunodeficiency, atopy, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Heller S, Kölsch U, Magg T, Krüger R, Scheuern A, Schneider H, Eichinger A, Wahn V, Unterwalder N, Lorenz M, Schwarz K, Meisel C, Schulz A, Hauck F, von Bernuth H. T Cell Impairment Is Predictive for a Severe Clinical Course in NEMO Deficiency. J Clin Immunol 2020; 40:421-434. [DOI: 10.1007/s10875-019-00728-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
|
11
|
Cabral-Marques O, Schimke LF, de Oliveira EB, El Khawanky N, Ramos RN, Al-Ramadi BK, Segundo GRS, Ochs HD, Condino-Neto A. Flow Cytometry Contributions for the Diagnosis and Immunopathological Characterization of Primary Immunodeficiency Diseases With Immune Dysregulation. Front Immunol 2019; 10:2742. [PMID: 31849949 PMCID: PMC6889851 DOI: 10.3389/fimmu.2019.02742] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Almost 70 years after establishing the concept of primary immunodeficiency disorders (PIDs), more than 320 monogenic inborn errors of immunity have been identified thanks to the remarkable contribution of high-throughput genetic screening in the last decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory symptoms as the primary clinical manifestation instead of infections. These PIDs are now recognized as diseases of immune dysregulation. Loss-of function mutations in genes such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these disorders. Identifying these syndromes has considerably contributed to expanding our knowledge on the mechanisms of immune regulation and tolerance. Although whole exome and whole genome sequencing have been extremely useful in identifying novel causative genes underlying new phenotypes, these approaches are time-consuming and expensive. Patients with monogenic syndromes associated with autoimmunity require faster diagnostic tools to delineate therapeutic strategies and avoid organ damage. Since these PIDs present with severe life-threatening phenotypes, the need for a precise diagnosis in order to initiate appropriate patient management is necessary. More traditional approaches such as flow cytometry are therefore a valid option. Here, we review the application of flow cytometry and discuss the relevance of this powerful technique in diagnosing patients with PIDs presenting with immune dysregulation. In addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently uncovers new immunopathological mechanisms underlying monogenic PIDs.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Nadia El Khawanky
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Freiburg im Breisgau, Germany.,Precision Medicine Theme, The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Rodrigo Nalio Ramos
- INSERM U932, SiRIC Translational Immunotherapy Team, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Scott O, Roifman CM. NF-κB pathway and the Goldilocks principle: Lessons from human disorders of immunity and inflammation. J Allergy Clin Immunol 2019; 143:1688-1701. [PMID: 30940520 DOI: 10.1016/j.jaci.2019.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling pathways play a key role in various cell processes related to host immunity. The last few years have seen an explosion of disorders associated with NF-κB components from core members of the canonical and noncanonical cascades to adaptor protein and ubiquitination-related enzymes. Disease phenotypes have extended beyond susceptibility to infections and include autoimmunity, lymphoproliferation, atopy, and inflammation. Concurrently, studies are unveiling a tightly regulated system marked by extensive cross-talk between the canonical and noncanonical pathways, as well as among the NF-κB and other signaling pathways. As the rate of discovery in the realm of NF-κB defects accelerates, this review presents a timely summary of major known defects causing human disease, as well as diagnostic, therapeutic, and research challenges and opportunities.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children.
| |
Collapse
|
13
|
Bucciol G, Moens L, Meyts I. Patients with Primary Immunodeficiencies: How Are They at Risk for Fungal Disease? CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0323-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Zhu F, Hu Y. Integrity of IKK/NF-κB Shields Thymic Stroma That Suppresses Susceptibility to Autoimmunity, Fungal Infection, and Carcinogenesis. Bioessays 2018. [PMID: 29522649 DOI: 10.1002/bies.201700131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A pathogenic connection between autoreactive T cells, fungal infection, and carcinogenesis has been demonstrated in studies of human autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) as well as in a mouse model in which kinase-dead Ikkα knock-in mice develop impaired central tolerance, autoreactive T cell-mediated autoimmunity, chronic fungal infection, and esophageal squamous cell carcinoma, which recapitulates APECED. IκB kinase α (IKKα) is one subunit of the IKK complex required for NF-κB activation. IKK/NF-κB is essential for central tolerance establishment by regulating the development of medullary thymic epithelial cells (mTECs) that facilitate the deletion of autoreactive T cells in the thymus. In this review, we extensively discuss the pathogenic roles of inborn errors in the IKK/NF-κB loci in the phenotypically related diseases APECED, immune deficiency syndrome, and severe combined immunodeficiency; differentiate how IKK/NF-κB components, through mTEC (stroma), T cells/leukocytes, or epithelial cells, contribute to the pathogenesis of infectious diseases, autoimmunity, and cancer; and highlight the medical significance of IKK/NF-κB in these diseases.
Collapse
Affiliation(s)
- Feng Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21701, Maryland, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21701, Maryland, USA
| |
Collapse
|
15
|
Yang T, Zhang F, Zhai L, He W, Tan Z, Sun Y, Wang Y, Liu L, Ning C, Zhou W, Ao H, Wang C, Yu Y. Transcriptome of Porcine PBMCs over Two Generations Reveals Key Genes and Pathways Associated with Variable Antibody Responses post PRRSV Vaccination. Sci Rep 2018; 8:2460. [PMID: 29410429 PMCID: PMC5802836 DOI: 10.1038/s41598-018-20701-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a virus susceptible to antibody dependent enhancement, causing reproductive failures in sows and preweaning mortality of piglets. Modified-live virus (MLV) vaccines are used to control PRRS in swine herds. However, immunized sows and piglets often generate variable antibody levels. This study aimed to detect significant genes and pathways involved in antibody responsiveness of pregnant sows and their offspring post-PRRSV vaccination. RNA sequencing was conducted on peripheral blood-mononuclear cells (PBMCs), which were isolated from pregnant sows and their piglets with high (HA), median (MA), and low (LA) PRRS antibody levels following vaccination. 401 differentially expressed genes (DEGs) were identified in three comparisons (HA versus MA, HA versus LA, and MA versus LA) of sow PBMCs. Two novel pathways (complement and coagulation cascade pathway; and epithelial cell signaling in H. pylori infection pathway) revealed by DEGs in HA versus LA and MA versus LA were involved in chemotactic and proinflammatory responses. TNF-α, CCL4, and NFKBIA genes displayed the same expression trends in subsequent generation post-PRRS-MLV vaccination. Findings of the study suggest that two pathways and TNF-α, CCL4, and NFKBIA could be considered as key pathways and potential candidate genes for PRRSV vaccine responsiveness, respectively.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Fengxia Zhang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Liwei Zhai
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Weiyong He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhen Tan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Yangyang Sun
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuan Wang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Chao Ning
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Weiliang Zhou
- Tianjin Ninghe Primary Pig Breeding Farm, Ninghe, 301500, Tianjin, China
| | - Hong Ao
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Miraghazadeh B, Cook MC. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Front Immunol 2018; 9:613. [PMID: 29686669 PMCID: PMC5900062 DOI: 10.3389/fimmu.2018.00613] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.
Collapse
Affiliation(s)
- Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
| | - Matthew C. Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
- Department of Immunology, Canberra Hospital, Acton, ACT, Australia
- *Correspondence: Matthew C. Cook,
| |
Collapse
|
17
|
Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:41-84. [PMID: 29305014 DOI: 10.1016/bs.ircmb.2017.07.007] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
18
|
Ochs HD, Petroni D. From clinical observations and molecular dissection to novel therapeutic strategies for primary immunodeficiency disorders. Am J Med Genet A 2017; 176:784-803. [DOI: 10.1002/ajmg.a.38480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Hans D. Ochs
- Department of Pediatrics and Seattle Children's Research Institute; University of Washington; Seattle Washington
| | - Daniel Petroni
- Department of Pediatrics and Seattle Children's Research Institute; University of Washington; Seattle Washington
| |
Collapse
|
19
|
Immune defects caused by mutations in the ubiquitin system. J Allergy Clin Immunol 2017; 139:743-753. [PMID: 28270366 DOI: 10.1016/j.jaci.2016.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/19/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
The importance of the ubiquitin system in health and disease has been widely recognized in recent decades, with better understanding of the various components of the system and their function. Ubiquitination, which is essential to almost all biological processes in eukaryotes, was also found to play an important role in innate and adaptive immune responses. Thus it is not surprising that mutations in genes coding for components of the ubiquitin system cause immune dysregulation. The first defect in the system was described 30 years ago and is due to mutations in the nuclear factor κB (NF-κB) essential modulator, a key regulator of the NF-κB pathway. With use of novel sequencing techniques, many additional mutations in different genes involved in ubiquitination and related to immune system function were identified. This can be clearly illustrated in mutations in the different activation pathways of NF-κB, which result in aberrations in production of various proinflammatory cytokines. The inherited diseases typically manifest with immunodeficiency, autoimmunity, or autoinflammation. In this perspective we provide a short description of the ubiquitin system, with specific emphasis given to its role in the immune system. The various immunodeficiency conditions identified thus far in association with defective ubiquitination are discussed in more detail.
Collapse
|
20
|
Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood 2017; 130:1456-1467. [PMID: 28679735 DOI: 10.1182/blood-2017-03-771600] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022] Open
Abstract
X-linked recessive ectodermal dysplasia with immunodeficiency is a rare primary immunodeficiency caused by hypomorphic mutations of the IKBKG gene encoding the nuclear factor κB essential modulator (NEMO) protein. This condition displays enormous allelic, immunological, and clinical heterogeneity, and therapeutic decisions are difficult because NEMO operates in both hematopoietic and nonhematopoietic cells. Hematopoietic stem cell transplantation (HSCT) is potentially life-saving, but the small number of case reports available suggests it has been reserved for only the most severe cases. Here, we report the health status before HSCT, transplantation outcome, and clinical follow-up for a series of 29 patients from unrelated kindreds from 11 countries. Between them, these patients carry 23 different hypomorphic IKBKG mutations. HSCT was performed from HLA-identical related donors (n = 7), HLA-matched unrelated donors (n = 12), HLA-mismatched unrelated donors (n = 8), and HLA-haploidentical related donors (n = 2). Engraftment was documented in 24 patients, and graft-versus-host disease in 13 patients. Up to 7 patients died 0.2 to 12 months after HSCT. The global survival rate after HSCT among NEMO-deficient children was 74% at a median follow-up after HSCT of 57 months (range, 4-108 months). Preexisting mycobacterial infection and colitis were associated with poor HSCT outcome. The underlying mutation does not appear to have any influence, as patients with the same mutation had different outcomes. Transplantation did not appear to cure colitis, possibly as a result of cell-intrinsic disorders of the epithelial barrier. Overall, HSCT can cure most clinical features of patients with a variety of IKBKG mutations.
Collapse
|
21
|
Petersheim D, Massaad MJ, Lee S, Scarselli A, Cancrini C, Moriya K, Sasahara Y, Lankester AC, Dorsey M, Di Giovanni D, Bezrodnik L, Ohnishi H, Nishikomori R, Tanita K, Kanegane H, Morio T, Gelfand EW, Jain A, Secord E, Picard C, Casanova JL, Albert MH, Torgerson TR, Geha RS. Mechanisms of genotype-phenotype correlation in autosomal dominant anhidrotic ectodermal dysplasia with immune deficiency. J Allergy Clin Immunol 2017. [PMID: 28629746 DOI: 10.1016/j.jaci.2017.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Autosomal dominant anhidrotic ectodermal dysplasia with immune deficiency (AD EDA-ID) is caused by heterozygous point mutations at or close to serine 32 and serine 36 or N-terminal truncations in IκBα that impair its phosphorylation and degradation and thus activation of the canonical nuclear factor κ light chain enhancer of activated B cells (NF-κB) pathway. The outcome of hematopoietic stem cell transplantation is poor in patients with AD EDA-ID despite achievement of chimerism. Mice heterozygous for the serine 32I mutation in IκBα have impaired noncanonical NF-κB activity and defective lymphorganogenesis. OBJECTIVE We sought to establish genotype-phenotype correlation in patients with AD EDA-ID. METHODS A disease severity scoring system was devised. Stability of IκBα mutants was examined in transfected cells. Immunologic, biochemical, and gene expression analyses were performed to evaluate canonical and noncanonical NF-κB signaling in skin-derived fibroblasts. RESULTS Disease severity was greater in patients with IκBα point mutations than in those with truncation mutations. IκBα point mutants were expressed at significantly higher levels in transfectants compared with truncation mutants. Canonical NF-κB-dependent IL-6 secretion and upregulation of the NF-κB subunit 2/p100 and RELB proto-oncogene, NF-κB subunit (RelB) components of the noncanonical NF-κB pathway were diminished significantly more in patients with point mutations compared with those with truncations. Noncanonical NF-κB-driven generation of the transcriptionally active p100 cleavage product p52 and upregulation of CCL20, intercellular adhesion molecule 1 (ICAM1), and vascular cell adhesion molecule 1 (VCAM1), which are important for lymphorganogenesis, were diminished significantly more in LPS plus α-lymphotoxin β receptor-stimulated fibroblasts from patients with point mutations compared with those with truncations. CONCLUSIONS IκBα point mutants accumulate at higher levels compared with truncation mutants and are associated with more severe disease and greater impairment of canonical and noncanonical NF-κB activity in patients with AD EDA-ID.
Collapse
Affiliation(s)
- Daniel Petersheim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Saetbyul Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Alessia Scarselli
- Division of Immunology and Infectious Diseases, Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, and University of Rome Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Division of Immunology and Infectious Diseases, Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, and University of Rome Tor Vergata, Rome, Italy
| | | | - Yoji Sasahara
- Department of Pediatrics, Tohoku University, Tohoku, Japan
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Morna Dorsey
- Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| | - Daniela Di Giovanni
- Immunology Service, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Immunology Service, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | | | | | - Kay Tanita
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Erwin W Gelfand
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Ashish Jain
- Merck Research Laboratories Boston, Boston, Mass
| | - Elizabeth Secord
- Division of Allergy, Asthma, and Immunology, Children's Hospital of Michigan, Detroit, Mich
| | - Capucine Picard
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital, Paris Descartes University, Paris, France
| | - Jean-Laurent Casanova
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital, Paris Descartes University, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Michael H Albert
- Department of Pediatric Hematology and Oncology, Dr von Hauner University Children's Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
22
|
Boisson B, Puel A, Picard C, Casanova JL. Human IκBα Gain of Function: a Severe and Syndromic Immunodeficiency. J Clin Immunol 2017; 37:397-412. [PMID: 28597146 DOI: 10.1007/s10875-017-0400-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/01/2017] [Indexed: 02/05/2023]
Abstract
Germline heterozygous gain-of-function (GOF) mutations of NFKBIA, encoding IκBα, cause an autosomal dominant (AD) form of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID). Fourteen unrelated patients have been reported since the identification of the first case in 2003. All mutations enhanced the inhibitory activity of IκBα, by preventing its phosphorylation on serine 32 or 36 and its subsequent degradation. The mutation certainly or probably occurred de novo in 13 patients, whereas it was inherited from a parent with somatic mosaicism in one patient. Eleven mutations, belonging to two groups, were identified: (i) missense mutations affecting S32, S36, or neighboring residues (8 mutations, 11 patients) and (ii) nonsense mutations upstream from S32 associated with the reinitiation of translation downstream from S36 (3 mutations, 3 patients). Thirteen patients had developmental features of EDA, the severity and nature of which differed between cases. All patient cells tested displayed impaired NF-κB-mediated responses to the stimulation of various surface receptors involved in cell-intrinsic (fibroblasts), innate (monocytes), and adaptive (B and T cells) immunity, including TLRs, IL-1Rs, TNFRs, TCR, and BCR. All patients had profound B-cell deficiency. Specific immunological features, found in some, but not all patients, included a lack of peripheral lymph nodes, lymphocytosis, dysfunctional α/β T cells, and a lack of circulating γ/δ T cells. The patients had various pyogenic, mycobacterial, fungal, and viral severe infections. Patients with a missense mutation tended to display more severe phenotypes, probably due to higher levels of GOF proteins. In the absence of hematopoietic stem cell transplantation (HSCT), this condition cause death before the age of 1 year (one child). Two survivors have been on prophylaxis (at 9 and 22 years). Six children died after HSCT. Five survived, four of whom have been on prophylaxis (3 to 21 years post HSCT), whereas one has been well with no prophylaxis. Heterozygous GOF mutations in IκBα underlie a severe and syndromic immunodeficiency, the interindividual variability of which might partly be ascribed to the dichotomy of missense and nonsense mutations, and the hematopoietic component of which can be rescued by HSCT.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France. .,Imagine Institute, Paris Descartes University, Paris, France.
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Study Center for Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
23
|
Ovadia A, Dinur Schejter Y, Grunebaum E, Kim VHD, Reid B, Schechter T, Pope E, Roifman CM. Hematopoietic stem cell transplantation for RelB deficiency. J Allergy Clin Immunol 2017; 140:1199-1201.e3. [PMID: 28552761 DOI: 10.1016/j.jaci.2017.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Adi Ovadia
- Division of Immunology and Allergy, Department of Paediatrics, the Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Yael Dinur Schejter
- Division of Immunology and Allergy, Department of Paediatrics, the Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Department of Paediatrics, the Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Vy Hong-Diep Kim
- Division of Immunology and Allergy, Department of Paediatrics, the Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Brenda Reid
- Division of Immunology and Allergy, Department of Paediatrics, the Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Tal Schechter
- Division of Haematology/Oncology, Department of Paediatrics, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elena Pope
- Dermatology Paediatric Medicine Division, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Paediatrics, the Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell 2017; 168:37-57. [PMID: 28086098 DOI: 10.1016/j.cell.2016.12.012] [Citation(s) in RCA: 1379] [Impact Index Per Article: 197.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
NF-κB was discovered 30 years ago as a rapidly inducible transcription factor. Since that time, it has been found to have a broad role in gene induction in diverse cellular responses, particularly throughout the immune system. Here, we summarize elaborate regulatory pathways involving this transcription factor and use recent discoveries in human genetic diseases to place specific proteins within their relevant medical and biological contexts.
Collapse
|
25
|
Wang X, van de Veerdonk FL, Netea MG. Basic Genetics and Immunology of Candida Infections. Infect Dis Clin North Am 2016; 30:85-102. [PMID: 26897063 DOI: 10.1016/j.idc.2015.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Candida infections can cause superficial and invasive disease. Several essential mechanisms underlying the pathogenesis of these infections were known for some time, such as neutropenia predisposing to invasive disease, and CD4 lymphopenia causing increased susceptibility to mucosal candidiasis. However, the development of novel genetic screening techniques has led to several new insights in the genetics and immunology of candida infections. This article highlights novel insights in the pathogenesis of mucocutaneous and invasive candidiasis that have been identified in recent years.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Department of Dermatology, Peking University First Hospital, Xishiku Street 8, Xicheng District, Beijing 10034, China
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
26
|
Gain-of-function mutations and immunodeficiency: at a loss for proper tuning of lymphocyte signaling. Curr Opin Allergy Clin Immunol 2016; 15:533-8. [PMID: 26406182 DOI: 10.1097/aci.0000000000000217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To present recent advances in the discovery and characterization of new immunodeficiency disorders linked to gain-of-function (GOF) mutations in immune signaling molecules. (Figure is included in full-text article.) RECENT FINDINGS In the past 2 years, extensive cellular and molecular studies have illuminated the root causes of pathogenesis for several new monogenic primary immunodeficiency disorders (PIDs) linked to GOF mutations in signaling molecules. Here we discuss on two disorders (BENTA and APDS/PASLI) featuring shared clinical presentation (e.g. lymphoproliferation, selective antibody deficiencies, recurrent sinopulmonary infections). These findings highlight an emerging theme: both loss-of-function and gain-of-function mutations in key molecules can disrupt finely tuned immunoreceptor signaling modalities, resulting in the dysregulation of lymphocyte differentiation and impaired adaptive immunity. SUMMARY Continued research on the molecular pathogenesis of PIDs defined by hyperactive signaling molecules will better distinguish these and related disorders, and pinpoint tailored therapeutic interventions for 'retuning' the immune response in these patients.
Collapse
|
27
|
Allenspach E, Torgerson TR. Autoimmunity and Primary Immunodeficiency Disorders. J Clin Immunol 2016; 36 Suppl 1:57-67. [PMID: 27210535 DOI: 10.1007/s10875-016-0294-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Advances in DNA sequencing technologies have led to a quickening in the pace at which new genetic immunodeficiency disorders have been identified. Among the newly identified defects are a number of disorders that present primarily with autoimmunity as opposed to recurrent infections. These "immune dysregulation" disorders have begun to cluster together to form an increased understanding of some of the basic molecular mechanisms that underlie the establishment and maintenance of immune tolerance and the development of autoimmunity. This review will present three major themes that have emerged in our understanding of the mechanisms that underlie autoimmunity and immune dysregulation in humans.
Collapse
Affiliation(s)
- Eric Allenspach
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, 1900 9th Ave., JMB-7, Seattle, WA, 98101-1304, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
- Seattle Children's Research Institute, 1900 9th Ave., JMB-7, Seattle, WA, 98101-1304, USA.
| |
Collapse
|
28
|
Giardino G, Cirillo E, Gallo V, Esposito T, Fusco F, Conte MI, Quinti I, Ursini MV, Carsetti R, Pignata C. B cells from nuclear factor kB essential modulator deficient patients fail to differentiate to antibody secreting cells in response to TLR9 ligand. Clin Immunol 2015; 161:131-5. [DOI: 10.1016/j.clim.2015.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/05/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023]
|
29
|
Sharfe N, Merico D, Karanxha A, Macdonald C, Dadi H, Ngan B, Herbrick JA, Roifman CM. The effects of RelB deficiency on lymphocyte development and function. J Autoimmun 2015; 65:90-100. [DOI: 10.1016/j.jaut.2015.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/03/2015] [Accepted: 09/05/2015] [Indexed: 10/23/2022]
|
30
|
Boisson-Dupuis S, Bustamante J, El-Baghdadi J, Camcioglu Y, Parvaneh N, El Azbaoui S, Agader A, Hassani A, El Hafidi N, Mrani NA, Jouhadi Z, Ailal F, Najib J, Reisli I, Zamani A, Yosunkaya S, Gulle-Girit S, Yildiran A, Cipe FE, Torun SH, Metin A, Atikan BY, Hatipoglu N, Aydogmus C, Kilic SS, Dogu F, Karaca N, Aksu G, Kutukculer N, Keser-Emiroglu M, Somer A, Tanir G, Aytekin C, Adimi P, Mahdaviani SA, Mamishi S, Bousfiha A, Sanal O, Mansouri D, Casanova JL, Abel L. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev 2015; 264:103-20. [PMID: 25703555 DOI: 10.1111/imr.12272] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb) and a few related mycobacteria, is a devastating disease, killing more than a million individuals per year worldwide. However, its pathogenesis remains largely elusive, as only a small proportion of infected individuals develop clinical disease either during primary infection or during reactivation from latency or secondary infection. Subacute, hematogenous, and extrapulmonary disease tends to be more frequent in infants, children, and teenagers than in adults. Life-threatening primary TB of childhood can result from known acquired or inherited immunodeficiencies, although the vast majority of cases remain unexplained. We review here the conditions conferring a predisposition to childhood clinical diseases caused by mycobacteria, including not only M.tb but also weakly virulent mycobacteria, such as BCG vaccines and environmental mycobacteria. Infections with weakly virulent mycobacteria are much rarer than TB, but the inherited and acquired immunodeficiencies underlying these infections are much better known. Their study has also provided genetic and immunological insights into childhood TB, as illustrated by the discovery of single-gene inborn errors of IFN-γ immunity underlying severe cases of TB. Novel findings are expected from ongoing and future human genetic studies of childhood TB in countries that combine a high proportion of consanguineous marriages, a high incidence of TB, and an excellent clinical care, such as Iran, Morocco, and Turkey.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM-U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hagin D, Burroughs L, Torgerson TR. Hematopoietic Stem Cell Transplant for Immune Deficiency and Immune Dysregulation Disorders. Immunol Allergy Clin North Am 2015; 35:695-711. [DOI: 10.1016/j.iac.2015.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
RelB deficiency causes combined immunodeficiency. LYMPHOSIGN JOURNAL-THE JOURNAL OF INHERITED IMMUNE DISORDERS 2015. [DOI: 10.14785/lpsn-2015-0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Combined immunodeficiency (CID) presents in infancy with severe microbial infections due to either the depletion or dysfunction of lymphocytes. Several mutated genes have been implicated in causing this condition. These encoded proteins are involved in gene recombination, signal transduction from receptors to transcription factors, or they are critical for lymphocyte development. There remain 20%–30% of patients with similar phenotypes but with no known genetic aberration. The objective of this study was to define the molecular basis of CID in a group of patients. Genotyping was performed using linkage panel chips, and the results were analyzed for parametric linkage. Whole genome sequencing was also performed. In vitro mitogen stimulation, flow cytometry, real time PCR, Western blotting, and cytokine ELISA were used to assess immunological status and signal transduction pathways. We identified a homozygous mutation in the gene for the NFκB transcription factor RelB in 3 patients who suffered repeated infection despite the presence of circulating T and B cells. This mutation introduces a premature stop, resulting in an ablation of RelB expression. Evaluation of patient immune systems revealed reduced response to mitogens and an inability to maintain an adequate antibody response to immunizations. Lack of RelB expression results in a clinical presentation of CID. Statement of novelty: We describe RelB deficiency for the first time.
Collapse
|
33
|
Ramírez-Alejo N, Alcántara-Montiel JC, Yamazaki-Nakashimada M, Duran-McKinster C, Valenzuela-León P, Rivas-Larrauri F, Cedillo-Barrón L, Hernández-Rivas R, Santos-Argumedo L. Novel hypomorphic mutation in IKBKG impairs NEMO-ubiquitylation causing ectodermal dysplasia, immunodeficiency, incontinentia pigmenti, and immune thrombocytopenic purpura. Clin Immunol 2015; 160:163-71. [PMID: 26117626 DOI: 10.1016/j.clim.2015.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
NF-κB essential modulator (NEMO) is a component of the IKK complex, which participates in the activation of the NF-κB pathway. Hypomorphic mutations in the IKBKG gene result in different forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males without affecting carrier females. Here, we describe a hypomorphic and missense mutation, designated c.916G>A (p.D306N), which affects our patient, his mother, and his sister. This mutation did not affect NEMO expression; however, an immunoprecipitation assay revealed reduced ubiquitylation upon CD40-stimulation in the patient's cells. Functional studies have demonstrated reduced phosphorylation and degradation of IκBα, affecting NF-κB recruitment into the nucleus. The patient presented with clinical features of ectodermal dysplasia, immunodeficiency, and immune thrombocytopenic purpura, the latter of which has not been previously reported in a patient with NEMO deficiency. His mother and sister displayed incontinentia pigmenti indicating that, in addition to amorphic mutations, hypomorphic mutations in NEMO can affect females.
Collapse
Affiliation(s)
- Noé Ramírez-Alejo
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City 07360, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Senegas A, Gautheron J, Maurin AGD, Courtois G. IKK-related genetic diseases: probing NF-κB functions in humans and other matters. Cell Mol Life Sci 2015; 72:1275-87. [PMID: 25432706 PMCID: PMC11113297 DOI: 10.1007/s00018-014-1793-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/04/2014] [Accepted: 11/20/2014] [Indexed: 12/28/2022]
Abstract
The transcription factor NF-κB plays a key role in numerous physiological processes such as inflammation, immunity, cell proliferation or control of cell death. Its activation is tightly controlled by a kinase complex, IκB kinase (IKK), composed of three core proteins: IKK1/IKKα, IKK2/IKKβ and NEMO/IKKγ. The first two are structurally related kinases whereas the third one is a regulatory subunit exhibiting affinity for upstream activators modified by polyubiquitin chains. Over the years, several inherited diseases caused by mutations of each of the three subunits of IKK have been identified in humans together with diseases caused by mutations of several of its substrates. They are associated with very specific and complex phenotypes involving a broad range of abnormalities such as impaired innate and acquired immune response, perturbed skin development and defects of the central nervous system. Here, we summarize the diverse clinical, cellular and molecular manifestations of IKK-related genetic diseases and show that studying patient-related mutations affecting the IKK subunits and some of their substrates offers the opportunity to understand the various functions of NF-κB in humans, complementing studies performed with mouse models. This analysis also provides glimpses about putative functions of IKK subunits that may be NF-κB-independent.
Collapse
Affiliation(s)
- Anna Senegas
- INSERM U1038, iRTSV, CEA Grenoble, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Jérémie Gautheron
- Department of Gastroenterology, University Hospital RWTH Aachen, Aachen, Germany
| | - Alice Gentil Dit Maurin
- INSERM U1038, iRTSV, CEA Grenoble, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Gilles Courtois
- INSERM U1038, iRTSV, CEA Grenoble, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
35
|
Rare mendelian primary immunodeficiency diseases associated with impaired NF-κB signaling. Genes Immun 2015; 16:239-46. [PMID: 25764117 PMCID: PMC4457537 DOI: 10.1038/gene.2015.3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 12/14/2022]
Abstract
Mendelian Primary Immunodeficiency Diseases (MPIDs) are rare disorders affecting distinct constituents of the innate and adaptive immune system. Although they are genetically heterogeneous a substantial group of MPIDs is due to mutations in genes affecting the NF-κB transcription pathway, essential for cell proliferation, cell survival, and involved in innate immunity and in inflammation. Many of these genes encode for crucial regulatory components of NF-κB pathway and their mutations are associated with immunological and developmental signs somehow overlapping in patients with MPIDs. At present nine different MPIDs listed in the OMIM are caused by mutations in at least nine different genes strictly involved in the NF-κB pathway that result in defects in immune responses. We will report here on the distinct function of each causative gene, on the impaired NF-κB step and more in general on the molecular mechanisms underlining the pathogenesis of the disease. Overall, the MPIDs affecting NF-κB signalosome require a careful integrated diagnosis and appropriate genetic tests to be molecularly identified. Their discovery at an ever-increasing rate will help to establish common therapeutic strategy for a subclass of immunodeficient patients.
Collapse
|
36
|
Quantitative Proteomics of the Human Skin Secretome Reveal a Reduction in Immune Defense Mediators in Ectodermal Dysplasia Patients. J Invest Dermatol 2015; 135:759-767. [DOI: 10.1038/jid.2014.462] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/09/2022]
|
37
|
Boisson B, Quartier P, Casanova JL. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind. Curr Opin Immunol 2015; 32:90-105. [PMID: 25645939 PMCID: PMC4364384 DOI: 10.1016/j.coi.2015.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/06/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
Abstract
All the human primary immunodeficiencies (PIDs) recognized as such in the 1950s were Mendelian traits and, whether autosomal or X-linked, displayed recessive inheritance. The first autosomal dominant (AD) PID, hereditary angioedema, was recognized in 1963. However, since the first identification of autosomal recessive (AR), X-linked recessive (XR) and AD PID-causing genes in 1985 (ADA; severe combined immunodeficiency), 1986 (CYBB, chronic granulomatous disease) and 1989 (SERPING1; hereditary angioedema), respectively, the number of genetically defined AD PIDs has increased more rapidly than that of any other type of PID. AD PIDs now account for 61 of the 260 known conditions (23%). All known AR PIDs are caused by alleles with some loss-of-function (LOF). A single XR PID is caused by gain-of-function (GOF) mutations (WASP-related neutropenia, 2001). In contrast, only 44 of 61 AD defects are caused by LOF alleles, which exert dominance by haploinsufficiency or negative dominance. Since 2003, up to 17 AD disorders of the third kind, due to GOF alleles, have been described. Remarkably, six of the 17 genes concerned also harbor monoallelic (STAT3), biallelic (C3, CFB, CARD11, PIK3R1) or both monoallelic and biallelic (STAT1) LOF alleles in patients with other clinical phenotypes. Most heterozygous GOF alleles result in auto-inflammation, auto-immunity, or both, with a wide range of immunological and clinical forms. Some also underlie infections and, fewer, allergies, by impairing or enhancing immunity to non-self. Malignancies are also rare. The enormous diversity of immunological and clinical phenotypes is thought provoking and mirrors the diversity and pleiotropy of the underlying genotypes. These experiments of nature provide a unique insight into the quantitative regulation of human immunity.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Pierre Quartier
- Paris Descartes University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Paris 75015, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Paris Descartes University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Paris 75015, France
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris 75015, France
| |
Collapse
|
38
|
Mooster JL, Le Bras S, Massaad MJ, Jabara H, Yoon J, Galand C, Heesters BA, Burton OT, Mattoo H, Manis J, Geha RS. Defective lymphoid organogenesis underlies the immune deficiency caused by a heterozygous S32I mutation in IκBα. ACTA ACUST UNITED AC 2015; 212:185-202. [PMID: 25601653 PMCID: PMC4322042 DOI: 10.1084/jem.20140979] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mooster et al. created a knock-in mouse harboring a mutation (S32I) in IκBα that has been identified in a patient with ectodermal dysplasia with immunodeficiency. The mice are characterized by defective architectural cell function; they lack lymph nodes, Peyer’s patches, splenic marginal zones, and follicular DCs and fail to develop germinal centers. These features have not been previously recognized in patients. Patients with ectodermal dysplasia with immunodeficiency (ED-ID) caused by mutations in the inhibitor of NF-κB α (IκBα) are susceptible to severe recurrent infections, despite normal T and B cell numbers and intact in vitro lymphocyte function. Moreover, the outcome of hematopoietic stem cell transplantation (HSCT) in these patients is poor despite good engraftment. Mice heterozygous for the IκBα S32I mutation found in patients exhibited typical features of ED-ID. Strikingly, the mice lacked lymph nodes, Peyer’s patches, splenic marginal zones, and follicular dendritic cells and failed to develop contact hypersensitivity (CHS) or form germinal centers (GCs), all features not previously recognized in patients and typical of defective noncanonical NF-κB signaling. Lymphotoxin β receptor (LTβR)–driven induction of chemokines and adhesion molecules mediated by both canonical and noncanonical NF-κB pathways was impaired, and levels of p100 were markedly diminished in the mutant. IκBα mutant→Rag2−/−, but not WT→IκBα mutant, bone marrow chimeras formed proper lymphoid organs and developed CHS and GCs. Defective architectural cell function explains the immunodeficiency and poor outcome of HSCT in patients with IκBα deficiency and suggests that correction of this niche is critical for reconstituting their immune function.
Collapse
Affiliation(s)
- Jana L Mooster
- Division of Allergy and Immunology and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 Department of Pediatrics, Division of Transfusion Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Severine Le Bras
- Division of Allergy and Immunology and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 Department of Pediatrics, Division of Transfusion Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Michel J Massaad
- Division of Allergy and Immunology and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 Department of Pediatrics, Division of Transfusion Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Haifa Jabara
- Division of Allergy and Immunology and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 Department of Pediatrics, Division of Transfusion Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Juhan Yoon
- Division of Allergy and Immunology and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 Department of Pediatrics, Division of Transfusion Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Claire Galand
- Division of Allergy and Immunology and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 Department of Pediatrics, Division of Transfusion Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Balthasar A Heesters
- Division of Allergy and Immunology and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Oliver T Burton
- Division of Allergy and Immunology and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 Department of Pediatrics, Division of Transfusion Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Hamid Mattoo
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114
| | - John Manis
- Department of Pediatrics, Division of Transfusion Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Pediatrics, Division of Transfusion Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Raif S Geha
- Division of Allergy and Immunology and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 Department of Pediatrics, Division of Transfusion Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
39
|
Host genetics of invasive Aspergillus and Candida infections. Semin Immunopathol 2014; 37:173-86. [DOI: 10.1007/s00281-014-0468-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/06/2014] [Indexed: 01/03/2023]
|
40
|
Nielsen C, Jakobsen MA, Larsen MJ, Müller AC, Hansen S, Lillevang ST, Fisker N, Barington T. Immunodeficiency associated with a nonsense mutation of IKBKB. J Clin Immunol 2014; 34:916-21. [PMID: 25216719 DOI: 10.1007/s10875-014-0097-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/01/2014] [Indexed: 01/03/2023]
Abstract
We report an infant of consanguineous parents of Turkish decent with a novel immunodeficiency associated with homozygosity for a nonsense mutation of the gene encoding Inhibitor of nuclear factor kappa-B (NF-κB) kinase subunit beta (IKKβ). At five months, she presented with respiratory insufficiency and Pneumocystis jirovecii pneumonia which was successfully treated. At nine months, iatrogenic systemic infection with Mycobacterium bovis was found and eventually led to her death at age 14 months. Laboratory findings were reminiscent of hyper-IgM syndrome, but genetic testing gave no explanation before whole exome sequencing revealed a novel mutation abrogating signaling through the canonical NF-κB pathway.
Collapse
Affiliation(s)
- Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Niyazoglu M, Baykara O, Koc A, Aydoğdu P, Onaran I, Dellal FD, Tasan E, Sultuybek GK. Association of PARP-1, NF-κB, NF-κBIA and IL-6, IL-1β and TNF-α with Graves Disease and Graves Ophthalmopathy. Gene 2014; 547:226-32. [DOI: 10.1016/j.gene.2014.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 01/22/2023]
|
42
|
Lionakis MS, Netea MG, Holland SM. Mendelian genetics of human susceptibility to fungal infection. Cold Spring Harb Perspect Med 2014; 4:4/6/a019638. [PMID: 24890837 DOI: 10.1101/cshperspect.a019638] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A recent surge in newly described inborn errors of immune function-related genes that result in susceptibility to fungal disease has greatly enhanced our understanding of the cellular and molecular basis of antifungal immune responses. Characterization of single-gene defects that predispose to various combinations of superficial and deep-seated infections caused by yeasts, molds, and dimorphic fungi has unmasked the critical role of novel molecules and signaling pathways in mucosal and systemic antifungal host defense. These experiments of nature offer a unique opportunity for developing new knowledge in immunological research and form the foundation for devising immune-based therapeutic approaches for patients infected with fungal pathogens.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Mihai G Netea
- Department of Internal Medicine, and Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
43
|
Routes J, Abinun M, Al-Herz W, Bustamante J, Condino-Neto A, De La Morena MT, Etzioni A, Gambineri E, Haddad E, Kobrynski L, Le Deist F, Nonoyama S, Oliveira JB, Perez E, Picard C, Rezaei N, Sleasman J, Sullivan KE, Torgerson T. ICON: the early diagnosis of congenital immunodeficiencies. J Clin Immunol 2014; 34:398-424. [PMID: 24619621 DOI: 10.1007/s10875-014-0003-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/17/2014] [Indexed: 01/27/2023]
Abstract
Primary immunodeficiencies are intrinsic defects in the immune system that result in a predisposition to infection and are frequently accompanied by a propensity to autoimmunity and/or immunedysregulation. Primary immunodeficiencies can be divided into innate immunodeficiencies, phagocytic deficiencies, complement deficiencies, disorders of T cells and B cells (combined immunodeficiencies), antibody deficiencies and immunodeficiencies associated with syndromes. Diseases of immune dysregulation and autoinflammatory disorder are many times also included although the immunodeficiency in these disorders are often secondary to the autoimmunity or immune dysregulation and/or secondary immunosuppression used to control these disorders. Congenital primary immunodeficiencies typically manifest early in life although delayed onset are increasingly recognized. The early diagnosis of congenital immunodeficiencies is essential for optimal management and improved outcomes. In this International Consensus (ICON) document, we provide the salient features of the most common congenital immunodeficiencies.
Collapse
Affiliation(s)
- John Routes
- Department of Pediatrics, Medical College of Wisconsin, and Children's Research Institute, Milwaukee, WI, 53226-4874, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Frans G, Meyts I, Picard C, Puel A, Zhang SY, Moens L, Wuyts G, Van der Werff Ten Bosch J, Casanova JL, Bossuyt X. Addressing diagnostic challenges in primary immunodeficiencies: Laboratory evaluation of Toll-like receptor- and NF-κB-mediated immune responses. Crit Rev Clin Lab Sci 2014; 51:112-23. [DOI: 10.3109/10408363.2014.881317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Abstract
Immunodeficiencies with nonfunctional T cells comprise a heterogeneous group of conditions characterized by altered function of T lymphocytes in spite of largely preserved T cell development. Some of these forms are due to hypomorphic mutations in genes causing severe combined immunodeficiency. More recently, advances in human genome sequencing have facilitated the identification of novel genetic defects that do not affect T cell development, but alter T cell function and homeostasis. Along with increased susceptibility to infections, these conditions are characterized by autoimmunity and higher risk of malignancies. The study of these diseases, and of corresponding animal models, has provided fundamental insights on the mechanisms that govern immune homeostasis.
Collapse
|
46
|
Lanternier F, Cypowyj S, Picard C, Bustamante J, Lortholary O, Casanova JL, Puel A. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr 2013; 25:736-47. [PMID: 24240293 PMCID: PMC4098727 DOI: 10.1097/mop.0000000000000031] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW We review the primary immunodeficiencies (PIDs) underlying an increasing variety of superficial and invasive fungal infections. We also stress that the occurrence of such fungal infections should lead physicians to search for the corresponding single-gene inborn errors of immunity. Finally, we suggest that other fungal infections may also result from hitherto unknown inborn errors of immunity, at least in some patients with no known risk factors. RECENT FINDINGS An increasing number of PIDs are being shown to underlie fungal infectious diseases in children and young adults. Inborn errors of the phagocyte NADPH oxidase complex (chronic granulomatous disease), severe congenital neutropenia (SCN) and leukocyte adhesion deficiency type I confer a predisposition to invasive aspergillosis and candidiasis. More rarely, inborn errors of interferon-γ immunity underlie endemic mycoses. Inborn errors of interleukin-17 immunity have recently been shown to underlie chronic mucocutaneous candidiasis (CMC), while inborn errors of caspase recruitment domain-containing protein 9 (CARD9) immunity underlie deep dermatophytosis and invasive candidiasis. SUMMARY CMC, invasive candidiasis, invasive aspergillosis, deep dermatophytosis, pneumocystosis, and endemic mycoses can all be caused by PIDs. Each type of infection is highly suggestive of a specific type of PID. In the absence of overt risk factors, single-gene inborn errors of immunity should be sought in children and young adults with these and other fungal diseases.
Collapse
MESH Headings
- Adolescent
- Adult
- Aspergillosis/genetics
- Aspergillosis/immunology
- Autoantibodies
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Child
- Child, Preschool
- Disease Susceptibility
- Female
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/immunology
- Humans
- Immunity, Cellular/genetics
- Immunologic Deficiency Syndromes/complications
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Infant
- Infant, Newborn
- Interleukin-17/immunology
- Male
- Mycoses/genetics
- Mycoses/immunology
- Pneumonia, Pneumocystis/genetics
- Pneumonia, Pneumocystis/immunology
- Risk Factors
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Fanny Lanternier
- aLaboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U980 Necker Medical School, Imagine Institute and Paris Descartes University, Sorbonne Paris Cité bInfectious Diseases and Tropical Medicine Unit, Necker-Enfants Malades Hospital, AP-HP and Paris Descartes University cPasteur Institute, National Reference Center of Invasive Mycoses and Antifungals, Paris, France dSt Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA eStudy Center for Immunodeficiency fPediatric Hematology-Immunology Unit, Necker Enfants-Malades Hospital, AP-HP, and Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen K, Coonrod E, Kumánovics A, Franks ZF, Durtschi J, Margraf R, Wu W, Heikal N, Augustine N, Ridge P, Hill H, Jorde L, Weyrich A, Zimmerman G, Gundlapalli A, Bohnsack J, Voelkerding K. Germline mutations in NFKB2 implicate the noncanonical NF-κB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet 2013; 93:812-24. [PMID: 24140114 DOI: 10.1016/j.ajhg.2013.09.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/27/2013] [Accepted: 09/17/2013] [Indexed: 12/11/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections. To investigate the molecular cause of CVID, we carried out exome sequence analysis of a family diagnosed with CVID and identified a heterozygous frameshift mutation, c.2564delA (p.Lys855Serfs(∗)7), in NFKB2 affecting the C terminus of NF-κB2 (also known as p100/p52 or p100/p49). Subsequent screening of NFKB2 in 33 unrelated CVID-affected individuals uncovered a second heterozygous nonsense mutation, c.2557C>T (p.Arg853(∗)), in one simplex case. Affected individuals in both families presented with an unusual combination of childhood-onset hypogammaglobulinemia with recurrent infections, autoimmune features, and adrenal insufficiency. NF-κB2 is the principal protein involved in the noncanonical NF-κB pathway, is evolutionarily conserved, and functions in peripheral lymphoid organ development, B cell development, and antibody production. In addition, Nfkb2 mouse models demonstrate a CVID-like phenotype with hypogammaglobulinemia and poor humoral response to antigens. Immunoblot analysis and immunofluorescence microscopy of transformed B cells from affected individuals show that the NFKB2 mutations affect phosphorylation and proteasomal processing of p100 and, ultimately, p52 nuclear translocation. These findings describe germline mutations in NFKB2 and establish the noncanonical NF-κB signaling pathway as a genetic etiology for this primary immunodeficiency syndrome.
Collapse
|
48
|
Giancane G, Ferrari S, Carsetti R, Papoff P, Iacobini M, Duse M. Anhidrotic ectodermal dysplasia: a new mutation. J Allergy Clin Immunol 2013; 132:1451-3. [PMID: 23870671 DOI: 10.1016/j.jaci.2013.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
|