1
|
Kos J, Langiu M, Hellyer SD, Gregory KJ. Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. ACS Pharmacol Transl Sci 2024; 7:3671-3690. [PMID: 39698283 PMCID: PMC11651194 DOI: 10.1021/acsptsci.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 12/20/2024]
Abstract
Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu5) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified. mGlu5 negative allosteric modulators (NAMs) are promising novel therapeutics for developmental, neuropsychiatric and neurodegenerative disorders (e.g., Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, amyotrophic lateral sclerosis, autism spectrum disorders, substance use disorders, stroke, anxiety and depression) and show promise in ameliorating adverse effects induced by other medications (e.g., L-dopa induced dyskinesia in Parkinson's Disease). However, despite preclinical success, mGlu5 NAMs are yet to reach the market due to poor safety and efficacy profiles in clinical trials. Herein, we review the physiology and signal transduction of mGlu5. We provide a comprehensive critique of therapeutic options with respect to mGlu5 inhibitors, spanning from orthosteric antagonists to NAMs. Finally, we address the challenges associated with drug development and highlight future directions to guide rational drug discovery of safe and effective novel therapeutics.
Collapse
Affiliation(s)
- Jackson
A. Kos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Shane D. Hellyer
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Li JL, Zhu CH, Tian MM, Liu Y, Ma L, Tao LJ, Zheng P, Yu JQ, Liu N. Negative allosteric modulator of Group Ⅰ mGluRs: Recent advances and therapeutic perspective for neuropathic pain. Neuroscience 2024; 560:406-421. [PMID: 39368605 DOI: 10.1016/j.neuroscience.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Neuropathic pain (NP) is a widespread public health problem that existing therapeutic treatments cannot manage adequately; therefore, novel treatment strategies are urgently required. G-protein-coupled receptors are important for intracellular signal transduction, and widely participate in physiological and pathological processes, including pain perception. Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are predominantly implicated in central sensitization, which can lead to hyperalgesia and allodynia. Many orthosteric site antagonists targeting Group I mGluRs have been found to alleviate NP, but their poor efficacy, low selectivity, and numerous side effects limit their development in NP treatment. Here we reviewed the advantages of Group I mGluRs negative allosteric modulators (NAMs) over orthosteric site antagonists based on allosteric modulation mechanism, and the challenges and opportunities of Group I mGluRs NAMs in NP treatment. This article aims to elucidate the advantages and future development potential of Group I mGluRs NAMs in the treatment of NP.
Collapse
Affiliation(s)
- Jia-Ling Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Chun-Hao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Miao-Miao Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
3
|
Dupont AC, Arlicot N, Vercouillie J, Serrière S, Maia S, Bonnet-Brilhault F, Santiago-Ribeiro MJ. Metabotropic Glutamate Receptor Subtype 5 Positron-Emission-Tomography Radioligands as a Tool for Central Nervous System Drug Development: Between Progress and Setbacks. Pharmaceuticals (Basel) 2023; 16:1127. [PMID: 37631042 PMCID: PMC10458693 DOI: 10.3390/ph16081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGluR5) is a class C G-protein-coupled receptor (GPCR) that has been implicated in various neuronal processes and, consequently, in several neuropsychiatric or neurodevelopmental disorders. Over the past few decades, mGluR5 has become a major focus for pharmaceutical companies, as an attractive target for drug development, particularly through the therapeutic potential of its modulators. In particular, allosteric binding sites have been targeted for better specificity and efficacy. In this context, Positron Emission Tomography (PET) appears as a useful tool for making decisions along a drug candidate's development process, saving time and money. Thus, PET provides quantitative information about a potential drug candidate and its target at the molecular level. However, in this area, particular attention has to be given to the interpretation of the PET signal and its conclusions. Indeed, the complex pharmacology of both mGluR5 and radioligands, allosterism, the influence of endogenous glutamate and the choice of pharmacokinetic model are all factors that may influence the PET signal. This review focuses on mGluR5 PET radioligands used at several stages of central nervous system drug development, highlighting advances and setbacks related to the complex pharmacology of these radiotracers.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Nicolas Arlicot
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- CIC 1415, Tours University, INSERM, 37000 Tours, France
| | | | - Sophie Serrière
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Serge Maia
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, 37000 Tours, France
| | - Maria-Joao Santiago-Ribeiro
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- Nuclear Medicine Department, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
4
|
Huh E, Agosto MA, Wensel TG, Lichtarge O. Coevolutionary signals in metabotropic glutamate receptors capture residue contacts and long-range functional interactions. J Biol Chem 2023; 299:103030. [PMID: 36806686 PMCID: PMC10060750 DOI: 10.1016/j.jbc.2023.103030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Upon ligand binding to a G protein-coupled receptor, extracellular signals are transmitted into a cell through sets of residue interactions that translate ligand binding into structural rearrangements. These interactions needed for functions impose evolutionary constraints so that, on occasion, mutations in one position may be compensated by other mutations at functionally coupled positions. To quantify the impact of amino acid substitutions in the context of major evolutionary divergence in the G protein-coupled receptor subfamily of metabotropic glutamate receptors (mGluRs), we combined two phylogenetic-based algorithms, Evolutionary Trace and covariation Evolutionary Trace, to infer potential structure-function couplings and roles in mGluRs. We found a subset of evolutionarily important residues at known functional sites and evidence of coupling among distinct structural clusters in mGluR. In addition, experimental mutagenesis and functional assays confirmed that some highly covariant residues are coupled, revealing their synergy. Collectively, these findings inform a critical step toward understanding the molecular and structural basis of amino acid variation patterns within mGluRs and provide insight for drug development, protein engineering, and analysis of naturally occurring variants.
Collapse
Affiliation(s)
- Eunna Huh
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Olivier Lichtarge
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
5
|
Zimmermann M, Minuzzi L, Aliaga Aliaga A, Guiot MC, Hall JA, Soucy JP, Massarweh G, El Mestikawy S, Rosa-Neto P, Kobayashi E. Reduced Metabotropic Glutamate Receptor Type 5 Availability in the Epileptogenic Hippocampus: An in vitro Study. Front Neurol 2022; 13:888479. [PMID: 35937057 PMCID: PMC9355376 DOI: 10.3389/fneur.2022.888479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Abnormalities in the expression of metabotropic glutamate receptor type 5 (mGluR5) have been observed in the hippocampus of patients with drug-resistant mesial Temporal Lobe Epilepsy (mTLE). Ex-vivo studies in mTLE hippocampal surgical specimens have shown increased mGluR5 immunoreactivity, while in vivo whole brain imaging using positron emission tomography (PET) demonstrated reduced hippocampal mGluR5 availability. To further understand mGluR5 abnormalities in mTLE, we performed a saturation autoradiography study with [3H]ABP688 (a negative mGluR5 allosteric modulator). We aimed to evaluate receptor density (Bmax) and dissociation constants (KD) in hippocampal mTLE surgical specimens and in non-epilepsy hippocampi from necropsy controls. mTLE specimens showed a 43.4% reduction in receptor density compared to control hippocampi, which was independent of age, sex and KD (multiple linear regression analysis). There was no significant difference in KD between the groups, which suggests that the decreased mGluR5 availability found in vivo with PET cannot be attributed to reduced affinity between ligand and binding site. The present study supports that changes within the epileptogenic tissue include mGluR5 internalization or conformational changes that reduce [3H]ABP688 binding, as previously suggested in mTLE patients studied in vivo.
Collapse
Affiliation(s)
- Maria Zimmermann
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Translational Neuroimaging Laboratory, Douglas Research Institute, McGill University, Montréal, QC, Canada
| | - Luciano Minuzzi
- Translational Neuroimaging Laboratory, Douglas Research Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Arturo Aliaga Aliaga
- Translational Neuroimaging Laboratory, Douglas Research Institute, McGill University, Montréal, QC, Canada
- PET Unit, McConnell Brain Imaging Centre, Montréal, QC, Canada
| | | | - Jeffery A. Hall
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- PET Unit, McConnell Brain Imaging Centre, Montréal, QC, Canada
| | | | - Salah El Mestikawy
- Department of Psychiatry, Douglas Research Institute, McGill University, Montréal, QC, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Translational Neuroimaging Laboratory, Douglas Research Institute, McGill University, Montréal, QC, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- *Correspondence: Eliane Kobayashi
| |
Collapse
|
6
|
Budgett RF, Bakker G, Sergeev E, Bennett KA, Bradley SJ. Targeting the Type 5 Metabotropic Glutamate Receptor: A Potential Therapeutic Strategy for Neurodegenerative Diseases? Front Pharmacol 2022; 13:893422. [PMID: 35645791 PMCID: PMC9130574 DOI: 10.3389/fphar.2022.893422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/13/2023] Open
Abstract
The type 5 metabotropic glutamate receptor, mGlu5, has been proposed as a potential therapeutic target for the treatment of several neurodegenerative diseases. In preclinical neurodegenerative disease models, novel allosteric modulators have been shown to improve cognitive performance and reduce disease-related pathology. A common pathological hallmark of neurodegenerative diseases is a chronic neuroinflammatory response, involving glial cells such as astrocytes and microglia. Since mGlu5 is expressed in astrocytes, targeting this receptor could provide a potential mechanism by which neuroinflammatory processes in neurodegenerative disease may be modulated. This review will discuss current evidence that highlights the potential of mGlu5 allosteric modulators to treat neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, this review will explore the role of mGlu5 in neuroinflammatory responses, and the potential for this G protein-coupled receptor to modulate neuroinflammation.
Collapse
Affiliation(s)
- Rebecca F Budgett
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | - Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Sosei Heptares, Cambridge, United Kingdom
| |
Collapse
|
7
|
Agonists and allosteric modulators promote signaling from different metabotropic glutamate receptor 5 conformations. Cell Rep 2021; 36:109648. [PMID: 34469715 PMCID: PMC8424648 DOI: 10.1016/j.celrep.2021.109648] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors activated by the main excitatory neurotransmitter, L-glutamate. mGluR activation by agonists binding in the venus flytrap domain is regulated by positive (PAM) or negative (NAM) allosteric modulators binding to the 7-transmembrane domain (7TM). We report the cryo-electron microscopy structures of fully inactive and intermediate-active conformations of mGlu5 receptor bound to an antagonist and a NAM or an agonist and a PAM, respectively, as well as the crystal structure of the 7TM bound to a photoswitchable NAM. The agonist induces a large movement between the subunits, bringing the 7TMs together and stabilizing a 7TM conformation structurally similar to the inactive state. Using functional approaches, we demonstrate that the PAM stabilizes a 7TM active conformation independent of the conformational changes induced by agonists, representing an alternative mode of mGlu activation. These findings provide a structural basis for different mGluR activation modes. Cryo-EM analysis of thermostabilized mGlu5 receptor bound to inhibitors or activators X-ray structure of trans-Alloswitch-1 bound to thermostable mGlu5 7TMs Photopharmacology provides insight into allosteric regulation of mGlu5 7TMs Multiple conformations of mGlu5 receptor activate G protein
Collapse
|
8
|
Orgován Z, Ferenczy GG, Keserű GM. Allosteric Molecular Switches in Metabotropic Glutamate Receptors. ChemMedChem 2021; 16:81-93. [PMID: 32686363 PMCID: PMC7818470 DOI: 10.1002/cmdc.202000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlu) are class C G protein-coupled receptors of eight subtypes that are omnipresently expressed in the central nervous system. mGlus have relevance in several psychiatric and neurological disorders, therefore they raise considerable interest as drug targets. Allosteric modulators of mGlus offer advantages over orthosteric ligands owing to their increased potential to achieve subtype selectivity, and this has prompted discovery programs that have produced a large number of reported allosteric mGlu ligands. However, the optimization of allosteric ligands into drug candidates has proved to be challenging owing to induced-fit effects, flat or steep structure-activity relationships and unexpected changes in theirpharmacology. Subtle structural changes identified as molecular switches might modulate the functional activity of allosteric ligands. Here we review these switches discovered in the metabotropic glutamate receptor family..
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| |
Collapse
|
9
|
Prabhu SV, Singh SK. Identification of Potential Dual Negative Allosteric Modulators of Group I mGluR Family: A Shape Based Screening, ADME Prediction, Induced Fit Docking and Molecular Dynamics Approach Against Neurodegenerative Diseases. Curr Top Med Chem 2020; 19:2687-2707. [PMID: 31702505 DOI: 10.2174/1568026619666191105112800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 10/01/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Glutamate is the principal neurotransmitter in the human brain that exerts its effects through ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The mGluRs are a class of C GPCRs that play a vital role in various neurobiological functions, mGluR1 and mGluR5 are the two receptors distributed throughout the brain involved in cognition, learning, memory, and other important neurological processes. Dysfunction of these receptors can cause neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, X-fragile syndrome, anxiety, depression, etc., hence these receptors are high profile targets for pharmaceutical industries. OBJECTIVE The objective of our study is to find the novel dual negative allosteric modulators to regulate both mGluR1 and mGluR5. METHODS In this study, shape screening protocol was used to find the dual negative allosteric modulators for both mGluR1 and mGluR5 followed by ADME prediction, induced-fit docking (IFD) and molecular dynamics simulations. Further, DFT analysis and MESP studies were carried out for the selected compounds. RESULTS Around 247 compounds were obtained from the eMolecules database and clustered through the CANVAS module and filtered with ADME properties. Furthermore, IFD revealed that the top four compounds (16059796, 25004252, 4667236 and 11670690) having good protein-ligand interactions and binding free energies. The molecular electrostatic potential of the top compounds shows interactions in the amine group and the oxygen atom in the negative potential regions. Finally, molecular dynamics simulations were performed with all the selected as well as the reported compound 29 indicates that the screened hits have better stability of protein ligand complex. CONCLUSION Hence, from the results, it is evident that top hits 16059796, 25004252, 4667236 and 11670690 could be a novel and potent dual negative allosteric modulators for mGluR1 and mGluR5.
Collapse
Affiliation(s)
- Sitrarasu Vijaya Prabhu
- Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu-630 004, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu-630 004, India
| |
Collapse
|
10
|
Zhao Y, Chen J, Liu Q, Li Y. Profiling the Structural Determinants of Aryl Benzamide Derivatives as Negative Allosteric Modulators of mGluR5 by In Silico Study. Molecules 2020; 25:molecules25020406. [PMID: 31963723 PMCID: PMC7024197 DOI: 10.3390/molecules25020406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 11/16/2022] Open
Abstract
Glutamate plays a crucial role in the treatment of depression by interacting with the metabotropic glutamate receptor subtype 5 (mGluR5), whose negative allosteric modulators (NAMs) are thus promising antidepressants. At present, to explore the structural features of 106 newly synthesized aryl benzamide series molecules as mGluR5 NAMs, a set of ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses were firstly carried out applying comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. In addition, receptor-based analysis, namely molecular docking and molecular dynamics (MD) simulations, were performed to further elucidate the binding modes of mGluR5 NAMs. As a result, the optimal CoMSIA model obtained shows that cross-validated correlation coefficient Q2 = 0.70, non-cross-validated correlation coefficient R2ncv = 0.89, predicted correlation coefficient R2pre = 0.87. Moreover, we found that aryl benzamide series molecules bind as mGluR5 NAMs at Site 1, which consists of amino acids Pro655, Tyr659, Ile625, Ile651, Ile944, Ser658, Ser654, Ser969, Ser965, Ala970, Ala973, Trp945, Phe948, Pro903, Asn907, Val966, Leu904, and Met962. This site is the same as that of other types of NAMs; mGluR5 NAMs are stabilized in the "linear" and "arc" configurations mainly through the H-bonds interactions, π-π stacking interaction with Trp945, and hydrophobic contacts. We hope that the models and information obtained will help understand the interaction mechanism of NAMs and design and optimize NAMs as new types of antidepressants.
Collapse
Affiliation(s)
- Yujing Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; (Y.Z.); (J.C.)
| | - Jiabin Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; (Y.Z.); (J.C.)
| | - Qilei Liu
- Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; (Y.Z.); (J.C.)
- Correspondence: ; Tel.: +86-15640888728
| |
Collapse
|
11
|
Orgován Z, Ferenczy GG, Keserű GM. Fragment-Based Approaches for Allosteric Metabotropic Glutamate Receptor (mGluR) Modulators. Curr Top Med Chem 2019; 19:1768-1781. [PMID: 31393248 DOI: 10.2174/1568026619666190808150039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022]
Abstract
Metabotropic glutamate receptors (mGluR) are members of the class C G-Protein Coupled Receptors (GPCR-s) and have eight subtypes. These receptors are responsible for a variety of functions in the central and peripheral nervous systems and their modulation has therapeutic utility in neurological and psychiatric disorders. It was previously established that selective orthosteric modulation of these receptors is challenging, and this stimulated the search for allosteric modulators. Fragment-Based Drug Discovery (FBDD) is a viable approach to find ligands binding at allosteric sites owing to their limited size and interactions. However, it was also observed that the structure-activity relationship of allosteric modulators is often sharp and inconsistent. This can be attributed to the characteristics of the allosteric binding site of mGluRs that is a water channel where ligand binding is accompanied with induced fit and interference with the water network, both playing a role in receptor activation. In this review, we summarize fragment-based drug discovery programs on mGluR allosteric modulators and their contribution identifying of new mGluR ligands with better activity and selectivity.
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| |
Collapse
|
12
|
Orgován Z, Ferenczy GG, Keserű GM. The role of water and protein flexibility in the structure-based virtual screening of allosteric GPCR modulators: an mGlu 5 receptor case study. J Comput Aided Mol Des 2019; 33:787-797. [PMID: 31542869 PMCID: PMC6825653 DOI: 10.1007/s10822-019-00224-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Stabilizing unique receptor conformations, allosteric modulators of G-protein coupled receptors (GPCRs) might open novel treatment options due to their new pharmacological action, their enhanced specificity and selectivity in both binding and signaling. Ligand binding occurs at intrahelical allosteric sites and involves significant induced fit effects that include conformational changes in the local protein environment and water networks. Based on the analysis of available crystal structures of metabotropic glutamate receptor 5 (mGlu5) we investigated these effects in the binding of mGlu5 receptor negative allosteric modulators. A large set of retrospective virtual screens revealed that the use of multiple protein structures and the inclusion of selected water molecules improves virtual screening performance compared to conventional docking strategies. The role of water molecules and protein flexibility in ligand binding can be taken into account efficiently by the proposed docking protocol that provided reasonable enrichment of true positives. This protocol is expected to be useful also for identifying intrahelical allosteric modulators for other GPCR targets.
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary.
| |
Collapse
|
13
|
Bellozi PMQ, Gomes GF, da Silva MCM, Lima IVDA, Batista CRÁ, Carneiro Junior WDO, Dória JG, Vieira ÉLM, Vieira RP, de Freitas RP, Ferreira CN, Candelario-Jalil E, Wyss-Coray T, Ribeiro FM, de Oliveira ACP. A positive allosteric modulator of mGluR5 promotes neuroprotective effects in mouse models of Alzheimer's disease. Neuropharmacology 2019; 160:107785. [PMID: 31541651 DOI: 10.1016/j.neuropharm.2019.107785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-β (Aβ) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aβ induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aβ injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aβ accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB is protective against Aβ stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.
Collapse
Affiliation(s)
| | - Giovanni Freitas Gomes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | | | | | | | - Juliana Guimarães Dória
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Rafael Pinto Vieira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Claudia Natália Ferreira
- Clinical Pathology Sector of COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | |
Collapse
|
14
|
E-pharmacophore-based screening of mGluR5 negative allosteric modulators for central nervous system disorder. Comput Biol Chem 2019; 78:414-423. [DOI: 10.1016/j.compbiolchem.2018.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/25/2018] [Indexed: 01/01/2023]
|
15
|
Vijaya Prabhu S, Singh SK. Atom-based 3D-QSAR, induced fit docking, and molecular dynamics simulations study of thieno[2,3-b]pyridines negative allosteric modulators of mGluR5. J Recept Signal Transduct Res 2018; 38:225-239. [PMID: 29806525 DOI: 10.1080/10799893.2018.1476542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Atom-based three dimensional-quantitative structure-activity relationship (3D-QSAR) model was developed on the basis of 5-point pharmacophore hypothesis (AARRR) with two hydrogen bond acceptors (A) and three aromatic rings for the derivatives of thieno[2,3-b]pyridine, which modulates the activity to inhibit the mGluR5 receptor. Generation of a highly predictive 3D-QSAR model was performed using the alignment of predicted pharmacophore hypothesis for the training set (R2 = 0.84, SD = 0.26, F = 45.8, N = 29) and test set (Q2 = 0.74, RMSE = 0.235, Pearson-R = 0.94, N = 9). The best pharmacophore hypothesis AARRR was selected, and developed three dimensional-quantitative structure activity relationship (3D-QSAR) model also supported the outcome of this study by means of favorable and unfavorable electron withdrawing group and hydrophobic regions of most active compound 42d and least active compound 18b. Following, induced fit docking and binding free energy calculations reveals the reliable binding orientation of the compounds. Finally, molecular dynamics simulations for 100 ns were performed to depict the protein-ligand stability. We anticipate that the resulted outcome could be supportive to discover potent negative allosteric modulators for metabotropic glutamate receptor 5 (mGluR5).
Collapse
Affiliation(s)
- Sitrarasu Vijaya Prabhu
- a Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab , Alagappa University , Karaikudi , India
| | - Sanjeev Kumar Singh
- a Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab , Alagappa University , Karaikudi , India
| |
Collapse
|
16
|
Silent Allosteric Modulation of mGluR5 Maintains Glutamate Signaling while Rescuing Alzheimer's Mouse Phenotypes. Cell Rep 2018; 20:76-88. [PMID: 28683325 DOI: 10.1016/j.celrep.2017.06.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Metabotropic glutamate receptor 5 (mGluR5) has been implicated in Alzheimer's disease (AD) pathology. We sought to understand whether mGluR5's role in AD requires glutamate signaling. We used a potent mGluR5 silent allosteric modulator (SAM, BMS-984923) to separate its well-known physiological role in glutamate signaling from a pathological role in mediating amyloid-β oligomer (Aβo) action. Binding of the SAM to mGluR5 does not change glutamate signaling but strongly reduces mGluR5 interaction with cellular prion protein (PrPC) bound to Aβo. The SAM compound prevents Aβo-induced signal transduction in brain slices and in an AD transgenic mouse model, the APPswe/PS1ΔE9 strain. Critically, 4 weeks of SAM treatment rescues memory deficits and synaptic depletion in the APPswe/PS1ΔE9 transgenic mouse brain. Our data show that mGluR5's role in Aβo-dependent AD phenotypes is separate from its role in glutamate signaling and silent allosteric modulation of mGluR5 has promise as a disease-modifying AD intervention with a broad therapeutic window.
Collapse
|
17
|
Aarthy M, Panwar U, Selvaraj C, Singh SK. Advantages of Structure-Based Drug Design Approaches in Neurological Disorders. Curr Neuropharmacol 2017; 15:1136-1155. [PMID: 28042767 PMCID: PMC5725545 DOI: 10.2174/1570159x15666170102145257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/05/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The purpose of the review is to portray the theoretical concept on neurological disorders from research data. BACKGROUND The freak changes in chemical response of nerve impulse causes neurological disorders. The research evidence of the effort done in the older history suggests that the biological drug targets and their effective feature with responsive drugs could be valuable in promoting the future development of health statistics structure for improved treatment for curing the nervous disorders. METHODS In this review, we summarized the most iterative theoretical concept of structure based drug design approaches in various neurological disorders to unfathomable understanding of reported information for future drug design and development. RESULTS On the premise of reported information we analyzed the model of theoretical drug designing process for understanding the mechanism and pathology of the neurological diseases which covers the development of potentially effective inhibitors against the biological drug targets. Finally, it also suggests the management and implementation of the current treatment in improving the human health system behaviors. CONCLUSION With the survey of reported information we concluded the development strategies of diagnosis and treatment against neurological diseases which leads to supportive progress in the drug discovery.
Collapse
Affiliation(s)
- Murali Aarthy
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630004, Tamil Nadu, India
| | - Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630004, Tamil Nadu, India
| | - Chandrabose Selvaraj
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Postal Code: 143-701, Seoul, Korea
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630004, Tamil Nadu, India
| |
Collapse
|
18
|
Mihov Y, Hasler G. Negative Allosteric Modulators of Metabotropic Glutamate Receptors Subtype 5 in Addiction: a Therapeutic Window. Int J Neuropsychopharmacol 2016; 19:pyw002. [PMID: 26802568 PMCID: PMC4966271 DOI: 10.1093/ijnp/pyw002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/08/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Abundant evidence at the anatomical, electrophysiological, and molecular levels implicates metabotropic glutamate receptor subtype 5 (mGluR5) in addiction. Consistently, the effects of a wide range of doses of different mGluR5 negative allosteric modulators (NAMs) have been tested in various animal models of addiction. Here, these studies were subjected to a systematic review to find out if mGluR5 NAMs have a therapeutic potential that can be translated to the clinic. METHODS Literature on consumption/self-administration and reinstatement of drug seeking as outcomes of interest published up to April 2015 was retrieved via PubMed. The review focused on the effects of systemic (i.p., i.v., s.c.) administration of the mGluR5 NAMs 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) and 2-Methyl-6-(phenylethynyl)pyridine (MPEP) on paradigms with cocaine, ethanol, nicotine, and food in rats. RESULTS MTEP and MPEP were found to reduce self-administration of cocaine, ethanol, and nicotine at doses ≥1mg/kg and 2.5mg/kg, respectively. Dose-response relationship resembled a sigmoidal curve, with low doses not reaching statistical significance and high doses reliably inhibiting self-administration of drugs of abuse. Importantly, self-administration of cocaine, ethanol, and nicotine, but not food, was reduced by MTEP and MPEP in the dose range of 1 to 2mg/kg and 2.5 to 3.2mg/kg, respectively. This dose range corresponds to approximately 50% to 80% mGluR5 occupancy. Interestingly, the limited data found in mice and monkeys showed a similar therapeutic window. CONCLUSION Altogether, this review suggests a therapeutic window for mGluR5 NAMs that can be translated to the treatment of substance-related and addictive disorders.
Collapse
Affiliation(s)
- Yoan Mihov
- Division of Molecular Psychiatry, Translational Research Center, Psychiatric University Hospital, University of Bern, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, Psychiatric University Hospital, University of Bern, Switzerland
| |
Collapse
|
19
|
Jiang L, Li Y, Qiao L, Chen X, He Y, Zhang Y, Li G. Discovery of potential negative allosteric modulators of mGluR5 from natural products using pharmacophore modeling, molecular docking, and molecular dynamics simulation studies. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mGluR5, which belongs to the G-protein-coupled receptor superfamily, is believed to be associated with many human diseases, such as a wide range of neurological disorders, gastroesophageal reflux disease, and cancer. Comparing with compounds that target on the orthosteric binding site, significant roles have been established for mGluR5 negative allosteric modulators (NAMs) due to their higher subtype selectivity and more suitable pharmacokinetic profiles. Nevertheless, to date, none of them have come to market for various reasons. In this study, a 3D quantitative pharmacophore model was generated by using the HypoGen module in Discovery Studio 4.0. With several validation methods ultilized, the optimal pharmacophore model Hypo2 was selected to discover potential mGluR5 NAMs from natural products. Two hundred and seventeen potential NAMs were obtained after being filtered by Lipinski’s rule (≥4). Then, molecular docking was used to refine the pharmacophore-based screening results and analyze the binding mode of NAMs and mGluR5. Three compounds, aglaiduline, 5-O-ethyl-hirsutanonol, and yakuchinone A, with good ADMET properties, acceptable Fit value and estimated value, and high docking score, were reserved for a molecular dynamics simulation study. All of them have stability of ligand binding. From our computational results, there might exhibit drug-like negative allosteric moderating effects on mGluR5 in these natural products. This work provides a reliable method for discovering mGluR5 NAMs from natural products.
Collapse
Affiliation(s)
- Ludi Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Liansheng Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xi Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yusu He
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yanling Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Gongyu Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| |
Collapse
|
20
|
Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors – A Structural Perspective of Ligands and Mutants. Sci Rep 2015; 5:13869. [PMID: 26359761 PMCID: PMC4566082 DOI: 10.1038/srep13869] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/27/2015] [Indexed: 01/06/2023] Open
Abstract
The metabotropic glutamate receptors have a wide range of modulatory functions in the central nervous system. They are among the most highly pursued drug targets, with relevance for several neurological diseases, and a number of allosteric modulators have entered clinical trials. However, so far this has not led to a marketed drug, largely because of the difficulties in achieving subtype-selective compounds with desired properties. Very recently the first crystal structures were published for the transmembrane domain of two metabotropic glutamate receptors in complex with negative allosteric modulators. In this analysis, we make the first comprehensive structural comparison of all metabotropic glutamate receptors, placing selective negative allosteric modulators and critical mutants into the detailed context of the receptor binding sites. A better understanding of how the different mGlu allosteric modulator binding modes relates to selective pharmacological actions will be very valuable for rational design of safer drugs.
Collapse
|
21
|
Virtual Screening and Molecular Dynamics Study of Potential Negative Allosteric Modulators of mGluR1 from Chinese Herbs. Molecules 2015; 20:12769-86. [PMID: 26184151 PMCID: PMC6332408 DOI: 10.3390/molecules200712769] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/25/2015] [Accepted: 07/09/2015] [Indexed: 12/18/2022] Open
Abstract
The metabotropic glutamate subtype 1 (mGluR1), a member of the metabotropic glutamate receptors, is a therapeutic target for neurological disorders. However, due to the lower subtype selectivity of mGluR1 orthosteric compounds, a new targeted strategy, known as allosteric modulators research, is needed for the treatment of mGluR1-related diseases. Recently, the structure of the seven-transmembrane domain (7TMD) of mGluR1 has been solved, which reveals the binding site of allosteric modulators and provides an opportunity for future subtype-selectivity drug design. In this study, a series of computer-aided drug design methods were utilized to discover potential mGluR1 negative allosteric modulators (NAMs). Pharmacophore models were constructed based on three different structure types of mGluR1 NAMs. After validation using the built-in parameters and test set, the optimal pharmacophore model of each structure type was selected and utilized as a query to screen the Traditional Chinese Medicine Database (TCMD). Then, three different hit lists of compounds were obtained. Molecular docking was used based on the latest crystal structure of mGluR1-7TMD to further filter these hits. As a compound with high QFIT and LibDock Score was preferred, a total of 30 compounds were retained. MD simulation was utilized to confirm the stability of potential compounds binding. From the computational results, thesinine-4'-O-β-d-glucoside, nigrolineaxanthone-P and nodakenin might exhibit negative allosteric moderating effects on mGluR1. This paper indicates the applicability of molecular simulation technologies for discovering potential natural mGluR1 NAMs from Chinese herbs.
Collapse
|
22
|
Feng Z, Ma S, Hu G, Xie XQ. Allosteric Binding Site and Activation Mechanism of Class C G-Protein Coupled Receptors: Metabotropic Glutamate Receptor Family. AAPS J 2015; 17:737-53. [PMID: 25762450 PMCID: PMC4406965 DOI: 10.1208/s12248-015-9742-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/16/2015] [Indexed: 11/30/2022] Open
Abstract
Metabotropic glutamate receptors (mGluR) are mainly expressed in the central nervous system (CNS) and contain eight receptor subtypes, named mGluR1 to mGluR8. The crystal structures of mGluR1 and mGluR5 that are bound with the negative allosteric modulator (NAM) were reported recently. These structures provide a basic model for all class C of G-protein coupled receptors (GPCRs) and may aid in the design of new allosteric modulators for the treatment of CNS disorders. However, these structures are only combined with NAMs in the previous reports. The conformations that are bound with positive allosteric modulator (PAM) or agonist of mGluR1/5 remain unknown. Moreover, the structural information of the other six mGluRs and the comparisons of the mGluRs family have not been explored in terms of their binding pockets, the binding modes of different compounds, and important binding residues. With these crystal structures as the starting point, we built 3D structural models for six mGluRs by using homology modeling and molecular dynamics (MD) simulations. We systematically compared their allosteric binding sites/pockets, the important residues, and the selective residues by using a series of comparable dockings with both the NAM and the PAM. Our results show that several residues played important roles for the receptors' selectivity. The observations of detailed interactions between compounds and their correspondent receptors are congruent with the specificity and potency of derivatives or compounds bioassayed in vitro. We then carried out 100 ns MD simulations of mGluR5 (residue 26-832, formed by Venus Flytrap domain, a so-called cysteine-rich domain, and 7 trans-membrane domains) bound with antagonist/NAM and with agonist/PAM. Our results show that both the NAM and the PAM seemed stable in class C GPCRs during the MD. However, the movements of "ionic lock," of trans-membrane domains, and of some activation-related residues in 7 trans-membrane domains of mGluR5 were congruent with the findings in class A GPCRs. Finally, we selected nine representative bound structures to perform 30 ns MD simulations for validating the stabilities of interactions, respectively. All these bound structures kept stable during the MD simulations, indicating that the binding poses in this present work are reasonable. We provided new insight into better understanding of the structural and functional roles of the mGluRs family and facilitated the future structure-based design of novel ligands of mGluRs family with therapeutic potential.
Collapse
Affiliation(s)
- Zhiwei Feng
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| | - Shifan Ma
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| | - Guanxing Hu
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| | - Xiang-Qun Xie
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| |
Collapse
|
23
|
Isberg V, de Graaf C, Bortolato A, Cherezov V, Katritch V, Marshall FH, Mordalski S, Pin JP, Stevens RC, Vriend G, Gloriam DE. Generic GPCR residue numbers - aligning topology maps while minding the gaps. Trends Pharmacol Sci 2014; 36:22-31. [PMID: 25541108 DOI: 10.1016/j.tips.2014.11.001] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 12/31/2022]
Abstract
Generic residue numbers facilitate comparisons of, for example, mutational effects, ligand interactions, and structural motifs. The numbering scheme by Ballesteros and Weinstein for residues within the class A GPCRs (G protein-coupled receptors) has more than 1100 citations, and the recent crystal structures for classes B, C, and F now call for a community consensus in residue numbering within and across these classes. Furthermore, the structural era has uncovered helix bulges and constrictions that offset the generic residue numbers. The use of generic residue numbers depends on convenient access by pharmacologists, chemists, and structural biologists. We review the generic residue numbering schemes for each GPCR class, as well as a complementary structure-based scheme, and provide illustrative examples and GPCR database (GPCRDB) web tools to number any receptor sequence or structure.
Collapse
Affiliation(s)
- Vignir Isberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands
| | | | - Vadim Cherezov
- The Bridge@USC, Department of Chemistry, University of Southern California, Los Angeles, CA 90089 USA
| | - Vsevolod Katritch
- The Bridge@USC, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 USA
| | | | - Stefan Mordalski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jean-Philippe Pin
- Institute of Functional Genomics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5203, Universities Montpellier, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 661, Montpellier, France
| | - Raymond C Stevens
- The Bridge@USC, Department of Chemistry, University of Southern California, Los Angeles, CA 90089 USA; The Bridge@USC, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 USA
| | - Gerrit Vriend
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, Nijmegen, The Netherlands
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Rovira X, Malhaire F, Scholler P, Rodrigo J, Gonzalez-Bulnes P, Llebaria A, Pin JP, Giraldo J, Goudet C. Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors. FASEB J 2014; 29:116-30. [PMID: 25342125 DOI: 10.1096/fj.14-257287] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type 4 metabotropic glutamate (mGlu4) receptors are emerging targets for the treatment of various disorders. Accordingly, numerous mGlu4-positive allosteric modulators (PAMs) have been identified, some of which also display agonist activity. To identify the structural bases for their allosteric action, we explored the relationship between the binding pockets of mGlu4 PAMs with different chemical scaffolds and their functional properties. By use of innovative mGlu4 biosensors and second-messenger assays, we show that all PAMs enhance agonist action on the receptor through different degrees of allosteric agonism and positive cooperativity. For example, whereas VU0155041 and VU0415374 display equivalent efficacies [log(τ(B)) = 1.15 ± 0.38 and 1.25 ± 0.44, respectively], they increase the ability of L-AP4 to stabilize the active conformation of the receptor by 4 and 39 times, respectively. Modeling and docking studies identify 2 overlapping binding pockets as follows: a first site homologous to the pocket of natural agonists of class A GPCRs linked to allosteric agonism and a second one pointing toward a site topographically homologous to the Na(+) binding pocket of class A GPCRs, occupied by PAMs exhibiting the strongest cooperativity. These results reveal that intrinsic efficacy and cooperativity of mGlu4 PAMs are correlated with their binding mode, and vice versa, integrating structural and functional knowledge from different GPCR classes.
Collapse
Affiliation(s)
- Xavier Rovira
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Fanny Malhaire
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Jordi Rodrigo
- Laboratoire de Chimie Thérapeutique, BioCIS UMR-CNRS 8076, LabEx LERMIT, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, Paris, France
| | - Patricia Gonzalez-Bulnes
- Laboratory of Medicinal Chemistry, Departament of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia IQAC-CSIC, Barcelona, Spain; and
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry, Departament of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia IQAC-CSIC, Barcelona, Spain; and
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cyril Goudet
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France;
| |
Collapse
|
25
|
Haas LT, Kostylev MA, Strittmatter SM. Therapeutic molecules and endogenous ligands regulate the interaction between brain cellular prion protein (PrPC) and metabotropic glutamate receptor 5 (mGluR5). J Biol Chem 2014; 289:28460-77. [PMID: 25148681 DOI: 10.1074/jbc.m114.584342] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Soluble Amyloid-β oligomers (Aβo) can trigger Alzheimer disease (AD) pathophysiology by binding to cell surface cellular prion protein (PrP(C)). PrP(C) interacts physically with metabotropic glutamate receptor 5 (mGluR5), and this interaction controls the transmission of neurotoxic signals to intracellular substrates. Because the interruption of the signal transduction from PrP(C) to mGluR5 has therapeutic potential for AD, we developed assays to explore the effect of endogenous ligands, agonists/antagonists, and antibodies on the interaction between PrP(C) and mGluR5 in cell lines and mouse brain. We show that the PrP(C) segment of amino acids 91-153 mediates the interaction with mGluR5. Agonists of mGluR5 increase the mGluR5-PrP(C) interaction, whereas mGluR5 antagonists suppress protein association. Synthetic Aβo promotes the protein interaction in mouse brain and transfected HEK-293 cell membrane preparations. The interaction of PrP(C) and mGluR5 is enhanced dramatically in the brains of familial AD transgenic model mice. In brain homogenates with Aβo, the interaction of PrP(C) and mGluR5 is reversed by mGluR5-directed antagonists or antibodies directed against the PrP(C) segment of amino acids 91-153. Silent allosteric modulators of mGluR5 do not alter Glu or basal mGluR5 activity, but they disrupt the Aβo-induced interaction of mGluR5 with PrP(C). The assays described here have the potential to identify and develop new compounds that inhibit the interaction of PrP(C) and mGluR5, which plays a pivotal role in the pathogenesis of Alzheimer disease by transmitting the signal from extracellular Aβo into the cytosol.
Collapse
Affiliation(s)
- Laura T Haas
- From the Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06536 and the Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, D-72074 Tübingen, Germany
| | - Mikhail A Kostylev
- From the Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06536 and
| | - Stephen M Strittmatter
- From the Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06536 and
| |
Collapse
|
26
|
Dalton JAR, Gómez-Santacana X, Llebaria A, Giraldo J. Computational analysis of negative and positive allosteric modulator binding and function in metabotropic glutamate receptor 5 (in)activation. J Chem Inf Model 2014; 54:1476-87. [PMID: 24793143 DOI: 10.1021/ci500127c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are high-profile G-protein coupled receptors drug targets because of their involvement in several neurological disease states, and mGluR5 in particular is a subtype whose controlled allosteric modulation, both positive and negative, can potentially be useful for the treatment of schizophrenia and relief of chronic pain, respectively. Here we model mGluR5 with a collection of positive and negative allosteric modulators (PAMs and NAMs) in both active and inactive receptor states, in a manner that is consistent with experimental information, using a specialized protocol that includes homology to increase docking accuracy, and receptor relaxation to generate an individual induced fit with each allosteric modulator. Results implicate two residues in particular for NAM and PAM function: NAM interaction with W785 for receptor inactivation, and NAM/PAM H-bonding with S809 for receptor (in)activation. Models suggest the orientation of the H-bond between allosteric modulator and S809, controlled by PAM/NAM chemistry, influences the position of TM7, which in turn influences the shape of the allosteric site, and potentially the receptor state. NAM-bound and PAM-bound mGluR5 models also reveal that although PAMs and NAMs bind in the same pocket and share similar binding modes, they have distinct effects on the conformation of the receptor. Our models, together with the identification of a possible activation mechanism, may be useful in the rational design of new allosteric modulators for mGluR5.
Collapse
Affiliation(s)
- James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|