1
|
Bobadoye B, Nganso BT, Stuhl C, Torto B, Fombong AT. Chemical Ecology and Management of the Small Hive Beetle, Aethina tumida (Coleoptera: Nitidulidae). J Chem Ecol 2025; 51:16. [PMID: 39890687 DOI: 10.1007/s10886-025-01556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/30/2024] [Accepted: 12/01/2024] [Indexed: 02/03/2025]
Abstract
Over the last 28 years, the small hive beetle, Aethina tumida (Coleoptera: Nitidulidae), a colony pest of wild and managed honey bees (Apis mellifera), and native to sub-Saharan Africa, has been recorded as an invasive and damaging pest of diverse bee species, especially managed honeybee colonies in the Americas, Europe, Asia and Australia. It poses an indirect threat to pollination services and global food security. Efforts to manage the beetle has yielded no permanent solution. However, several studies demonstrate that the small hive beetle uses various sensory cues to locate hosts including chemical and visual cues in the visible wavelength. Here, we review the chemical ecology of the beetle and discuss implications for its future management.
Collapse
Affiliation(s)
- Bridget Bobadoye
- Warnell School of Forestry and Natural Resources, University of Georgia, 180E Green St, Athens, GA, 30602, USA
| | - Beatrice T Nganso
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Charles Stuhl
- USDA/ARS-CMAVE, 1600/1700 SW23rd Dr., Gainesville, FL, 32608, USA
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Ayuka T Fombong
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
2
|
Bogo G, Porrini MP, Aguilar-Monge I, Aldea-Sánchez P, de Groot GS, Velarde RA, Xolalpa-Aroche A, Vázquez DE. Current status of toxicological research on stingless bees (Apidae, Meliponini): Important pollinators neglected by pesticides' regulations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178229. [PMID: 39719763 DOI: 10.1016/j.scitotenv.2024.178229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Stingless bees (tribe Meliponini), comprising over 600 known species within the largest group of eusocial bees, play a critical role in ecosystem functioning through their pollination services. They contribute to the reproduction of numerous plant species, including many economically important crops such as cacao, coffee, and various fruits. Beyond their ecological significance, stingless bees hold cultural and economic importance for many native and rural communities, where they are managed for their honey, pollen, and propolis for nutritional and health purposes. The overwhelming majority of studies on pesticide toxicity and risk assessment on bees are conducted on the model species Apis mellifera in the United States and Europe, where stingless bees are absent. In May 2023, the European Food Safety Authority (EFSA) published its revised guidance document on the risk assessment of plant protection products (PPPs) for bees, including, beyond honey bees, other bee species from Bombus and Osmia genera. Despite the Meliponini widespread distribution in tropical and subtropical regions, the impact of pesticides on stingless bees remains largely unexplored. Here, we present a systematic review of stingless bee toxicological studies which highlights a substantial knowledge gap. Up to October of 2024, only 144 research articles on the effects of pesticides on Meliponini had been identified, 80 % of those were conducted in a single country (Brazil). The number of bee species and PPPs tested is extremely low, with just five species accounting for almost 50 % of the collected data and only 79 PPPs tested, among which biopesticides were the most common. Concerning the experimental methodologies, there is a significant lack of studies focusing on chronic exposure and field assays, as well as a scarcity of studies focusing on sublethal effects. Furthermore, we pinpoint to areas where research is needed for the development of risk assessment guidelines to protect these vital pollinators.
Collapse
Affiliation(s)
- Gherardo Bogo
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy.
| | - Martín P Porrini
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Centro de Investigación en Abejas Sociales (CIAS)-Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Estación Costera J.J. Nágera, Ruta Provincial 11 Km 5395 Playa Chapadmalal, 7603 Mar del Plata, Buenos Aires, Argentina.
| | - Ingrid Aguilar-Monge
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Centro de Investigaciones Apícolas Tropicales (CINAT), Universidad Nacional, Heredia. Costa Rica.
| | - Patricia Aldea-Sánchez
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Facultad de Ciencias de la Salud, Instituto de Investigación Interdisciplinar en Ciencias Biomédicas, Universidad SEK, Santiago, Chile.
| | - Grecia S de Groot
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Grupo Ecología de la Polinización (ECOPOL) - Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA - CONICET-Universidad Nacional del Comahue), Pasaje Gutiérrez 1250, Bariloche, Río Negro, Argentina.
| | - Rodrigo A Velarde
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay.
| | - Aurora Xolalpa-Aroche
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Centro de Innovación para el Desarrollo Apícola Sustentable en Quintana Roo - Universidad Intercultural Maya de Quintana Roo, Mexico.
| | - Diego E Vázquez
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay; Centro de Investigación en Ciencias Ambientales (CICA), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
3
|
Rodrigues Méndez MP, Muñoz-Rodríguez D, Aragón-Pech RADJ, Macías Macías JO, Quezada-Euán JJG. Cuticular hydrocarbon profiles reveal geographic chemotypes in stingless bees (Hymenoptera: Meliponini). Sci Rep 2024; 14:14567. [PMID: 38914659 PMCID: PMC11196267 DOI: 10.1038/s41598-024-65298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Cuticular hydrocarbon (CHCs) variation has been detected in various insect taxa, but the potential contribution of cuticular compounds for analyzing intraspecific diversity at the population level has been little explored. Here we assess for the first time intraspecific variation in the CHC profile of stingless bees, using the species Melipona beecheii and Nannotrigona perilampoides. The objective is determining whether intraspecific variation can be useful for population identification. We found species-specific chemical patterns and extensive variation within each species. Notably, chemotypes were significantly associated to geographic origin in N. perilampoides but less so in M. beecheii and we discuss possible explanations for these patterns. Our results support the use of CHCs in conjunction with other methods in emerging problems such as undetected colony mobilization across regions. As CHCs are involved in several aspects of stingless bee recognition and interactions, it would be essential to unravel how these chemical signatures evolve across populations.
Collapse
Affiliation(s)
- Melody Patricia Rodrigues Méndez
- Facultad de Ingeniería Química, UADY, Periférico Norte Km. 33.5, Colonia Chuburná de Hidalgo Inn, C.P. 97203, Mérida, Yucatán, Mexico
| | - David Muñoz-Rodríguez
- Facultad de Ingeniería Química, UADY, Periférico Norte Km. 33.5, Colonia Chuburná de Hidalgo Inn, C.P. 97203, Mérida, Yucatán, Mexico
| | | | | | - José Javier G Quezada-Euán
- Departamento de Apicultura Tropical, Facultad de Medicina Veterinaria y Zootecnia, UADY, C.P. 97100, Mérida, Yucatán, Mexico.
| |
Collapse
|
4
|
Castillo DC, Sinpoo C, Phokasem P, Yongsawas R, Sansupa C, Attasopa K, Suwannarach N, Inwongwan S, Noirungsee N, Disayathanoowat T. Distinct fungal microbiomes of two Thai commercial stingless bee species, Lepidotrigona terminata and Tetragonula pagdeni suggest a possible niche separation in a shared habitat. Front Cell Infect Microbiol 2024; 14:1367010. [PMID: 38469352 PMCID: PMC10925696 DOI: 10.3389/fcimb.2024.1367010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Stingless bees, a social corbiculate bee member, play a crucial role in providing pollination services. Despite their importance, the structure of their microbiome, particularly the fungal communities, remains poorly understood. This study presents an initial characterization of the fungal community associated with two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon sequencing, we identified distinct fungal microbiomes in these two species. Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Rozellomycota were present. The most dominant genera, which varied significantly between species, included Candida and Starmerella. Additionally, several key enzymes associated with energy metabolism, structural strength, and host defense reactions, such as adenosine triphosphatase, alcohol dehydrogenase, β-glucosidase, chitinase, and peptidylprolyl isomerase, were predicted. Our findings not only augment the limited knowledge of the fungal microbiome in Thai commercial stingless bees but also provide insights for their sustainable management through understanding their microbiome.
Collapse
Affiliation(s)
- Diana C. Castillo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Phokasem
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chakriya Sansupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Korrawat Attasopa
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Martins AC, Proença CEB, Vasconcelos TNC, Aguiar AJC, Farinasso HC, de Lima ATF, Faria JEQ, Norrana K, Costa MBR, Carvalho MM, Dias RL, Bustamante MMC, Carvalho FA, Keller A. Contrasting patterns of foraging behavior in neotropical stingless bees using pollen and honey metabarcoding. Sci Rep 2023; 13:14474. [PMID: 37660141 PMCID: PMC10475120 DOI: 10.1038/s41598-023-41304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
Stingless bees are major flower visitors in the tropics, but their foraging preferences and behavior are still poorly understood. Studying stingless bee interactions with angiosperms is methodologically challenging due to the high tropical plant diversity and inaccessibility of upper canopy flowers in forested habitats. Pollen DNA metabarcoding offers an opportunity of assessing floral visitation efficiently and was applied here to understand stingless bee floral resources spectra and foraging behavior. We analyzed pollen and honey from nests of three distantly related stingless bee species, with different body size and social behavior: Melipona rufiventris, Scaptotrigona postica and Tetragonisca angustula. Simultaneously, we evaluate the local floristic components through seventeen rapid botanical surveys conducted at different distances from the nests. We discovered a broad set of explored floral sources, with 46.3 plant species per bee species in honey samples and 53.67 in pollen samples. Plant families Myrtaceae, Asteraceae, Euphorbiaceae, Melastomataceae and Malpighiaceae dominated the records, indicating stingless bee preferences for abundant resources that flowers of these families provide in the region. Results also reinforce the preference of stingless bees for forest trees, even if only available at long distances. Our high-resolution results encourage future bee-plant studies using pollen and honey metabarcoding in hyper-diverse tropical environments.
Collapse
Affiliation(s)
- Aline C Martins
- Departamento de Ecologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Carolyn E B Proença
- Departamento de Botânica, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Thais N C Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio J C Aguiar
- Laboratório de Abelhas, Departamento de Zoologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Hannah C Farinasso
- Laboratório de Abelhas, Departamento de Zoologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Aluisio T F de Lima
- Departamento de Botânica, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Jair E Q Faria
- Departamento de Botânica, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Krissya Norrana
- Laboratório de Abelhas, Departamento de Zoologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Marcella B R Costa
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Matheus M Carvalho
- Laboratório de Abelhas, Departamento de Zoologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Rodrigo L Dias
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Fernanda A Carvalho
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians University, 82152, Munich, Germany
| |
Collapse
|
6
|
Herrera-López MG, Richomme P, Peña-Rodríguez LM, Calvo-Irabien LM. Bee Species, Botanical Sources and the Chemical Composition of Propolis from Yucatan, Mexico. J Chem Ecol 2023; 49:408-417. [PMID: 37097511 DOI: 10.1007/s10886-023-01429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
Propolis is used by corbiculated bees to protect the bee hive; it is mostly used to seal cracks, to reduce or prevent microbial growth and to embalm invaders. Different factors have been reported to influence the chemical composition of propolis, including bee species and the flora surrounding the hive. Nevertheless, the majority of the studies are focused on propolis produced by Apis mellifera, while studies on the chemical composition of propolis produced by stingless bees are still limited. In this investigation, the chemical composition of 27 propolis samples collected in the Yucatan Peninsula from A. mellifera beehives, together with 18 propolis samples from six different species of stingless bees, were analyzed by GC-MS. Results showed that lupeol acetate and β-amyrin were the characteristic triterpenes in propolis samples from A. mellifera, while grandiflorenic acid and its methyl ester were the main metabolites present in samples from stingless bees. Multivariate analyses were used to explore the relationship between bee species and botanical sources on the chemical composition of the propolis samples. Differences in body size and, therefore, foraging abilities, as well as preferences for specific botanical sources among bee species, could explain the observed variation in propolis chemical composition. This is the first report on the composition of propolis samples from the stingless bees Trigona nigra, Scaptotrigona pectoralis, Nannotrigona perilampoides, Plebeia frontalis and Partamona bilineata.
Collapse
Affiliation(s)
- Mercedes Guadalupe Herrera-López
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Chuburná de Hidalgo , 97205, Mérida, Yucatán, México
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130,Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Pascal Richomme
- SONAS EA921, SFR4207 QUASAV, University of Angers, 42, rue Georges Morel, 49070, Beacourzé, France
| | - Luis Manuel Peña-Rodríguez
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Chuburná de Hidalgo , 97205, Mérida, Yucatán, México
| | - Luz María Calvo-Irabien
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130,Chuburná de Hidalgo, 97205, Mérida, Yucatán, México.
| |
Collapse
|
7
|
Gomez Ramirez WC, Thomas NK, Muktar IJ, Riabinina O. The neuroecology of olfaction in bees. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101018. [PMID: 36842606 DOI: 10.1016/j.cois.2023.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
The focus of bee neuroscience has for a long time been on only a handful of social honeybee and bumblebee species, out of thousands of bees species that have been described. On the other hand, information about the chemical ecology of bees is much more abundant. Here we attempted to compile the scarce information about olfactory systems of bees across species. We also review the major categories of intra- and inter-specific olfactory behaviors of bees, with specific focus on recent literature. We finish by discussing the most promising avenues for bee olfactory research in the near future.
Collapse
|
8
|
Andrade-Velásquez A, Hernández Sánchez H, Dorantes-Álvarez L, Palmeros-Sánchez B, Torres-Moreno R, Hernández-Rodríguez D, Melgar-Lalanne G. Honey characterization and identification of fructophilic lactic acid bacteria of fresh samples from Melipona beecheii, Scaptotrigona pectoralis, Plebeia llorentei, and Plebeia jatiformis hives. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Stingless bees are essential to preser tropical ecosystems. They pollinate native flora, producing honey with properties for traditional health uses. Lactic acid bacteria spontaneously ferment honey in stingless bee honey (SBH). This study aims to determine the main physicochemical characteristics of Melipona beecheii, Scraptotrigona pectoralis, Plebeia jatiformis and Plebeia llorentei honey and to isolate and identify FLAB present in SBH samples. The physicochemical properties of SBH, such as color, pH, acidity, sugars, protein, total soluble solids, water activity, total polyphenols, and antioxidant activity, were determined since these parameters can be related to the presence of some bacteria groups, and with health benefits for humans and the hive ecosystems. FLAB harvested from honey, taken directly from storing pots of the hives, were identified by 16S ribosomal RNA sequencing and preserved for future biotechnological use due to their resistance to non-ionic osmotic stress. The results showed significant differences in the physicochemical characteristics of SBH samples. Seven FLAB from four stingless bee species were identified as Fructobacillus pseudoficulneus and F. tropaeoli. In addition, three other strains of Fructilactobacillus spp. were identified only at the genus level. All species showed the ability to grow under different carbon sources, resulting in negative hemolysis and sensitivity to cefuroxime, erythromycin, and chloramphenicol. To the best of our knowledge, this is the first time that the physicochemical and FLAB characterization of SBH from P. jatiformis and P. llorentei has been reported. Therefore, the future following research should be focused on the environmental, health and food biotechnological applications implications of FLAB from SBH.
Collapse
|
9
|
Abstract
Stingless bees form perennial colonies of honey-making insects. The >600 species of stingless bees, mainly Neotropical, live throughout tropical latitudes. Foragers influence floral biology, plant reproduction, microbe dispersal, and diverse ecosystem functions. As tropical forest residents since the upper Cretaceous, they have had a long evolutionary history without competition from honey bees. Most stingless bees are smaller than any Apis species and recruit nest mates to resources, while their defense strategies exclude stinging behavior but incorporate biting. Stingless bees have diversified ecologically; excel in nesting site selection and mutualisms with plants, arthropods, and microbes; and display opportunism, including co-opting plant defenses. As their biology becomes better known, applications to human endeavors are imposing selective pressures from exploitation and approaches to conservation that entail colony extraction from wildlands. Although some meliponines can adjust to new conditions, their populations shall require tropical diversity for survival and reproduction.
Collapse
Affiliation(s)
- David W Roubik
- Smithsonian Tropical Research Institute, Balboa, Republic of Panamá;
| |
Collapse
|
10
|
Goh LPW, Jawan R, Faik AAM, Gansau JA. A review of stingless bees' bioactivity in different parts of the world. J Med Life 2023; 16:16-21. [PMID: 36873121 PMCID: PMC9979177 DOI: 10.25122/jml-2022-0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/30/2022] [Indexed: 03/07/2023] Open
Abstract
Stingless bees, also known as meliponines, live in beehives. However, reports on the distribution of stingless bees are scattered, resulting in a lack of precision. Honey and propolis are the main components that can be harvested from their beehive, with a great commercial value of up to 610 million USD. Despite the enormous potential profits, discrepancies in their bioactivities have been observed worldwide, leading to a lack of confidence. Therefore, this review provided oversight on the potential of stingless bee products and highlighted the differences between stingless bees in Asia, Australia, Africa, and America. The bioactivity of stingless bee products is diverse and exhibits great potential as an antimicrobial agent or in various diseases such as diabetes, cardiovascular disease, cancers, and oral problems.
Collapse
Affiliation(s)
- Lucky Poh Wah Goh
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Roslina Jawan
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Ainol Azifa Mohd Faik
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jualang Azlan Gansau
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
11
|
Lipińska MM, Gołębiowski M, Szlachetko DL, Kowalkowska AK. Floral attractants in the black orchid Brasiliorchis schunkeana (Orchidaceae, Maxillariinae): clues for presumed sapromyophily and potential antimicrobial activity. BMC PLANT BIOLOGY 2022; 22:575. [PMID: 36496375 PMCID: PMC9737770 DOI: 10.1186/s12870-022-03944-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Orchids have evolved various strategies that aim to ensure their reproduction success. These may include the production of rewards for pollinators, or on the contrary, deception. Specific sets of features such as flower morphology, color, nectar, and odor presence (or lack thereof) are considered to determine suitability for pollination by different groups of animals. Stingless bees are thought to be the primary pollinators of the orchids of the Neotropical subtribe Maxillariinae. However, almost black flowered Brasiliorchis schunkeana at first glance presents floral adaptations that may suggest another pollination syndrome-sapromyophily. RESULTS A few traces of secretion were noticed on the glabrous lip callus and lip apex built by conical to villiform papillae (SEM analysis). Histochemical studies revealed huge amounts of lipids in the epidermis, subepidermis, and some parenchyma cells (SBB test) with various stages of lipids accumulation between cells. Further TEM analysis showed a heterogeneous (lipoid and phenolic) nature of secretion. The dense osmiophilic cytoplasm contained organelles (RER, free ribosomes, dictyosomes, plastids with plastoglobuli, nucleus) and vesicles migrating to plasmalemma. The vesicles, osmiophilic globules, and flocculent material were visible in periplasmic space. The central vacuole possessed osmiophilic phenolic content and flocculent material. GC-MS analysis revealed in floral extract the presence of 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione (77.06%) and 2,5-di-tert-butyl-1,4-benzoquinone (16.65%). Both compounds are known for their biological activity. CONCLUSIONS The juxtaposition of results led us to the conclusion that the labellar tissue produces lipoid and phenolic material, which is responsible for the glossiness and rotten herring scent. This type of secretion could be classified as a phenolic resin. The chemical analysis revealed the presence of five semiochemicals that are known to be attractants for some Diptera, which together with the rest of the results constitutes a strong premise that representatives of this order could be potential pollinators of B. schunkeana. Field observations however are still needed to confirm this pollination syndrome.
Collapse
Affiliation(s)
- Monika M Lipińska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Foundation Polish Orchid Association, 81-825, Sopot, Poland
| | - Marek Gołębiowski
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Dariusz L Szlachetko
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Agnieszka K Kowalkowska
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
12
|
Vit P, van der Meulen J, Diaz M, Pedro SR, Esperança I, Zakaria R, Beckh G, Maza F, Meccia G, Engel MS. Impact of genus ( Geotrigona, Melipona, Scaptotrigona) in the targeted 1H-NMR organic profile, and authenticity test by interphase emulsion of honey processed in cerumen pots by stingless bees in Ecuador. Curr Res Food Sci 2022; 6:100386. [PMID: 36846470 PMCID: PMC9947262 DOI: 10.1016/j.crfs.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
The biodiversity of Ecuadorian stingless bees is almost 200 species. Traditional pot-honey harvest in Ecuador is mostly done from nests of the three genera selected here Geotrigona Moure, 1943, Melipona Illiger, 1806, and Scaptotrigona Moure, 1942. The 20 pot-honey samples collected from cerumen pots and three ethnic honeys "abeja de tierra", "bermejo", and "cushillomishki" were analyzed for qualitative and quantitative targeted 1H-NMR honey profiling, and for the Honey Authenticity Test by Interphase Emulsion (HATIE). Extensive data of targeted organic compounds (41 parameters) were identified, quantified, and described. The three honey types were compared by ANOVA. Amino acids, ethanol, hydroxymethylfurfural, aliphatic organic acids, sugars, and markers of botanical origin. The number of phases observed with the HATIE were one in Scaptotrigona and three in Geotrigona and Melipona honeys. Acetic acid (19.60 ± 1.45 g/kg) and lactic acid (24.30 ± 1.65 g/kg) were particularly high in Geotrigona honey (in contrast to 1.3 g/kg acetic acid and 1.6 g/kg lactic acid in Melipona and Scaptotrigona), and with the lowest fructose + glucose (18.39 ± 1.68) g/100g honey compared to Melipona (52.87 ± 1.75) and Scaptotrigona (52.17 ± 0.60). Three local honeys were tested using PCA (Principal Component Analysis), two were assigned with a correct declared bee origin, but "bermejo" was not a Melipona and grouped with the Scaptotrigona cluster. However after HCA (Hierarchical Cluster Analysis) the three honeys were positioned in the Melipona-Scaptotrigona cluster. This research supports targeted 1H-NMR-based profiling of pot-honey metabolomics approach for multi-parameter visualization of organic compounds, as well as descriptive and pertained multivariate statistics (HCA and PCA) to discriminate the stingless bee genus in a set of Geotrigona, Melipona and Scaptotrigona honey types. The NMR characterization of Ecuadorian honey produced by stingless bees emphasizes the need for regulatory norms. A final note on stingless bee markers in pot-honey metabolites which should be screened for those that may extract phylogenetic signals from nutritional traits of honey. Scaptotrigona vitorum honey revealed biosurfactant activity in the HATIE, originating a fingerprint Honey Biosurfactant Test (HBT) for the genus in this set of pot-honeys.
Collapse
Affiliation(s)
- Patricia Vit
- Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida, 5101, Venezuela
| | | | - Maria Diaz
- Quality Services International GmbH, 28199, Bremen, Germany
| | - Silvia R.M. Pedro
- Biology Department, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Isabelle Esperança
- Institute of Chemistry, Universidad Federal de Rio de Janeiro, Rio de Janeiro, RJ, 21945970, Brazil
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Gudrun Beckh
- Quality Services International GmbH, 28199, Bremen, Germany
| | - Favian Maza
- Faculty of Agricultural and Livestock Sciences, Universidad Técnica de Machala, Machala, El Oro province, Ecuador
| | - Gina Meccia
- Research Institute, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Michael S. Engel
- Division of Entomology, Natural History Museum, Department of Ecology & Evolutionary Biology, 1501 Crestline Drive-Suite 140, University of Kansas, Lawrence, KS, USA
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
13
|
Orth AJ, Curran EH, Haas EJ, Kraemer AC, Anderson AM, Mason NJ, Fassbinder-Orth CA. Land Use Influences the Composition and Antimicrobial Effects of Propolis. INSECTS 2022; 13:insects13030239. [PMID: 35323537 PMCID: PMC8950720 DOI: 10.3390/insects13030239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Honey bees collect a multitude of substances from plants, including nectar, pollen, and a lesser-known resin called propolis. Honey bees line their colonies with propolis to fill in cracks and potentially aid in their defense against pathogens such as fungi, bacteria, and viruses. Different plants contain different types of chemicals that are collected by bees to form propolis, and so one would expect the plants that bees visit to influence the quality of the propolis contained within honey bee colonies. This project explored the chemical composition and antibacterial effects of propolis collected from apiaries that were surrounded by different types of land use patterns in Iowa. Propolis samples collected from colonies that were surrounded by the highest levels of agriculture had the lowest abundance of chemical compounds and also the lowest antimicrobial activity detected for two of the bacteria species studied. These results add to a growing body of work that suggests that high intensity agricultural land use negatively impacts multiple aspects of honey bee colony health. Abstract Honey bee propolis is a complex, resinous mixture created by bees using plant sources such as leaves, flowers, and bud exudates. This study characterized how cropland surrounding apiaries affects the chemical composition and antimicrobial effects of propolis. The chemical composition and compound abundance of the propolis samples were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) and the antimicrobial effects were analyzed using the 50% minimum inhibitory concentration (MIC50) assay against four relevant bee pathogens, Serratia marcescens, Paenibacillus larvae, Lysinibacillus sphaericus, and Klebsiella pneumoniae. Propolis composition varied significantly with apiary, and cropland coverage predicted mean sum abundance of compounds. The apiary with the highest cropland coverage exhibited significantly higher MIC50 values for S. marcescens and K. pneumoniae compared to other apiaries. These results demonstrate that agricultural land use surrounding honey bee apiaries decreases the chemical quality and antimicrobial effects of propolis, which may have implications for the impacts of land use on hive immunity to potential pathogens.
Collapse
Affiliation(s)
- Amara J. Orth
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (A.J.O.); (E.H.C.); (A.C.K.)
| | - Emma H. Curran
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (A.J.O.); (E.H.C.); (A.C.K.)
| | - Eric J. Haas
- Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (E.J.H.); (N.J.M.)
| | - Andrew C. Kraemer
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (A.J.O.); (E.H.C.); (A.C.K.)
| | - Audrey M. Anderson
- College of Engineering, University of Nebraska-Lincoln, 1400 R Street, Lincoln, NE 68588, USA;
| | - Nicholas J. Mason
- Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (E.J.H.); (N.J.M.)
| | - Carol A. Fassbinder-Orth
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (A.J.O.); (E.H.C.); (A.C.K.)
- Correspondence: ; Tel.: +1-402-280-3544
| |
Collapse
|
14
|
Vázquez M, Muñoz D, Medina R, Paxton RJ, de Oliveira FF, Quezada-Euán JJG. Sympatric cleptobiotic stingless bees have species-specific cuticular profiles that resemble their hosts. Sci Rep 2022; 12:2621. [PMID: 35173265 PMCID: PMC8850540 DOI: 10.1038/s41598-022-06683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Stingless bees are the largest group of eusocial pollinators with diverse natural histories, including obligate cleptobionts (genus Lestrimelitta) that completely abandoned flower visitation to rely on other stingless bees for food and nest materials. Species of Lestrimeliita are thought to specialize upon different host species, and deception through chemical similarity has been proposed as a mechanism to explain this phenomenon. In the Yucatan Peninsula of Mexico, Scaptotrigona pectoralis is a species chemically distinct from, and not preferred as a host by, locally widespread Lestrimeliita niitkib; witnessing attacks on S. pectoralis colonies offered the opportunity to test the sensory deception hypothesis to cletoparasitism. Analysis of cuticular profiles revealed that the Lestrimelitta attacking S. pectoralis differed significantly in odour bouquet to L. niitkib and, in contrast, it resembled that of S. pectoralis. Further analyses, including morphometrics, mtDNA barcoding, and the examination of taxonomic features, confirmed the existence of two sympatric Lestrimelitta species. The results give support to the hypothesis of chemical deception as a cleptobiotic strategy in Lestrimelitta sp. This is the first evidence that sympatric cleptobionts of the same genus select hosts in accordance with species-specific cuticular profiles, with possible consequences for ecological adaptation and the evolution of these remarkable organisms and the community of stingless bee hosts.
Collapse
Affiliation(s)
- Manuel Vázquez
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Km 15.5 Carr., Xmatkuil, Mérida, Yucatán, Mexico
| | - David Muñoz
- Facultad de Ingeniería Química, Campus de Ingenierías y Ciencias Exactas, Mérida, Yucatán, Mexico
| | - Rubén Medina
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Campo Experimental Edzná, Campeche, Mexico
| | - Robert J Paxton
- Institute für Biology, Martin Luther University Halle-Wittenberg, 06099, Halle (Saale), Germany
| | - Favizia Freitas de Oliveira
- Laboratório de Bionomia, Biogeografia e Sistemática de Insetos (BIOSIS), Museu de História Natural da Bahia (MHNBA), Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, Número 668, Campus de Ondina, Salvador, Bahia, Brazil
| | - José Javier G Quezada-Euán
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Km 15.5 Carr., Xmatkuil, Mérida, Yucatán, Mexico.
| |
Collapse
|
15
|
Assefa A, Lemma M. Ecological niche modeling for stingless bees (genus Melipona) in Waghemira and North Wollo zones of Amhara Regional State, Ethiopia. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
da Silva JA, Barchuk AR, Wolowski M. Protocol for the in vitro rearing of Frieseomelitta varia workers (Hymenoptera: Apidae: Meliponini). ZOOLOGIA 2022. [DOI: 10.1590/s1984-4689.v39.e22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Almeida FCR, Magalhães DM, Favaris AP, Rodríguez J, Azevedo KEX, Bento JMS, Alves DA. Side effects of a fungus-based biopesticide on stingless bee guarding behaviour. CHEMOSPHERE 2022; 287:132147. [PMID: 34492415 DOI: 10.1016/j.chemosphere.2021.132147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Pathogenic fungi have been used worldwide to control crop pests and are assumed to pose negligible threats to the survival of pollinators. Although eusocial stingless bees provide essential pollination services and might be exposed to these biopesticides in tropical agroecosystems, there is a substantial knowledge gap regarding the side effects of fungal pathogens on behavioural traits that are crucial for colony functioning, such as guarding behaviour. Here, we evaluated the effect of Beauveria bassiana on the sophisticated kin recognition system of Tetragonisca angustula, a bee with morphologically specialized entrance guards. By combining behavioural assays and chemical analyses, we show that guards detect pathogen-exposed nestmates, preventing them from accessing nests. Furthermore, cuticular profiles of pathogen-exposed foragers contained significantly lower amounts of linear alkanes than the unexposed ones. Such chemical cues associated with fungal conidia may potentially trigger aggression towards pathogen-exposed bees, preventing pathogen spread into and among colonies. This is the first demonstration that this highly abundant native bee seems to respond in a much more adaptive way to a potentially infectious threat, outweighing the costs of losing foraging workforce when reducing the chances of fungal pathogen outbreaks within their colonies, than honeybees do.
Collapse
Affiliation(s)
- Felipe Chagas Rocha Almeida
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Diego Martins Magalhães
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Arodí Prado Favaris
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Jonathan Rodríguez
- Laboratory of Pathology and Microbial Control, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Kamila Emmanuella Xavier Azevedo
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - José Maurício Simões Bento
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Denise Araujo Alves
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil.
| |
Collapse
|
18
|
Propolis of stingless bees for the development of novel functional food and nutraceutical ingredients: A systematic scoping review of the experimental evidence. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
19
|
Shanahan M, Spivak M. Resin Use by Stingless Bees: A Review. INSECTS 2021; 12:719. [PMID: 34442285 PMCID: PMC8397191 DOI: 10.3390/insects12080719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Stingless bees (Meliponini) are highly social bees that are native to tropical and sub-tropical ecosystems. Resin use is vital to many aspects of stingless bee colony function. Stingless bees use resin to build essential nest structures, repel predators, and kill would-be invaders. Furthermore, resin-derived compounds have been found to enrich the cuticular chemical profiles of many stingless bee species, and resin may play an important role in shaping the microbial communities associated with stingless bees and their nests. Despite its importance for colony function, previous reviews of resin use by stingless bees are lacking. This topic grows increasingly urgent as changes in beekeeping and land use practices occur, potentially diminishing stingless bees' ability to incorporate resin into the nest environment. In this article, we review existing literature on resin use by stingless bees and discuss potential areas of future research.
Collapse
Affiliation(s)
- Maggie Shanahan
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave, St. Paul, MN 55108, USA;
| | | |
Collapse
|
20
|
Skowron Volponi M, Casacci LP, Volponi P, Barbero F. Southeast Asian clearwing moths buzz like their model bees. Front Zool 2021; 18:35. [PMID: 34229716 PMCID: PMC8262067 DOI: 10.1186/s12983-021-00419-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background The endless struggle to survive has driven harmless species to evolve elaborate strategies of deceiving predators. Batesian mimicry involves imitations of noxious species’ warning signals by palatable mimics. Clearwing moths (Lepidoptera: Sesiidae), incapable of inflicting painful bites or stings, resemble bees or wasps in their morphology and sometimes imitate their behaviours. An entirely unexplored type of deception in sesiids is acoustic mimicry. We recorded the buzzing sounds of two species of Southeast Asian clearwing moths, Heterosphecia pahangensis and H. hyaloptera and compared them to their visual model bee, Tetragonilla collina, and two control species of bees occurring in the same habitat. Recordings were performed on untethered, flying insects in nature. Results Based on eight acoustic parameters and wingbeat frequencies calculated from slow-motion videos, we found that the buzzes produced by both clearwing moths highly resemble those of T. collina but differ from the two control species of bees. Conclusions Acoustic similarities to bees, alongside morphological and behavioural imitations, indicate that clearwing moths display multimodal mimicry of their evolutionary models. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00419-8.
Collapse
Affiliation(s)
- Marta Skowron Volponi
- Laboratory of Evolutionary Biology and Insect Ecology, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245, Białystok, Poland. .,ClearWing Foundation for Biodiversity, Podczaszyńskiego 11/15 m 23A, 01-866, Warsaw, Poland.
| | - Luca Pietro Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Paolo Volponi
- ClearWing Foundation for Biodiversity, Podczaszyńskiego 11/15 m 23A, 01-866, Warsaw, Poland
| | - Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| |
Collapse
|
21
|
Popova M, Trusheva B, Bankova V. Propolis of stingless bees: A phytochemist's guide through the jungle of tropical biodiversity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153098. [PMID: 31648904 DOI: 10.1016/j.phymed.2019.153098] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Stingless bees (Meliponini), like honeybees Apis mellifera, collect plant resins in order to produce propolis (cerumen, geopropolis). This type of propolis has long been used in traditional medicine in Mexico, Brazil, Argentina, India, and Vietnam, as a remedy for improving health and treating various diseases. The scientific and commercial interest in stingless bee propolis has been steadily increasing over the last few years. The new and growing knowledge in this field requires systematising, as a basis for further work. Recent reviews of Meliponini propolis deal only with the South American and Mesoamerican species, while reviews of the Asian, Australian and African species are missing. Furthermore, the chemical composition has not been thoroughly reviewed since 2007. PURPOSE This review summarises and discusses the available data about the chemical composition of propolis from the stingless bee species (Meliponinae) of the Americas, Asia and Australia, published after 2007. The published information on the biological action of chemically characterised Meliponini propolis, and of individual constituents, is addressed. The plant sources of this propolis are also considered. CONCLUSION AND PERSPECTIVES Chemical studies of Meliponini propolis has resulted in the discovery of new natural molecules, some of them with valuable bioactivity. Moreover, finding known molecules in propolis stimulates the study of their pharmacological properties. The enormous chemical variability of stingless bee propolis is a challenge to chemists, entomologists and pharmacologists. It is essential to perform pharmacological studies with only chemically characterised propolis of stingless bees. Further studies are required to chemically characterise and scientifically support the medicinal properties of stingless bee propolis and to clarify the potential for its commercial use. This could lead to increased prices for Meliponinae propolis and provide an additional source of income for farmers in rural communities with most serious social needs.
Collapse
Affiliation(s)
- Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, Sofia 1113, Bulgaria
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, Sofia 1113, Bulgaria
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, Sofia 1113, Bulgaria.
| |
Collapse
|
22
|
A Preliminary Study of Chemical Profiles of Honey, Cerumen, and Propolis of the African Stingless Bee Meliponula ferruginea. Foods 2021; 10:foods10050997. [PMID: 34063246 PMCID: PMC8147412 DOI: 10.3390/foods10050997] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 01/28/2023] Open
Abstract
Recently, the honey and propolis of stingless bees have been attracting growing attention because of their health-promoting properties. However, studies on these products of African Meliponini are still very scarce. In this preliminary study, we analyzed the chemical composition of honey, two cerumen, and two resin deposits (propolis) samples of Meliponula ferruginea from Tanzania. The honey of M. ferruginea was profiled by NMR and indicated different long-term stability from Apis mellifera European (Bulgarian) honey. It differed significantly in sugar and organic acids content and had a very high amount of the disaccharide trehalulose, known for its bioactivities. We suggested trehalulose to be a potential marker for African stingless bee honey analogously to the recent proposal for Meliponini honey from Asia, South America, and Australia and demonstrated its easy discrimination by 13C NMR. Propolis and cerumen were studied by GC-MS (gas chromatography-mass spectometry). The samples contained mainly terpenoids (di-and triterpenes) but demonstrated qualitative and quantitative differences. This fact was an indication that possibly M. ferruginea has no strict preferences for resins used to construct and protect their nests. The antimicrobial and anti-quorum sensing properties of the two materials were also tested. These first results demonstrated that the honey, cerumen, and propolis of African stingless bees were rich in biologically active substances and deserved further research.
Collapse
|
23
|
Krausa K, Hager FA, Kirchner WH. Guarding Vibrations- Axestotrigona ferruginea Produces Vibrations When Encountering Non-Nestmates. INSECTS 2021; 12:395. [PMID: 33946689 PMCID: PMC8146115 DOI: 10.3390/insects12050395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022]
Abstract
Flower visiting stingless bees store collected pollen and nectar for times of scarcity. This stored food is of high value for the colony and should be protected against con- and heterospecifics that might rob them. There should be high selective pressure on the evolution of mechanisms to discriminate nestmates from non-nestmates and to defend the nest, i.e., resources against intruders. Multimodal communication systems, i.e., a communication system that includes more than one sensory modality and provide redundant information, should be more reliable than unimodal systems. Besides olfactory signals, vibrational signals could be used to alert nestmates. This study tests the hypothesis that the vibrational communication mode plays a role in nest defense and nestmate recognition of Axestotrigona ferruginea. Substrate vibrations induced by bees were measured at different positions of the nest. The experiments show that guarding vibrations produced in the entrance differ in their temporal structure from foraging vibrations produced inside the nest. We show that guarding vibrations are produced during non-nestmate encounters rather than nestmate encounters. This further supports the idea that guarding vibrations are a component of nest defense and alarm communication. We discuss to whom the vibrations are addressed, and what their message and meaning are.
Collapse
Affiliation(s)
- Kathrin Krausa
- Behavioural Biology and Biology Education, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany; (F.A.H.); (W.H.K.)
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
| | - Felix A. Hager
- Behavioural Biology and Biology Education, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany; (F.A.H.); (W.H.K.)
| | - Wolfgang H. Kirchner
- Behavioural Biology and Biology Education, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany; (F.A.H.); (W.H.K.)
| |
Collapse
|
24
|
Valterová I, Martinet B, Michez D, Rasmont P, Brasero N. Sexual attraction: a review of bumblebee male pheromones. ACTA ACUST UNITED AC 2020; 74:233-250. [PMID: 31442206 DOI: 10.1515/znc-2019-0003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/31/2019] [Indexed: 11/15/2022]
Abstract
Males of many bumblebee species exhibit a conspicuous pre-mating behavior with two distinct behavioral components: scent marking and patrol flying. The marking pheromone is produced by the cephalic part of the labial gland (CLG). As far as is known, the CLG secretion is species specific, and it usually consists of two types of compounds: (i) straight-chain aliphatic alcohols, aldehydes or esters, and (ii) acyclic mono-, sesqui- and diterpenes (alcohols or acetates). Here, we summarize data from the literature reporting chemical composition of the CLG secretions of more than 80 bumblebee species. Similarities and differences within and between subgenera are discussed in the context of biosynthetic pathways and evolution.
Collapse
Affiliation(s)
- Irena Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám 2, CZ-166 10 Prague, Czech Republic.,Faculty of Tropical AgriSciences, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Prague, Czech Republic
| | - Baptiste Martinet
- Laboratory of Zoology, Research Institute of Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute of Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Pierre Rasmont
- Laboratory of Zoology, Research Institute of Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Nicolas Brasero
- Laboratory of Zoology, Research Institute of Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
25
|
Peng T, Segers FHID, Nascimento F, Grüter C. Resource profitability, but not caffeine, affects individual and collective foraging in the stingless bee Plebeia droryana. ACTA ACUST UNITED AC 2019; 222:jeb.195503. [PMID: 31064857 DOI: 10.1242/jeb.195503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/29/2019] [Indexed: 11/20/2022]
Abstract
Plants and pollinators form beneficial relationships, with plants offering resources in return for pollination services. Some plants, however, add compounds to nectar to manipulate pollinators. Caffeine is a secondary plant metabolite found in some nectars that affects foraging in pollinators. In honeybees, caffeine increases foraging and recruitment to mediocre food sources, which might benefit the plant, but potentially harms the colonies. For the largest group of social bees, the stingless bees, the effect of caffeine on foraging behaviour has not been tested yet, despite their importance for tropical ecosystems. More generally, recruitment and foraging dynamics are not well understood in most species. We examined whether caffeine affects the foraging behaviour of the stingless bee Plebeia droryana, which frequently visits plants that produce caffeinated nectar and pollen. We trained bees to food sources containing field-realistic concentrations of sugar and caffeine. Caffeine did not cause P. droryana to increase foraging frequency and persistence. We observed P. droryana recruiting to food sources; however, this behaviour was also not affected by caffeine. Instead we found that higher sugar concentrations caused bees to increase foraging effort. Thus, unlike in other pollinators, foraging behaviour in this stingless bee is not affected by caffeine. As the Brazilian P. droryana population that we tested has been exposed to coffee over evolutionary time periods, our results raise the possibility that it may have evolved a tolerance towards this central nervous system stimulant. Alternatively, stingless bees may show physiological responses to caffeine that differ from those of other bee groups.
Collapse
Affiliation(s)
- Tianfei Peng
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Francisca H I D Segers
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt, Germany
| | - Fabio Nascimento
- Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo 3900, Brazil
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, 55128 Mainz, Germany
| |
Collapse
|
26
|
Campollo-Ovalle A, Sánchez D. Temporal Response of Foragers and Guards of Two Stingless Bee Species to Cephalic Compounds of the Robber Bee Lestrimelitta niitkib (Ayala) (Hymenoptera, Apidae). NEOTROPICAL ENTOMOLOGY 2018; 47:791-797. [PMID: 29549546 DOI: 10.1007/s13744-018-0599-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
Lestrimelitta spp. are stingless bees that steal food and nesting materials from other highly social bees to survive. Though most of their victim species respond, either aggressively or submissively, to cephalic components of Lestrimelitta, little is known about if such response changes at some point during extended periods of exposure. Moreover, potential synergistic effects due to a mixture of victim's alarm/defense pheromones and Lestrimelitta mandibular pheromones, like in an actual attack, have not been examined so far. In this paper, we investigated the response of two species of non-robber stingless bees, Scaptotrigona mexicana (Guérin) and Tetragonisca angustula (Latreille), to (a) cephalic compounds from crushed heads of nestmates, (b) cephalic compounds of Lestrimelitta niitkib (Ayala), and (c) a mixture of (a) and (b). We found that even though T. angustula did not react to nestmates' crushed head, its response towards L. niitkib cephalic compounds was stronger and lasted longer than that of S. mexicana. Interestingly, the addition of crushed heads of the non-robber species to L. niitkib crushed heads caused no significant increase in the alarm response of both species. It may be that the absence of an alarm pheromone in T. angustula made this species more receptive to extraneous odors, which is not the case for S. mexicana; however, more species must be studied to elucidate any pattern regarding the absence/presence of alarm pheromones and the corresponding response to intruders' pheromones.
Collapse
Affiliation(s)
- A Campollo-Ovalle
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto km 2.5, Tapachula, Chiapas, Mexico
| | - D Sánchez
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto km 2.5, Tapachula, Chiapas, Mexico.
| |
Collapse
|
27
|
Wang S, Wittwer B, Heard TA, Goodger JQD, Elgar MA. Nonvolatile chemicals provide a nest defence mechanism for stingless bees Tetragonula carbonaria(Apidae, Meliponini). Ethology 2018. [DOI: 10.1111/eth.12768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shijie Wang
- Environment and Plant Protection Institute; Chinese Academy of Tropical Agricultural Sciences; Haikou Hainan China
- School of BioSciences; University of Melbourne; Melbourne Vic. Australia
| | - Bernadette Wittwer
- School of BioSciences; University of Melbourne; Melbourne Vic. Australia
| | - Tim A. Heard
- School of Life and Environmental Sciences; University of Sydney; Sydney NSW Australia
| | | | - Mark A. Elgar
- School of BioSciences; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
28
|
Grüter C, Segers FHID, Santos LLG, Hammel B, Zimmermann U, Nascimento FS. Enemy recognition is linked to soldier size in a polymorphic stingless bee. Biol Lett 2018; 13:rsbl.2017.0511. [PMID: 28978757 DOI: 10.1098/rsbl.2017.0511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/11/2017] [Indexed: 01/16/2023] Open
Abstract
Many ant and termite colonies are defended by soldiers with powerful mandibles or chemical weaponry. Recently, it was reported that several stingless bee species also have soldiers for colony defence. These soldiers are larger than foragers, but otherwise lack obvious morphological adaptations for defence. Thus, how these soldiers improve colony fitness is not well understood. Robbing is common in stingless bees and we hypothesized that increased body size improves the ability to recognize intruders based on chemosensory cues. We studied the Neotropical species Tetragonisca angustula and found that large soldiers were better than small soldiers at recognizing potential intruders. Larger soldiers also had more olfactory pore plates on their antennae, which is likely to increase their chemosensory sensitivity. Our results suggest that improved enemy recognition might select for increased guard size in stingless bees.
Collapse
Affiliation(s)
- Christoph Grüter
- Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo 3900, Brazil
| | - Francisca H I D Segers
- Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo 3900, Brazil
| | - Luana L G Santos
- Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo 3900, Brazil
| | - Benedikt Hammel
- Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo 3900, Brazil
| | - Uwe Zimmermann
- Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo 3900, Brazil
| | - Fabio S Nascimento
- Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo 3900, Brazil
| |
Collapse
|
29
|
Nehring V, Steiger S. Sociality and communicative complexity: insights from the other insect societies. CURRENT OPINION IN INSECT SCIENCE 2018; 28:19-25. [PMID: 30551763 DOI: 10.1016/j.cois.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 06/09/2023]
Abstract
Recognition and communication are essential processes when it comes to interaction of organisms with their biotic environment. As especially social interactions are coordinated by communication, it has been predicted that social evolution drives communicative complexity. However, studies comparing olfactory signals or receptor repertoires of solitary and eusocial insects found only mixed evidence for the social complexity hypothesis. We present some possible explanations and especially argue that our current knowledge of intermediate levels of sociality is insufficient to fully test the hypothesis, for which a more balanced comparative dataset would be required. We illustrate with chosen examples how complex communication within the other insect societies can be: Many messages are not unique to eusocial insects. Studying the other insect societies will provide us with a more detailed picture of the link between social and communicative complexity.
Collapse
Affiliation(s)
- Volker Nehring
- Department for Evolutionary Biology and Animal Ecology, University of Freiburg, 79104 Freiburg, Germany.
| | - Sandra Steiger
- Institute of Insect Biotechnology, University of Gießen, 35392 Gießen, Germany.
| |
Collapse
|
30
|
Brand P, Ramírez SR. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees. Genome Biol Evol 2018; 9:2023-2036. [PMID: 28854688 PMCID: PMC5597890 DOI: 10.1093/gbe/evx149] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2017] [Indexed: 12/24/2022] Open
Abstract
Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects.
Collapse
Affiliation(s)
- Philipp Brand
- Department for Evolution and Ecology, Center for Population Biology, University of California, Davis.,Population Biology Graduate Group, Center for Population Biology, University of California, Davis
| | - Santiago R Ramírez
- Department for Evolution and Ecology, Center for Population Biology, University of California, Davis
| |
Collapse
|
31
|
Ndungu NN, Kiatoko N, Masiga DK, Raina SK, Pirk CWW, Yusuf AA. Compounds extracted from heads of African stingless bees (Hypotrigona species) as a prospective taxonomic tool. CHEMOECOLOGY 2018. [DOI: 10.1007/s00049-018-0256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Martin SJ, Shemilt S, da S Lima CB, de Carvalho CAL. Are Isomeric Alkenes Used in Species Recognition among Neo-Tropical Stingless Bees (Melipona Spp). J Chem Ecol 2017; 43:1066-1072. [PMID: 29147977 PMCID: PMC5735199 DOI: 10.1007/s10886-017-0901-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/18/2017] [Indexed: 11/12/2022]
Abstract
Our understanding of the role of cuticular hydrocarbons (CHC) in recognition is based largely on temperate ant species and honey bees. The stingless bees remain relatively poorly studied, despite being the largest group of eusocial bees, comprising more than 400 species in some 60 genera. The Meliponini and Apini diverged between 80-130 Myr B.P. so the evolutionary trajectories that shaped the chemical communication systems in ants, honeybees and stingless bees may be very different. The aim of this study was to study if a unique species CHC signal existed in Neotropical stingless bees, as has been shown for many temperate species, and what compounds are involved. This was achieved by collecting CHC data from 24 colonies belonging to six species of Melipona from North-Eastern Brazil and comparing the results with previously published CHC studies on Melipona. We found that each of the eleven Melipona species studied so far each produced a unique species CHC signal based around their alkene isomer production. A remarkable number of alkene isomers, up to 25 in M. asilvai, indicated the diversification of alkene positional isomers among the stingless bees. The only other group to have really diversified in alkene isomer production are the primitively eusocial Bumblebees (Bombus spp), which are the sister group of the stingless bees. Furthermore, among the eleven Neotropical Melipona species we could detect no effect of the environment on the proportion of alkane production as has been suggested for some other species.
Collapse
Affiliation(s)
- Stephen J Martin
- School of Environment and Life Sciences, The University of Salford, M5 4WT, Manchester, UK.
| | - Sue Shemilt
- Chemical Ecology Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratory, Keele University, Newcastle upon Tyne, ST5 5BG, UK
| | - Cândida B da S Lima
- School of Environment and Life Sciences, The University of Salford, M5 4WT, Manchester, UK
- Programa de Pós Graduação em Ciências Agrárias, Universidade Federal do Recôncavo da Bahia, Rua Ruí Barbosa, 710 - Centro, Cruz das Almas, BA, 44380-000, Brazil
| | - Carlos A L de Carvalho
- Programa de Pós Graduação em Ciências Agrárias, Universidade Federal do Recôncavo da Bahia, Rua Ruí Barbosa, 710 - Centro, Cruz das Almas, BA, 44380-000, Brazil
| |
Collapse
|
33
|
The Stingless Bee Melipona solani Deposits a Signature Mixture and Methyl Oleate to Mark Valuable Food Sources. J Chem Ecol 2017; 43:945-954. [PMID: 28918495 DOI: 10.1007/s10886-017-0886-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
Stingless bees foraging for food improve recruitment by depositing chemical cues on valuable food sites or pheromone marks on vegetation. Using gas chromatography/mass spectrometry and bioassays, we showed that Melipona solani foragers leave a mixture composed mostly of long chain hydrocarbons from their abdominal cuticle plus methyl oleate from the labial gland as a scent mark on rich food sites. The composition of hydrocarbons was highly variable among individuals and varied in proportions, depending on the body part. A wide ratio of compounds present in different body parts of the bees elicited electroantennogram responses from foragers and these responses were dose dependent. Generally, in bioassays, these bees prefer to visit previously visited feeders and feeders marked with extracts from any body part of conspecifics. The mean number of visits to a feeder was enhanced when synthetic methyl oleate was added. We propose that this could be a case of multi-source odor marking, in which hydrocarbons, found in large abundance, act as a signature mixture with attraction enhanced through deposition of methyl oleate, which may indicate a rich food source.
Collapse
|
34
|
Saxena S, Mishra G, Omkar. Familiarity dominates relatedness in mate selection in ladybirds. J Zool (1987) 2017. [DOI: 10.1111/jzo.12497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. Saxena
- Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India
| | - G. Mishra
- Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India
| | - Omkar
- Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India
| |
Collapse
|