1
|
Qian X, Lei H, Zhou X, Zhang L, Cui W, Zhou J, Xin F, Dong W, Jiang M, Ochsenreither K. Engineering Scheffersomyces segobiensis for palmitoleic acid-rich lipid production. Microb Biotechnol 2024; 17:e14301. [PMID: 37351580 PMCID: PMC10832558 DOI: 10.1111/1751-7915.14301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
Palmitoleic acid (POA; C16:1) is an essential high-value ω-7-conjugated fatty acid with beneficial bioactivities and potential applications in the nutraceutical and pharmaceutical industries. Previously, the oleaginous yeast Scheffersomyces segobiensis DSM27193 has been identified as a promising production host as an alternative for POA extraction from plant or animal sources. Here, the POA-producing capacity of this host was further expanded by optimizing the fermentation process and molecular strain engineering. Specifically, a dual fermentation strategy (O-S dynamic regulation strategy) focused on the substrate and dissolved oxygen concentration was designed to eliminate ethanol and pyruvate accumulation during fermentation. Key genes influencing POA production, such as jen, dgat, ole were identified on the transcriptional level and were subsequently over-expressed. Furthermore, the phosphoketolase (Xpk)/phosphotransacetylase (Pta) pathway was introduced to improve the yield of the precursor acetyl-CoA from glucose. The resulting cell factory SS-12 produced 7.3 g/L of POA, corresponding to an 11-fold increase compared to the wild type, presenting the highest POA titre reported using oleaginous yeast to date. An economic evaluation based on the raw materials, utilities and facility-dependent costs showed that microbial POA production using S. segobiensis can supersede the current extraction method from plant oil and marine fish. This study reports the construction of a promising cell factory and an effective microbial fermentation strategy for commercial POA production.
Collapse
Affiliation(s)
- Xiujuan Qian
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Huirui Lei
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Xinhai Zhou
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Lili Zhang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Wenxing Cui
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Jie Zhou
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences, Section II: Technical BiologyKarlsruhe Institute of TechnologyKarlsruheGermany
| |
Collapse
|
2
|
Su H, Shi P, Shen Z, Meng H, Meng Z, Han X, Chen Y, Fan W, Fa Y, Yang C, Li F, Wang S. High-level production of nervonic acid in the oleaginous yeast Yarrowia lipolytica by systematic metabolic engineering. Commun Biol 2023; 6:1125. [PMID: 37935958 PMCID: PMC10630375 DOI: 10.1038/s42003-023-05502-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Nervonic acid benefits the treatment of neurological diseases and the health of brain. In this study, we employed the oleaginous yeast Yarrowia lipolytica to overproduce nervonic acid oil by systematic metabolic engineering. First, the production of nervonic acid was dramatically improved by iterative expression of the genes ecoding β-ketoacyl-CoA synthase CgKCS, fatty acid elongase gELOVL6 and desaturase MaOLE2. Second, the biosynthesis of both nervonic acid and lipids were further enhanced by expression of glycerol-3-phosphate acyltransferases and diacylglycerol acyltransferases from Malania oleifera in endoplasmic reticulum (ER). Third, overexpression of a newly identified ER structure regulator gene YlINO2 led to a 39.3% increase in lipid production. Fourth, disruption of the AMP-activated S/T protein kinase gene SNF1 increased the ratio of nervonic acid to lignoceric acid by 61.6%. Next, pilot-scale fermentation using the strain YLNA9 exhibited a lipid titer of 96.7 g/L and a nervonic acid titer of 17.3 g/L (17.9% of total fatty acids), the highest reported titer to date. Finally, a proof-of-concept purification and separation of nervonic acid were performed and the purity of it reached 98.7%. This study suggested that oleaginous yeasts are attractive hosts for the cost-efficient production of nervonic acid and possibly other very long-chain fatty acids (VLCFAs).
Collapse
Affiliation(s)
- Hang Su
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Penghui Shi
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Zhaoshuang Shen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Huimin Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Ziyue Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xingfeng Han
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yanna Chen
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Weiming Fan
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Yun Fa
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Fuli Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Shi'an Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
3
|
Ibrahim ARS, Mansour MK, Ahmed MMA, Ulber R, Zayed A. Metabolism of natural and synthetic bioactive compounds in Cunninghamella fungi and their applications in drug discovery. Bioorg Chem 2023; 140:106801. [PMID: 37643568 DOI: 10.1016/j.bioorg.2023.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Investigation of xenobiotic metabolism is a key step for drug discovery. Since the in vivo investigations may be associated with harmful effects attributed to production of toxic metabolites, it is deemed necessary to predict their structure especially at the preliminary clinical studies. Furthermore, the application of microorganisms that are capable of metabolizing drugs mimic human metabolism and consequently may predict possible metabolites. The genus Cunninghamella has been proven to be a potential candidate, which mimics xenobiotic metabolism occurring inside the human body, including phase I and II metabolic reactions. Moreover, biotransformation with Cunninghamella showed chemical diversity, where a lot of products were detected in relation to the initial substrates after being modified by oxidation, hydroxylation, and conjugation reactions. Some of these products are more bioactive than the parent compounds. The current review presents a comprehensive literature overview regarding the Cunninghamella organisms as biocatalysts, which simulate mammalian metabolism of natural secondary and synthetic compounds.
Collapse
Affiliation(s)
- Abdel-Rahim S Ibrahim
- Department of Pharmacognosy, Tanta University, Faculty of Pharmacy, El-Geish Street, Tanta 31527, Egypt
| | - Mai K Mansour
- Department of Medicinal Plants and Natural Products, Egyptian Drug Authority, Giza 11553, Egypt
| | - Mohammed M A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, United States; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, Kaiserslautern 67663, Germany
| | - Ahmed Zayed
- Department of Pharmacognosy, Tanta University, Faculty of Pharmacy, El-Geish Street, Tanta 31527, Egypt; Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, Kaiserslautern 67663, Germany.
| |
Collapse
|
4
|
Khan MF, Murphy CD. Fluorotelomer alcohols are efficiently biotransformed by Cunninghamella elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23613-23623. [PMID: 36327087 DOI: 10.1007/s11356-022-23901-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Cunninghamella elegans is a well-studied fungus that biotransforms a range of xenobiotics owing to impressive cytochrome P450 (CYP) activity. In this paper, we report the biotransformation of 6:2 fluorotelomer alcohol (6:2 FTOH) by the fungus, yielding a range of fluorinated products that were detectable by fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR), gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Upon incubation with the pre-grown cultures, the substrate (100 mg/L) was completely consumed within 48 h, which is faster biotransformation than other fungi that have hitherto been studied. The main metabolite formed was the 5:3 fluorotelomer carboxylic acid (5:3 FTCA), which accumulated in the culture supernatant. When the cytochrome P450 inhibitor 1-aminobenzotriazole was included in the culture flasks, there was no biotransformation of 6:2 FTOH, indicating that these enzymes are key to the catalysis. Furthermore, when exogenous 5:3 FTCA was added to the fungus, the standard biotransformation of the drug flurbiprofen was inhibited, strongly suggesting that the main fluorotelomer alcohol biotransformation product inhibits CYP activity and accounts for its accumulation.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Wu J, Wu C, Rong C, Tian J, Jiang N, Wu R, Yue X, Shi H. Catalytic mechanisms underlying fungal fatty acid desaturases activities. Crit Rev Biotechnol 2022:1-17. [PMID: 35658758 DOI: 10.1080/07388551.2022.2063106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have beneficial roles in a variety of human pathologies and disorders. Owing to the limited source of PUFAs in animals and plants, microorganisms, especially fungi, have become a new source of PUFAs. In fungi, fatty acid desaturases (F-FADS) are the main enzymes that convert saturated fatty acids (SFAs) into PUFAs. Their catalytic activities and substrate specificities, which are directly dependent on the structure of the FADS proteins, determine their efficiency to convert SFAs to PUFAs. Catalytic mechanisms underlying F-FADS activities can be determined from the findings of the relationship between their structure and function. In this review, the advances made in the past decade in terms of catalytic activities and substrate specificities of the fungal FADS cluster are summarized. The relationship between the key domain(s) and site(s) in F-FADS proteins and their catalytic activity is highlighted, and the FADS cluster is analyzed phylogenetically. In addition, subcellular localization of F-FADS is discussed. Finally, we provide prospective crystal structures of F-FADSs. The findings may provide a reference for the resolution of the crystal structures of F-FADS proteins and facilitate the increase in fungal PUFA production for human health.
Collapse
Affiliation(s)
- Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Chen Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chunchi Rong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Nan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Garba L, Ali MSM, Oslan SN, Rahman RNZRA. Heterologous Expression of PA8FAD9 and Functional Characterization of a Δ9-Fatty Acid Desaturase from a Cold-Tolerant Pseudomonas sp. A8. Mol Biotechnol 2017; 58:718-728. [PMID: 27629791 DOI: 10.1007/s12033-016-9971-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Fatty acid desaturase enzymes are capable of inserting double bonds between carbon atoms of saturated fatty acyl-chains to produce unsaturated fatty acids. A gene coding for a putative Δ9-fatty acid desaturase-like protein was isolated from a cold-tolerant Pseudomonas sp. A8, cloned and heterologously expressed in Escherichia coli. The gene named as PA8FAD9 has an open reading frame of 1185 bp and codes for 394 amino acids with a predicted molecular weight of 45 kDa. The enzyme showed high Δ9-fatty acid desaturase-like protein activity and increased overall levels of cellular unsaturated fatty acids in the recombinant E. coli cells upon expression at different temperatures. The results showed that the ratio of palmitoleic to palmitic acid in the recombinant E. coli cells increased by more than twice the amount observed in the control cells at 20 °C using 0.4 mM IPTG. GCMS analysis confirmed the ability of this enzyme to convert exogenous stearic acid to oleic acid incorporated into the recombinant E. coli membrane phospholipids. It may be concluded that the PA8FAD9 gene from Pseudomonas sp. A8 codes for a putative Δ9-fatty acid desaturase protein actively expressed in E. coli under the influence of temperature and an inducer.
Collapse
Affiliation(s)
- Lawal Garba
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Science, Gombe State University, Tudun Wada Gombe, P.M.B 127, Gombe State, Nigeria
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Raja Noor Zaliha Raja Abdul Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia. .,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Liu YN, Zhang TJ, Lu XX, Ma BL, Ren A, Shi L, Jiang AL, Yu HS, Zhao MW. Membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in Ganoderma lucidum. Environ Microbiol 2017; 19:1653-1668. [PMID: 28198137 DOI: 10.1111/1462-2920.13693] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/06/2017] [Indexed: 01/17/2023]
Abstract
Ganoderma lucidum has become a potential model system for evaluating how environmental factors regulate the secondary metabolism of basidiomycetes. Heat stress (HS) is one of the most important environmental factors. It was previously reported that HS could induce the biosynthesis of ganoderic acids (GA). In this study, we found that HS increased GA biosynthesis and also significantly increased cell membrane fluidity. Furthermore, our results showed that addition of the membrane rigidifier dimethylsulfoxide (DMSO) could revert the increased GA biosynthesis elicited by HS. These results indicate that an increase in membrane fluidity is associated with HS-induced GA biosynthesis. Further evidence showed that the GA content was decreased in D9des-silenced strains and could be reverted to WT levels by addition of the membrane fluidizer benzyl alcohol (BA). In contrast, GA content was increased in D9des-overexpression strains and could be reverted to WT levels by the addition of DMSO. Furthermore, both membrane fluidity and GA biosynthesis induced by HS could be reverted by DMSO in WT and D9des-silenced strains. To the best of our knowledge, this is the first report demonstrating that membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Tian-Jun Zhang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Xiao-Xiao Lu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Bao-Liang Ma
- Department of Physics, Science of College, Nanjing Agricultural University, Nanjing, 210095, P.R China
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Ai-Liang Jiang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Han-Shou Yu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Ming-Wen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| |
Collapse
|
8
|
Peng YF, Chen WC, Xiao K, Xu L, Wang L, Wan X. DHA Production in Escherichia coli by Expressing Reconstituted Key Genes of Polyketide Synthase Pathway from Marine Bacteria. PLoS One 2016; 11:e0162861. [PMID: 27649078 PMCID: PMC5029812 DOI: 10.1371/journal.pone.0162861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022] Open
Abstract
The gene encoding phosphopantetheinyl transferase (PPTase), pfaE, a component of the polyketide synthase (PKS) pathway, is crucial for the production of docosahexaenoic acid (DHA, 22:6ω3), along with the other pfa cluster members pfaA, pfaB, pfaC and pfaD. DHA was produced in Escherichia coli by co-expressing pfaABCD from DHA-producing Colwellia psychrerythraea 34H with one of four pfaE genes from bacteria producing arachidonic acid (ARA, 20:4ω6), eicosapentaenoic acid (EPA, 20:5ω3) or DHA, respectively. Substitution of the pfaE gene from different strain source in E. coli did not influence the function of the PKS pathway producing DHA, although they led to different DHA yields and fatty acid profiles. This result suggested that the pfaE gene could be switchable between these strains for the production of DHA. The DHA production by expressing the reconstituted PKS pathway was also investigated in different E. coli strains, at different temperatures, or with the treatment of cerulenin. The highest DHA production, 2.2 mg of DHA per gram of dry cell weight or 4.1% of total fatty acids, was obtained by co-expressing pfaE(EPA) from the EPA-producing strain Shewanella baltica with pfaABCD in DH5α. Incubation at low temperature (10–15°C) resulted in higher accumulation of DHA compared to higher temperatures. The addition of cerulenin to the medium increased the proportion of DHA and saturated fatty acids, including C12:0, C14:0 and C16:0, at the expense of monounsaturated fatty acids, including C16:1 and C18:1. Supplementation with 1 mg/L cerulenin resulted in the highest DHA yield of 2.4 mg/L upon co-expression of pfaE(DHA) from C. psychrerythraea.
Collapse
Affiliation(s)
- Yun-Feng Peng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wen-Chao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Kang Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lin Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
- * E-mail:
| |
Collapse
|
9
|
Garba L, Mohamad Ali MS, Oslan SN, Rahman RNZRA. Molecular Cloning and Functional Expression of a Δ9- Fatty Acid Desaturase from an Antarctic Pseudomonas sp. A3. PLoS One 2016; 11:e0160681. [PMID: 27494717 PMCID: PMC4975390 DOI: 10.1371/journal.pone.0160681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/24/2016] [Indexed: 11/25/2022] Open
Abstract
Fatty acid desaturase enzymes play an essential role in the synthesis of unsaturated fatty acids. Pseudomonas sp. A3 was found to produce a large amount of palmitoleic and oleic acids after incubation at low temperatures. Using polymerase Chain Reaction (PCR), a novel Δ9- fatty acid desaturase gene was isolated, cloned, and successfully expressed in Escherichia coli. The gene was designated as PA3FAD9 and has an open reading frame of 1,185 bp which codes for 394 amino acids with a predicted molecular weight of 45 kDa. The activity of the gene product was confirmed via GCMS, which showed a functional putative Δ9-fatty acid desaturase capable of increasing the total amount of cellular unsaturated fatty acids of the E. coli cells expressing the gene. The results demonstrate that the cellular palmitoleic acids have increased two-fold upon expression at 15°C using only 0.1 mM IPTG. Therefore, PA3FAD9 from Pseudomonas sp.A3 codes for a Δ9-fatty acid desaturase-like protein which was actively expressed in E. coli.
Collapse
Affiliation(s)
- Lawal Garba
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Department of Microbiology, Faculty of Science, Gombe State University, Tudun Wada Gombe, P.M.B 127, Gombe State, Nigeria
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
10
|
Papp T, Nyilasi I, Csernetics Á, Nagy G, Takó M, Vágvölgyi C. Improvement of Industrially Relevant Biological Activities in Mucoromycotina Fungi. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|