1
|
Suzuki KGN, Komura N, Ando H. Recently developed glycosphingolipid probes and their dynamic behavior in cell plasma membranes as revealed by single-molecule imaging. Glycoconj J 2023; 40:305-314. [PMID: 37133616 DOI: 10.1007/s10719-023-10116-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Glycosphingolipids, including gangliosides, are representative lipid raft markers that perform a variety of physiological roles in cell membranes. However, studies aimed at revealing their dynamic behavior in living cells are rare, mostly due to a lack of suitable fluorescent probes. Recently, the ganglio-series, lacto-series, and globo-series glycosphingolipid probes, which mimic the behavior of the parental molecules in terms of partitioning to the raft fraction, were developed by conjugating hydrophilic dyes to the terminal glycans of glycosphingolipids using state-of-art entirely chemical-based synthetic techniques. High-speed, single-molecule observation of these fluorescent probes revealed that gangliosides were scarcely trapped in small domains (100 nm in diameter) for more than 5 ms in steady-state cells, suggesting that rafts including gangliosides were always moving and very small. Furthermore, dual-color, single-molecule observations clearly showed that homodimers and clusters of GPI-anchored proteins were stabilized by transiently recruiting sphingolipids, including gangliosides, to form homodimer rafts and the cluster rafts, respectively. In this review, we briefly summarize recent studies, the development of a variety of glycosphingolipid probes as well as the identification of the raft structures including gangliosides in living cells by single-molecule imaging.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| |
Collapse
|
2
|
Kim DH, Triet HM, Ryu SH. Regulation of EGFR activation and signaling by lipids on the plasma membrane. Prog Lipid Res 2021; 83:101115. [PMID: 34242725 DOI: 10.1016/j.plipres.2021.101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Lipids on the plasma membrane are not only components of the membrane biophysical structures but also regulators of receptor functions. Recently, the critical roles of lipid-protein interactions have been intensively highlighted. Epidermal growth factor receptor (EGFR) is one of the most extensively studied receptors exhibiting various lipid interactions, including interactions with phosphatidylcholine, phosphatidylserine, phosphatidylinositol phosphate, cholesterol, gangliosides, and palmitate. Here, we review recent findings on how direct interaction with these lipids regulates EGFR activation and signaling, providing unprecedented insight into the comprehensive roles of various lipids in the control of EGFR functions. Finally, the current limitations in investigating lipid-protein interactions and novel technologies to potentially overcome these limitations are discussed.
Collapse
Affiliation(s)
- Do-Hyeon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hong Minh Triet
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
3
|
Hirai G, Kato M, Koshino H, Nishizawa E, Oonuma K, Ota E, Watanabe T, Hashizume D, Tamura Y, Okada M, Miyagi T, Sodeoka M. Ganglioside GM3 Analogues Containing Monofluoromethylene-Linked Sialoside: Synthesis, Stereochemical Effects, Conformational Behavior, and Biological Activities. JACS AU 2021; 1:137-146. [PMID: 34467279 PMCID: PMC8395706 DOI: 10.1021/jacsau.0c00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 05/12/2023]
Abstract
Glycoconjugates are an important class of biomolecules that regulate numerous biological events in cells. However, these complex, medium-size molecules are metabolically unstable, which hampers detailed investigations of their functions as well as their potential application as pharmaceuticals. Here we report sialidase-resistant analogues of ganglioside GM3 containing a monofluoromethylene linkage instead of the native O-sialoside linkage. Stereoselective synthesis of CHF-linked disaccharides and kinetically controlled Au(I)-catalyzed glycosylation efficiently furnished both stereoisomers of CHF-linked as well as CF 2 - and CH 2 -linked GM3 analogues. Like native GM3, the C-linked GM3 analogues inhibited the autophosphorylation of epidermal growth factor (EGF) receptor induced by EGF in vitro. Assay of the proliferation-enhancing activity toward Had-1 cells together with NMR-based conformational analysis showed that the (S)-CHF-linked GM3 analogue with exo-gauche conformation is the most potent of the synthesized compounds. Our findings suggest that exo-anomeric conformation is important for the biological functions of GM3.
Collapse
Affiliation(s)
- Go Hirai
- Graduate
School of Pharmaceutical Sciences, Kyushu
University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN
Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Marie Kato
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- Tokyo
Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroyuki Koshino
- RIKEN
Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eri Nishizawa
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- Tokyo
Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kana Oonuma
- RIKEN
Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eisuke Ota
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toru Watanabe
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN
Center for Emergent Matter Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki Tamura
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mitsuaki Okada
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- Tokyo
Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taeko Miyagi
- Miyagi Cancer
Center Research Institute, Natori 981-1293, Japan
| | - Mikiko Sodeoka
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN
Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- Tokyo
Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
4
|
Zhuo D, Guan F. Ganglioside GM1 promotes contact inhibition of growth by regulating the localization of epidermal growth factor receptor from glycosphingolipid-enriched microdomain to caveolae. Cell Prolif 2019; 52:e12639. [PMID: 31127673 PMCID: PMC6668969 DOI: 10.1111/cpr.12639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/15/2019] [Accepted: 05/05/2019] [Indexed: 01/21/2023] Open
Abstract
Objectives Accumulating data show that gangliosides are involved in regulation of cell proliferation. Specific changes in gangliosides expression associated with growth density of cells have been documented in several cell lines. However, the function and the potential mechanism of ganglioside GM1 in contact inhibition of growth are not clear. Materials and Methods EdU incorporation assay and western blot were applied to detect the contact inhibition of growth in human mammary epithelial cells. GM1 manipulation of cell proliferation and epidermal growth factor receptor (EGFR) activation was investigated by immunoprecipitation, OptiPrep density gradient centrifugation and immunofluorescence. The function of GM1 on contact inhibition of growth was further studied by using GM1 stably knockdown and overexpression cells. Results MCF‐10A, MCF‐7 and MDA‐MB‐231 cells showed contact inhibition of growth in high‐density condition. Exogenous addition of GM1 to high‐density cells clearly inhibited cell growth and deactivated EGFR signalling. Compared to normal‐density cells, distribution of EGFR in high‐density cells was decreased in glycosphingolipid‐enriched microdomain (GEM), but more concentrated in caveolae, and incubation with GM1 obviously promoted this translocation. Furthermore, the cell growth and EGFR activation were increased in GM1 stably knockdown cells and decreased in GM1 stably overexpression cells when cultured in high density. Conclusions Our results demonstrated that GM1 suppressed EGFR signalling and promoted contact inhibition of growth by changing the localization of EGFR from GEM to caveolae.
Collapse
Affiliation(s)
- Dinghao Zhuo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Feng Guan
- Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Labrada M, Dorvignit D, Hevia G, Rodríguez-Zhurbenko N, Hernández AM, Vázquez AM, Fernández LE. GM3(Neu5Gc) ganglioside: an evolution fixed neoantigen for cancer immunotherapy. Semin Oncol 2018; 45:41-51. [PMID: 30318083 DOI: 10.1053/j.seminoncol.2018.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Accepted: 04/20/2018] [Indexed: 12/18/2022]
Abstract
Numerous molecules have been considered as targets for cancer immunotherapy because of their levels of expression on tumor cells, their putative importance for tumor biology, and relative immunogenicity. In this review we focus on the ganglioside GM3(Neu5Gc), a glycosphingolipid present on the outer side of the plasma membrane of vertebrate cells. The reasons for selecting GM3(Neu5Gc) as a tumor-specific antigen and its use as a target for cancer immunotherapy are discussed, together with the development of antitumor therapies focused on this target by the Center of Molecular Immunology (CIM, Cuba).
Collapse
Affiliation(s)
- Mayrel Labrada
- Immunobiology Division, Molecular Immunology Institute, Center of Molecular Immunology (CIM), Playa, Havana, Cuba
| | - Denise Dorvignit
- Immunobiology Division, Molecular Immunology Institute, Center of Molecular Immunology (CIM), Playa, Havana, Cuba
| | - Giselle Hevia
- Immunobiology Division, Molecular Immunology Institute, Center of Molecular Immunology (CIM), Playa, Havana, Cuba
| | | | - Ana M Hernández
- Tumor Biology Division, Molecular Immunology Institute, CIM, Playa, Havana, Cuba
| | - Ana M Vázquez
- Tumor Biology Division, Molecular Immunology Institute, CIM, Playa, Havana, Cuba
| | - Luis E Fernández
- Innovation Division, Molecular Immunology Institute, CIM, Playa, Havana, Cuba.
| |
Collapse
|
6
|
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall'Olio F. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling. Int J Mol Sci 2018; 19:ijms19020580. [PMID: 29462882 PMCID: PMC5855802 DOI: 10.3390/ijms19020580] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1) by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2) through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3) by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
7
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
8
|
Vieira DB, Thur K, Sultana S, Priestman D, van der Spoel AC. Verification and refinement of cellular glycosphingolipid profiles using HPLC. Biochem Cell Biol 2015; 93:581-6. [PMID: 26393781 DOI: 10.1139/bcb-2015-0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosphingolipids (GSLs) are hybrid molecules consisting of the sphingolipid ceramide linked to a mono- or oligo-saccharide. In comparison to other membrane lipids, the family of GSLs stands out because of the extensive variation in the carbohydrate headgroup. GSLs are cell surface binding partners, in cis with growth factor receptors, and in trans with bacterial toxins and viruses, and are among the host-derived membrane components of viral particles, including those of HIV. In spite of their biological relevance, GSL profiles of commonly used cell lines have been analyzed to different degrees. Here, we directly compare the GSL complements from CHO-K1, COS-7, HeLa, HEK-293, HEPG2, Jurkat, and SH-SY5Y cells using an HPLC-based method requiring modest amounts of material. Compared to previous studies, the HPLC-based analyses provided more detailed information on the complexity of the cellular GSL complement, qualitatively as well as quantitatively. In particular for cells expressing multiple GSLs, we found higher numbers of GSL species, and different levels of abundance. Our study thus extends our knowledge of biologically relevant lipids in widely used cell lines.
Collapse
Affiliation(s)
- Douglas B Vieira
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Karen Thur
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Saki Sultana
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - David Priestman
- b Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Aarnoud C van der Spoel
- a Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Orchestration of membrane receptor signaling by membrane lipids. Biochimie 2015; 113:111-24. [DOI: 10.1016/j.biochi.2015.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/05/2015] [Indexed: 12/20/2022]
|
10
|
Guan F, Wang X, He F. Promotion of cell migration by neural cell adhesion molecule (NCAM) is enhanced by PSA in a polysialyltransferase-specific manner. PLoS One 2015; 10:e0124237. [PMID: 25885924 PMCID: PMC4401701 DOI: 10.1371/journal.pone.0124237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
Abstract
Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components.
Collapse
Affiliation(s)
- Feng Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- * E-mail:
| | - Xin Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fa He
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Dall'Olio F, Malagolini N, Trinchera M, Chiricolo M. Sialosignaling: Sialyltransferases as engines of self-fueling loops in cancer progression. Biochim Biophys Acta Gen Subj 2014; 1840:2752-64. [PMID: 24949982 DOI: 10.1016/j.bbagen.2014.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 02/03/2023]
|
12
|
O'Shea LK, Abdulkhalek S, Allison S, Neufeld RJ, Szewczuk MR. Therapeutic targeting of Neu1 sialidase with oseltamivir phosphate (Tamiflu®) disables cancer cell survival in human pancreatic cancer with acquired chemoresistance. Onco Targets Ther 2014; 7:117-34. [PMID: 24470763 PMCID: PMC3896323 DOI: 10.2147/ott.s55344] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Resistance to drug therapy, along with high rates of metastasis, contributes to the low survival rate in patients diagnosed with pancreatic cancer. An alternate treatment for human pancreatic cancer involving targeting of Neu1 sialidase with oseltamivir phosphate (Tamiflu®) was investigated in human pancreatic cancer (PANC1) cells with acquired resistance to cisplatin and gemcitabine. Its efficacy in overcoming the intrinsic resistance of the cell to chemotherapeutics and metastasis was evaluated. Methods Microscopic imaging, immunocytochemistry, immunohistochemistry, and WST-1 cell viability assays were used to evaluate cell survival, morphologic changes, and expression levels of E-cadherin, N-cadherin, and VE-cadherin before and after treatment with oseltamivir phosphate in PANC1 cells with established resistance to cisplatin, gemcitabine, or a combination of the two agents, and in archived paraffin-embedded PANC1 tumors grown in RAGxCγ double mutant mice. Results Oseltamivir phosphate overcame the chemoresistance of PANC1 to cisplatin and gemcitabine alone or in combination in a dose-dependent manner, and disabled the cancer cell survival mechanism(s). Oseltamivir phosphate also reversed the epithelial-mesenchymal transition characteristic of the phenotypic E-cadherin to N-cadherin changes associated with resistance to drug therapy. Low-dose oseltamivir phosphate alone or in combination with gemcitabine in heterotopic xenografts of PANC1 tumors growing in RAGxCγ double mutant mice did not prevent metastatic spread to the liver and lung. Conclusion Therapeutic targeting of Neu1 sialidase with oseltamivir phosphate at the growth factor receptor level disables the intrinsic signaling platform for cancer cell survival in human pancreatic cancer with acquired chemoresistance. These findings provide evidence for oseltamivir phosphate (Tamiflu) as a potential therapeutic agent for pancreatic cancer resistant to drug therapy.
Collapse
Affiliation(s)
| | | | - Stephanie Allison
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
13
|
How Do Gangliosides Regulate RTKs Signaling? Cells 2013; 2:751-67. [PMID: 24709879 PMCID: PMC3972652 DOI: 10.3390/cells2040751] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 01/14/2023] Open
Abstract
Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are located on the outer leaflet of the plasma membrane in glycolipid-enriched microdomains, where they interact with molecules of signal transduction pathways including receptors tyrosine kinases (RTKs). The role of gangliosides in the regulation of signal transduction has been reported in many cases and in a large number of cell types. In this review, we summarize the current knowledge on the biosynthesis of gangliosides and the mechanism by which they regulate RTKs signaling.
Collapse
|
14
|
Gilmour AM, Abdulkhalek S, Cheng TS, Alghamdi F, Jayanth P, O’Shea LK, Geen O, Arvizu LA, Szewczuk MR. A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer. Cell Signal 2013; 25:2587-603. [DOI: 10.1016/j.cellsig.2013.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/23/2013] [Indexed: 12/14/2022]
|
15
|
D'Angelo G, Capasso S, Sticco L, Russo D. Glycosphingolipids: synthesis and functions. FEBS J 2013; 280:6338-53. [PMID: 24165035 DOI: 10.1111/febs.12559] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
Glycosphingolipids (GSLs) comprise a heterogeneous group of membrane lipids formed by a ceramide backbone covalently linked to a glycan moiety. Hundreds of different glycans can be linked to tens of different ceramide molecules, giving rise to an astonishing variety of structurally different compounds, each of which has the potential for a specific biological function. GSLs have been suggested to modulate membrane-protein function and to contribute to cell-cell communication. Although GSLs are dispensable for cellular life, they are indeed collectively required for the development of multicellular organisms, and are thus considered to be key molecules in 'cell sociology'. Consequently, the GSL make-up of individual cells is highly dynamic and is strictly linked to the cellular developmental and environmental state. In the present review, we discuss some of the available knowledge, open questions and future perspectives relating to the study of GSL biology.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | | | | |
Collapse
|
16
|
Gitz E, Koekman CA, van den Heuvel DJ, Deckmyn H, Akkerman JW, Gerritsen HC, Urbanus RT. Improved platelet survival after cold storage by prevention of glycoprotein Ibα clustering in lipid rafts. Haematologica 2012; 97:1873-81. [PMID: 22733027 DOI: 10.3324/haematol.2012.066290] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Storing platelets for transfusion at room temperature increases the risk of microbial infection and decreases platelet functionality, leading to out-date discard rates of up to 20%. Cold storage may be a better alternative, but this treatment leads to rapid platelet clearance after transfusion, initiated by changes in glycoprotein Ibα, the receptor for von Willebrand factor. DESIGN AND METHODS We examined the change in glycoprotein Ibα distribution using Förster resonance energy transfer by time-gated fluorescence lifetime imaging microscopy. RESULTS Cold storage induced deglycosylation of glycoprotein Ibα ectodomain, exposing N-acetyl-D-glucosamine residues, which sequestered with GM1 gangliosides in lipid rafts. Raft-associated glycoprotein Ibα formed clusters upon binding of 14-3-3ζ adaptor proteins to its cytoplasmic tail, a process accompanied by mitochondrial injury and phosphatidyl serine exposure. Cold storage left glycoprotein Ibα surface expression unchanged and although glycoprotein V decreased, the fall did not affect glycoprotein Ibα clustering. Prevention of glycoprotein Ibα clustering by blockade of deglycosylation and 14-3-3ζ translocation increased the survival of cold-stored platelets to above the levels of platelets stored at room temperature without compromising hemostatic functions. CONCLUSIONS We conclude that glycoprotein Ibα translocates to lipid rafts upon cold-induced deglycosylation and forms clusters by associating with 14-3-3ζ. Interference with these steps provides a means to enable cold storage of platelet concentrates in the near future.
Collapse
Affiliation(s)
- Eelo Gitz
- Thrombosis and Hemostasis Laboratory, Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Handa K, Hakomori SI. Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj J 2012; 29:627-37. [PMID: 22610315 DOI: 10.1007/s10719-012-9380-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 12/13/2022]
Abstract
Two types of carbohydrate to carbohydrate interaction (CCI) have been known to be involved in biological processes. One is the CCI between molecules expressed on interfacing cell membranes of different cells to mediate cell to cell adhesion, and subsequently induce cell signaling, and is termed trans-CCI. It has been indicated that the Le(x) to Le(x) interaction at the morula stage in mouse embryos plays an important role in the compaction process in embryonic development. GM3 to Gg3 or GM3 to LacCer interaction has been suggested to be involved in adhesion of tumor cells to endothelial cells, which is considered a crucial step in tumor metastasis. The other is the CCI between molecules expressed within the same microdomain of the cell surface membrane, and is termed cis-CCI. The interaction between ganglioside GM3, and multi (>3) GlcNAc termini of N-linked glycans of epidermal growth factor receptor (EGFR), has been indicated as the molecular mechanism for the inhibitory effect of GM3 on EGFR activation. Also, the complex with GM3 and GM2 has been shown to inhibit the activation of hepatocyte growth factor (HGF) receptor, cMet, through its association with tetraspanin CD82, and results in the inhibition of cell motility. Since CCI research is still limited, more examples of CCI in biological processes in development, and cancer progression will be revealed in the future.
Collapse
Affiliation(s)
- Kazuko Handa
- Pacific Northwest Research Institude, WA 98122, USA.
| | | |
Collapse
|
18
|
MRP1 expressed on Burkitt's lymphoma cells was depleted by catfish egg lectin through Gb3-glycosphingolipid and enhanced cytotoxic effect of drugs. Protein J 2012; 31:15-26. [PMID: 22083453 DOI: 10.1007/s10930-011-9369-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel anticancer mechanism of catfish (Silurus asotus) egg lectin (SAL) was found to occur via the down-regulation of the membrane transopter protein, MRP1 (multidrug resistance associate protein-1) on Burkitt's lymphoma cells through Gb3(Galα1-4Galβ1-4Glc)-glycosphingolipid. Although SAL did not influence the viability of the cells directly, only 10 and 100 ng/mL of vincristine and etoposide, respectively induced anticancer effects when the lectin was applied in conjunction with these drugs. These phenomena were specifically inhibited by the co-presence of the α-galactoside, melibiose, which is a strong haptenic sugar of SAL that mimicks Gb3. The degree of expression regulation of the transporter proteins on the cells surface was investigated through the examination of the binding between SAL and Gb3-glycosphingolipid by immunological and molecular biological procedures. PCR data showed that MRP1 was more highly expressed when compared to another ATP-binding cassette family, multi-drug resistant protein and the expression levels of MRP1 on the cells were specifically dose- and time-dependently depleted by the addition of SAL. These results were also evaluated by immunological procedures using FACS and western-blotting. Small interfering RNA coding a part of MRP1 was transfected to Raji cells to knock down the protein, and cell death was increased by 10% when vincristine was administered at a concentration as low as 10 ng/mL compared to non-transfected cells. These results indicated that SAL possesses the potential to enhance the anticancer activites of low-concentrations of vincristine by the down-regulating the MRP1 gene expression to inhibit the multidrug resistance by binding to the target ligand Gb3-glycosphingolipid on Burkitt's lymphoma cells.
Collapse
|