1
|
Alamoudi JA. Recent advancements toward the incremsent of drug solubility using environmentally-friendly supercritical CO 2: a machine learning perspective. Front Med (Lausanne) 2024; 11:1467289. [PMID: 39286644 PMCID: PMC11402729 DOI: 10.3389/fmed.2024.1467289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Inadequate bioavailability of therapeutic drugs, which is often the consequence of their unacceptable solubility and dissolution rates, is an indisputable operational challenge of pharmaceutical companies due to its detrimental effect on the therapeutic efficacy. Over the recent decades, application of supercritical fluids (SCFs) (mainly SCCO2) has attracted the attentions of many scientists as promising alternative of toxic and environmentally-hazardous organic solvents due to possessing positive advantages like low flammability, availability, high performance, eco-friendliness and safety/simplicity of operation. Nowadays, application of different machine learning (ML) as a versatile, robust and accurate approach for the prediction of different momentous parameters like solubility and bioavailability has been of great attentions due to the non-affordability and time-wasting nature of experimental investigations. The prominent goal of this article is to review the role of different ML-based tools for the prediction of solubility/bioavailability of drugs using SCCO2. Moreover, the importance of solubility factor in the pharmaceutical industry and different possible techniques for increasing the amount of this parameter in poorly-soluble drugs are comprehensively discussed. At the end, the efficiency of SCCO2 for improving the manufacturing process of drug nanocrystals is aimed to be discussed.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Aitipamula S, Bolla G. Optimizing Drug Development: Harnessing the Sustainability of Pharmaceutical Cocrystals. Mol Pharm 2024; 21:3121-3143. [PMID: 38814314 DOI: 10.1021/acs.molpharmaceut.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/31/2024]
Abstract
Environmental impacts of the industrial revolution necessitate adoption of sustainable practices in all areas of development. The pharmaceutical industry faces increasing pressure to minimize its ecological footprint due to its significant contribution to environmental pollution. Over the past two decades, pharmaceutical cocrystals have received immense popularity due to their ability to optimize the critical attributes of active pharmaceutical ingredients and presented an avenue to bring improved drug products to the market. This review explores the potential of pharmaceutical cocrystals as an ecofriendly alternative to traditional solid forms, offering a sustainable approach to drug development. From reducing the number of required doses to improving the stability of actives, from eliminating synthetic operations to using pharmaceutically approved chemicals, from the use of continuous and solvent-free manufacturing methods to leveraging published data on the safety and toxicology, the cocrystallization approach contributes to sustainability of drug development. The latest trends suggest a promising role of pharmaceutical cocrystals in bringing novel and improved medicines to the market, which has been further fuelled by the recent guidance from the major regulatory agencies.
Collapse
Affiliation(s)
- Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Geetha Bolla
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
3
|
Kumbhar P, Kolekar K, Khot C, Dabhole S, Salawi A, Sabei FY, Mohite A, Kole K, Mhatre S, Jha NK, Manjappa A, Singh SK, Dua K, Disouza J, Patravale V. Co-crystal nanoarchitectonics as an emerging strategy in attenuating cancer: Fundamentals and applications. J Control Release 2023; 353:1150-1170. [PMID: 36566843 DOI: 10.1016/j.jconrel.2022.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Cancer ranks as the second foremost cause of death in various corners of the globe. The clinical uses of assorted anticancer therapeutics have been limited owing to the poor physicochemical attributes, pharmacokinetic performance, and lethal toxicities. Various sorts of co-crystals or nano co-crystals or co-crystals-laden nanocarriers have presented great promise in targeting cancer via improved physicochemical attributes, pharmacokinetic performance, and reduced toxicities. These systems have also demonstrated the controlled cargo release and passive targeting via enhanced permeation and retention (EPR) effect. In addition, regional delivery of co-crystals via inhalation and transdermal route displayed remarkable potential in targeting lung and skin cancer effectively. However, more research is required on the use of co-crystals in cancer and their commercialization. The present review mainly emphasizes co-crystals as emerging avenues in the treatment of various cancers by modulating the physicochemical and pharmacokinetic attributes of approved anticancer therapeutics. The worth of co-crystals in cancer treatment, computational paths in the co-crystals screening, diverse experimental techniques of co-crystals fabrication, and sorts of co-crystals and their noteworthy applications in targeting cancer are also discussed. Besides, the game changer approaches like nano co-crystals and co-crystals-laden nanocarriers, and co-crystals in regional delivery in cancer are also explained with reported case studies. Furthermore, regulatory directives for pharmaceutical co-crystals and their scale-up, and challenges are also highlighted with concluding remarks and future initiatives. In essence, co-crystals and nano co-crystals emerge to be a promising strategy in overwhelming cancers through improving anticancer efficacy, safety, patient compliance, and reducing the cost.
Collapse
Affiliation(s)
- Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Kaustubh Kolekar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Chinmayee Khot
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Swati Dabhole
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Akshay Mohite
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Kapil Kole
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Susmit Mhatre
- Department of Pharmacy Sciences, School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, USA
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Arehalli Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
4
|
Chauhan V, Mardia R, Patel M, Suhagia B, Parmar K. Technical and Formulation Aspects of Pharmaceutical Co‐Crystallization: A Systematic Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202202588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vishva Chauhan
- Affiliation: a-ROFEL Shri G.M. Bilakhia College of Pharmacy Namdha campus Vapi Gujarat India 396191
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Rajnikant Mardia
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Mehul Patel
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Bhanu Suhagia
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Komal Parmar
- Affiliation: a-ROFEL Shri G.M. Bilakhia College of Pharmacy Namdha campus Vapi Gujarat India 396191
| |
Collapse
|
5
|
Almutairi M, Srinivasan P, Zhang P, Austin F, Butreddy A, Alharbi M, Bandari S, Ashour EA, Repka MA. Hot-Melt Extrusion Coupled with Pressurized Carbon Dioxide for Enhanced Processability of Pharmaceutical Polymers and Drug Delivery Applications – An Integrated Review. Int J Pharm 2022; 629:122291. [DOI: 10.1016/j.ijpharm.2022.122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
|
6
|
Mechanical Activation by Ball Milling as a Strategy to Prepare Highly Soluble Pharmaceutical Formulations in the Form of Co-Amorphous, Co-Crystals, or Polymorphs. Pharmaceutics 2022; 14:pharmaceutics14102003. [PMID: 36297439 PMCID: PMC9607342 DOI: 10.3390/pharmaceutics14102003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Almost half of orally administered active pharmaceutical ingredients (APIs) have low solubility, which affects their bioavailability. In the last two decades, several alternatives have been proposed to modify the crystalline structure of APIs to improve their solubility; these strategies consist of inducing supramolecular structural changes in the active pharmaceutical ingredients, such as the amorphization and preparation of co-crystals or polymorphs. Since many APIs are thermosensitive, non-thermal emerging alternative techniques, such as mechanical activation by milling, have become increasingly common as a preparation method for drug formulations. This review summarizes the recent research in preparing pharmaceutical formulations (co-amorphous, co-crystals, and polymorphs) through ball milling to enhance the physicochemical properties of active pharmaceutical ingredients. This report includes detailed experimental milling conditions (instrumentation, temperature, time, solvent, etc.), as well as solubility, bioavailability, structural, and thermal stability data. The results and description of characterization techniques to determine the structural modifications resulting from transforming a pure crystalline API into a co-crystal, polymorph, or co-amorphous system are presented. Additionally, the characterization methodologies and results of intermolecular interactions induced by mechanical activation are discussed to explain the properties of the pharmaceutical formulations obtained after the ball milling process.
Collapse
|
7
|
O’Sullivan A, Ryan KM, Padrela L. Production of biopharmaceutical dried-powders using supercritical CO2 technology. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
|
8
|
O'Sullivan A, Long B, Verma V, Ryan KM, Padrela L. Solid-State and Particle Size Control of Pharmaceutical Cocrystals using Atomization-Based Techniques. Int J Pharm 2022; 621:121798. [PMID: 35525471 DOI: 10.1016/j.ijpharm.2022.121798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Poor bioavailability and aqueous solubility represent a major constraint during the development of new API molecules and can influence the impact of new medicines or halt their approval to the market. Cocrystals offer a novel and competitive advantage over other conventional methods with respect towards the substantial improvement in solubility profiles relative to the single-API crystals. Furthermore, the production of such cocrystals through atomization-based methods allow for greater control, with respect to particle size reduction, to further increase the solubility of the API. Such atomization-based methods include supercritical fluid methods, conventional spray drying and electrohydrodynamic atomization/electrospraying. The influence of process parameters such as solution flow rates, pressure and solution concentration, in controlling the solid-state and final particle size are discussed in this review with respect to atomization-based methods. For the last decade, literature has been attempting to catch-up with new regulatory rulings regarding the classification of cocrystals, due in part to data sparsity. In recent years, there has been an increase in cocrystal publications, specifically employing atomization-based methods. This review considers the benefits to employing atomization-based methods for the generation of pharmaceutical cocrystals, examines the most recent regulatory changes regarding cocrystals and provides an outlook towards the future of this field.
Collapse
Affiliation(s)
- Aaron O'Sullivan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Barry Long
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Vivek Verma
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kevin M Ryan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Luis Padrela
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
9
|
Kumar R, Thakur AK, Banerjee N, Chaudhari P. A critical review on the particle generation and other applications of rapid expansion of supercritical solution. Int J Pharm 2021; 608:121089. [PMID: 34530097 DOI: 10.1016/j.ijpharm.2021.121089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022]
Abstract
The novel particle generation processes of Active Pharmaceutical Ingredient (API)/drug have been extensively explored in recent decades due to their wide-range applications in the pharmaceutical industry. The Rapid Expansion of Supercritical Solutions (RESS) is one of the promising techniques to obtain the fine particles (micro to nano-size) of APIs with narrow particle size distribution (PSD). In RESS, supercritical carbon dioxide (SC CO2) and API are used as solvent and solute respectively. In this literature survey, the application of RESS in the formation of fine particles is critically reviewed. Solubility of API in SC CO2 and supersaturation are the key factors in tuning the particle size. The different approaches to model and predict the solubility of API in SC CO2 are discussed. Then, the effect of process parameters on mean particle size and the particle size distribution are interpreted in the context of solubility and supersaturation. Furthermore, the less-explored applications of RESS in preparation of solid-lipid nanoparticles, liposome, polymorphic conversion, cocrystallization and inclusion complexation are compared with traditional processes. The solubility enhancement of API in SC CO2 using co-solvent and its applications in particle generation are explored in published literature. The development and modifications in the conventional RESS process to overcome the limitations of RESS are presented. Finally, the perspective on RESS with special attention to its commercial operation is highlighted.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India.
| | - Amit K Thakur
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Nilanjana Banerjee
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Pranava Chaudhari
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
10
|
Kankala RK, Xu PY, Chen BQ, Wang SB, Chen AZ. Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: An eco-friendly welcome to active pharmaceutical ingredients (APIs). Adv Drug Deliv Rev 2021; 176:113846. [PMID: 34197896 DOI: 10.1016/j.addr.2021.113846] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 02/09/2023]
Abstract
Despite the success in developing various pharmaceutical formulations, most of the active pharmaceutical ingredients (APIs)/drugs, according to the Biopharmaceutics Classification System (BCS), often suffer from various intrinsic limitations of solubility and permeability, substantially hindering their bioavailability in vivo. Regardless of the fact that the availability of different particle fabrication approaches (top-down and bottom-up) towards pharmaceutical manufacturing, the supercritical fluid (SCF) technology has emerged as one of the highly effective substitutes due to the environmentally benign nature and processing convenience, as well as the economically promising character of SCFs. The exceptional features of SCFs have endowed the fabrication of various APIs either solely or in combination with the compatible supramolecular species towards achieving improved drug delivery. Operating such APIs in high-pressure conditions often results in arbitrary-sized particulate forms, ranging from micron-sized to sub-micron/nano-sized particles. Comparatively, these SCF-processed particles offer enhanced tailorable physicochemical and morphological properties (size, shape, and surface), as well as improved performance efficacy (bioavailability and therapy) over the unprocessed APIs. Although the "carrier-based" delivery is practical among diverse delivery systems, the direct fabrication of APIs into suitable particulate forms, referred to as "carrier-free" delivery, has increased attention towards improving the bioavailability and conveying a high payload of the APIs. This review gives a comprehensive emphasis on the SCF-assisted fabrication of diverse APIs towards exploring their great potential in drug delivery. Initially, we discuss various challenges of drug delivery and particle fabrication approaches. Further, different supercritical carbon dioxide (SC-CO2)-based fabrication approaches depending on the character of SCFs are explicitly described, highlighting their advantages and suitability in processing diverse APIs. Then, we provide detailed insights on various processing factors affecting the properties and morphology of SCF-processed APIs and their pharmaceutical applications, emphasizing their performance efficacy when administered through multiple routes of administration. Finally, we summarize this compilation with exciting perspectives based on the lessons learned so far and moving forward in terms of challenges and opportunities in the scale-up and clinical translation of these drugs using this innovative technology.
Collapse
|
11
|
Vaksler Y, Benedis D, Dyshin A, Oparin R, Correia N, Capet F, Shishkina S, Kiselev M, Idrissi A. Spectroscopic characterization of single co-crystal of mefenamic acid and nicotinamide using supercritical CO2. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
|
12
|
Garg U, Azim Y. Challenges and opportunities of pharmaceutical cocrystals: a focused review on non-steroidal anti-inflammatory drugs. RSC Med Chem 2021; 12:705-721. [PMID: 34124670 PMCID: PMC8152597 DOI: 10.1039/d0md00400f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2020] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
The focus of the review is to discuss the relevant and essential aspects of pharmaceutical cocrystals in both academia and industry with an emphasis on non-steroidal anti-inflammatory drugs (NSAIDs). Although cocrystals have been prepared for a plethora of drugs, NSAID cocrystals are focused due to their humongous application in different fields of medication such as antipyretic, anti-inflammatory, analgesic, antiplatelet, antitumor, and anti-carcinogenic drugs. The highlights of the review are (a) background of cocrystals and other solid forms of an active pharmaceutical ingredient (API) based on the principles of crystal engineering, (b) why cocrystals are an excellent opportunity in the pharma industry, (c) common methods of preparation of cocrystals from the lab scale to bulk quantity, (d) some latest case studies of NSAIDs which have shown better physicochemical properties for example; mechanical properties (tabletability), hydration, solubility, bioavailability, and permeability, and (e) latest guidelines of the US FDA and EMA opening new opportunities and challenges.
Collapse
Affiliation(s)
- Utsav Garg
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Yasser Azim
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| |
Collapse
|
13
|
Dias JL, Lanza M, Ferreira SR. Cocrystallization: A tool to modulate physicochemical and biological properties of food-relevant polyphenols. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
|
14
|
Karimi M, Raofie F. Preparation of Withaferin A nanoparticles extracted from Withania somnifera by the expansion of supercritical fluid solution. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:957-967. [PMID: 32666662 DOI: 10.1002/pca.2968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/27/2019] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Withania somnifera (L.) Dunal. is a plant with several important medicinal properties that have long been used in traditional therapy to treat some diseases. OBJECTIVE Micronisation reduces the particle size, which increases the bioavailability. In this study, due to the great potential of Withaferin A in the treatment of diseases, the nanoparticle formation of Withaferin A extracted from Withania somnifera, was considered. METHODOLOGY In the first step, the experimental parameters of supercritical fluid extraction of W. somnifera were optimised by central composite design (CCD). Then, the herbal extract was micronised using a new, repeatable, and robust method in terms of the expansion of carbon dioxide supercritical solvent. Also, the parameters of the experiment were optimised with the Draper-Lin small composite designs. Moreover, we identified Withaferin A nanoparticle in the extracted samples by utilising liquid chromatography-mass spectrometry (LC-MS) and the obtained precipitates were characterised using field emission scanning electron microscopy (FESEM). RESULTS The optimal conditions of the experiment were as follows: pressure drop 254 atm, at the temperature of 53°C, equilibrium time 23 min, and collection time 57 min. Based on the observed results, the optimum points for the size and number of Withaferin A nanoparticles were predicted as 5 and 5842 nm, respectively. CONCLUSION The nanoparticle production was accomplished through the expansion of supercritical solution, while the speed of expansion was much lower compared to the ordinary rapid expansion of supercritical solution (RESS) methods. Also, the nanonisation conditions, especially the pressure drop, significantly affected the formation of nanoparticles.
Collapse
Affiliation(s)
- Mehrnaz Karimi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| | - Farhad Raofie
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
15
|
Panzade PS, Shendarkar GR. Pharmaceutical cocrystal: a game changing approach for the administration of old drugs in new crystalline form. Drug Dev Ind Pharm 2020; 46:1559-1568. [PMID: 32799687 DOI: 10.1080/03639045.2020.1810270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Pharmaceutical cocrystals are still gaining the interest of the researchers due to their potential to alter physicochemical, mechanical, and pharmacokinetic properties of active pharmaceutical ingredients without negotiating therapeutic action. The diverse new applications of cocrystals, like taste masking, reduced toxicity, patenting opportunities, commercial potential, etc. act as driving force to the rising interest of the pharmaceutical industries. Initially, cocrystals from the view of regulatory authorities, design strategies, cocrystal preparation in brief with special emphasis on scalable and solvent-free hot melt extrusion method, and practical guide to characterization have been provided. The special focus has been given to the biopharmaceutical attributes of the cocrystal. Finally, challenges before and after cocrystal preparation are presented in this review along with some commercial examples of the cocrystals.
Collapse
Affiliation(s)
- Prabhakar S Panzade
- Center for Research in Pharmaceutical Sciences, Nanded Pharmacy College, Nanded, India.,Srinath College of Pharmacy, Waluj, India
| | | |
Collapse
|
16
|
Xyloglucan based mucosal nanovaccine for immunological protection against brucellosis developed by supercritical fluid technology. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100053. [PMID: 32776000 PMCID: PMC7397708 DOI: 10.1016/j.ijpx.2020.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/15/2019] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 11/21/2022]
Abstract
Vaccines delivered via the mucosal route have logistic benefits over parenteral or intramuscular vaccines as they offer patient compliance. This study presents the first intranasal, controlled release, subunit nanovaccine comprising mucoadhesive tamarind seed polymer (xyloglucan) based nanoparticles produced using an efficient, environmentally compatible, and industrially scalable technique: rapid expansion of supercritical solution. The nanovaccine formulation aimed against brucellosis comprised xyloglucan nanoparticles loaded separately with antigenic acellular lipopolysaccharides from B. abortus (S19) and the immunoadjuvant quillaja saponin. The nanovaccine elicited prolonged humoral and cell-mediated immunity in female Balb/c mice. Nasal vaccination with the nanovaccine resulted in higher levels of mucosal IgA and IgG than with an aqueous solution of soluble lipopolysaccharides and quillaja saponin. Systemic immunity triggered by the nanovaccine was evidenced by higher IgG levels in sera post priming and boosting. The nanovaccine induced a mixed Th1/Th2 type of immunity with higher IgG2a levels and thus a polarized Th1 response. The results suggest that the nanovaccine administered by homologous nasal route can prime the immune system via the mucosal and systemic pathways and is a good candidate for vaccine delivery.
Collapse
|
17
|
Misra SK, Pathak K. Supercritical fluid technology for solubilization of poorly water soluble drugs via micro- and naonosized particle generation. ADMET AND DMPK 2020; 8:355-374. [PMID: 35300190 PMCID: PMC8915588 DOI: 10.5599/admet.811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2020] [Revised: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
Approximately two-third of the compounds in the pharmaceutical industry were developed through combinatorial chemistry and high throughput screening of particulate solids. Poor solubility and bioavailability of these pharmaceuticals are challenging attributes confronted by a formulator during product development. Hence, substantial efforts have been directed into the research on particle generation techniques. Although the conventional methods, such as crushing or milling and crystallization or precipitation, are still used; supercritical fluid technology introduced in the mid-1980s presents a new method of particle generation. Supercritical fluid processes not only produce micro- and nanoparticles with a narrow size distribution, they are also employed for the microencapsulation, cocrystallization, and surface coating with polymer. Recognized as a green technology, it has emerged as successful variants chiefly as Rapid Expansion of supercritical solutions (RESS), Supercritical anti-solvent (SAS) and Particles from Gas Saturated Solution (PGSS) depending upon type of solvent, solute, antisolvent and nebulization techniques. Being economical and eco-friendly, supercritical fluid technolgy has garnered considerable interest both in academia and industry for modification of physicochemical properties such as particle size, shape, density and ultimately solubility. The current manuscript is a comprehensive update on different supercritical fluid processes used for particle generation with the purpose of solubility enhancement of drugs and hence bioavailability.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- University Institute of Pharmacy, CSJM University, Kanpur, 208026, India,
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
18
|
Guerain M, Guinet Y, Correia NT, Paccou L, Danède F, Hédoux A. Polymorphism and stability of ibuprofen/nicotinamide cocrystal: The effect of the crystalline synthesis method. Int J Pharm 2020; 584:119454. [PMID: 32464230 DOI: 10.1016/j.ijpharm.2020.119454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
The development over the past decade of design strategies for cocrystal preparation have led to numerous methods for the synthesis of cocrystal without take care of their influence on the precise structure and stability of cocrystalline states. On the other hand the mechanism of cocrystal formation remains widely unclear, especially the identification of the type of interactions mostly responsible for the cocrystalline stability. The present study focuses on the influence of the crystalline synthesis method on the polymorphism of cocrystals was analyzed from the preparation of S-ibuprofen/nicotinamide and RS-ibuprofen/nicotinamide cocrystals by co-milling, slow solvent evaporation and crystallization from the melt. X-ray diffraction and Raman spectroscopy experiments have shown that the polymorphic form of the cocrystals obtained by recrystallization from the melt (Form A) is different from that prepared by milling and by slow evaporation in solution (Form B). It was shown that both isothermal and non-isothermal recrystallizations from the melt blending are observed via a transient metastable micro/nano structure of form A. Additionally, it was observed that form A transforms into Form B upon heating via very weak changes in the hydrogen bond network. The crystallization in form A from the melt, instead of form B by other methods, was explained by the difficulty to form a supramolecular organization too far energetically from that existing in the melt. This study shows the crucial role of supramolecular H-bonding on the formation mechanism of cocrystals and how does the synthesis method of cocrystals change the supramolecular organization and the related structure of cocrystals.
Collapse
Affiliation(s)
- M Guerain
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France.
| | - Y Guinet
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - N T Correia
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - L Paccou
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - F Danède
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - A Hédoux
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| |
Collapse
|
19
|
Wang LY, Yu YM, Jiang FB, Li YT, Wu ZY, Yan CW. The first zwitterionic cocrystal of indomethacin with amino acid showing optimized physicochemical properties as well as accelerated absorption and slowed elimination in vivo. NEW J CHEM 2020. [DOI: 10.1039/c9nj06180k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
The first zwitterionic cocrystal of indomethacin (INC) with proline (PL) with optimized in vitro/in vivo properties was prepared and characterized.
Collapse
Affiliation(s)
- Ling-Yang Wang
- School of Medicine and Pharmacy and College of Marine Life Science
- Ocean University of China
- Qingdao
- P. R. China
| | - Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science
- Ocean University of China
- Qingdao
- P. R. China
| | - Fu-Bin Jiang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science
- Ocean University of China
- Qingdao
- P. R. China
- Laboratory for Marine Drugs and Bioproducts
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science
- Ocean University of China
- Qingdao
- P. R. China
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science
- Ocean University of China
- Qingdao
- P. R. China
| |
Collapse
|
20
|
Chaves Júnior JV, Dos Santos JAB, Lins TB, de Araújo Batista RS, de Lima Neto SA, de Santana Oliveira A, Nogueira FHA, Gomes APB, de Sousa DP, de Souza FS, Aragão CFS. A New Ferulic Acid-Nicotinamide Cocrystal With Improved Solubility and Dissolution Performance. J Pharm Sci 2019; 109:1330-1337. [PMID: 31821823 DOI: 10.1016/j.xphs.2019.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Among the various strategies for increasing aqueous solubility of pharmaceutical substances, cocrystals have been emerging as a promising alternative. The ferulic acid (FEA) is a molecule with limited aqueous solubility, but with an interesting pharmacological activity, highlighting its antitumor potential. This study presents the characterization and physicochemical properties of a new cocrystal based on FEA and nicotinamide (NIC). The FEA-NIC cocrystal was obtained by solvent evaporation technique and physicochemically characterized by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance and scanning electron microscopy. The content determination and dissolution profile in different media were analyzed by high-performance liquid chromatography. The results obtained with the characterization techniques indicated the obtainment of an anhydrous cocrystal of FEA and NIC at a 1:1 molar ratio. The method was reproducible and obtained a high yield, of approximately 99%. In addition, a 70% increase in the FEA solubility in the cocrystal and a better dissolution performance than the physical mixture in pH 6.8 were achieved.
Collapse
Affiliation(s)
- José Venâncio Chaves Júnior
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Jonh Anderson Borges Dos Santos
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Taynara Batista Lins
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | | | | | - Artur de Santana Oliveira
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Fernando Henrique Andrade Nogueira
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Ana Paula Barreto Gomes
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | | | - Fábio Santos de Souza
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Cícero Flávio Soares Aragão
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil.
| |
Collapse
|
21
|
Ishihara S, Hattori Y, Otsuka M. MCR-ALS analysis of IR spectroscopy and XRD for the investigation of ibuprofen - nicotinamide cocrystal formation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117142. [PMID: 31158774 DOI: 10.1016/j.saa.2019.117142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/28/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
To improve aqueous solubility, a poorly water-soluble active ingredient is classically combined with a conformer to form cocrystals. Hot melt extrusion is one preparation method for the formation of cocrystal solids. The aim of our study was to determine the optimal temperature conditions for the formation of ibuprofen and nicotinamide cocrystals using real-time infrared (IR) and X-ray diffraction (XRD) measurements. IR spectra and XRD patterns were subjected to multivariate curve resolution alternating least squares (MCR-ALS) analysis and decomposed into several components. Each component was descriptive of a specific step in the formation of the cocrystal. Cocrystal formation was followed by a separation phase between amorphous ibuprofen and crystalline nicotinamide. Our results suggest that, when using the hot melt exclusion method, careful consideration should be made towards optimizing processing temperatures in order to prevent amorphization and promote control over the process of cocrystal formation.
Collapse
Affiliation(s)
- Sae Ishihara
- Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo city, Tokyo 202-8585, Japan
| | - Yusuke Hattori
- Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo city, Tokyo 202-8585, Japan; Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo City, Tokyo 202-8585, Japan
| | - Makoto Otsuka
- Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo city, Tokyo 202-8585, Japan; Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishi-Tokyo City, Tokyo 202-8585, Japan.
| |
Collapse
|
22
|
Abstract
The last decade has witnessed extensive growth in the field of co-crystallization for mitigating the solubility and dissolution-related issues of poorly soluble drugs. This is largely because co-crystals can modify the physicochemical properties of drugs without any covalent modification in the drug molecules. The US Food and Drug Administration (FDA) now considers drug products that are designed to contain a new co-crystal, analogous to new polymorph of the active pharmaceutical ingredient (API). This positive change in regulatory perspective coupled with successful commercialization of valsartan-sacubitril co-crystal (Entresto, Novartis) has now brought co-crystals into focus, in both industries as well as academia. Co-crystal prediction, screening, and synthesis have been reported in literature; however, co-crystal production at a larger scale needs further investigations. With this aim, the article describes various continuous methods for co-crystal production, along with in-line monitoring during co-crystal production, emphasizing on process analytical technology (PAT). In addition, the scale-up issues of continuous and batch co-crystallization and other suitable techniques for pharmaceutical scale up are detailed. Quality control aspects and regulatory viewpoint crucial for commercial success are elaborated in the future perspective.
Collapse
|
23
|
Jiao Z, Wang X, Han S, Zha X, Xia J. Preparation of vitamin C liposomes by rapid expansion of supercritical solution process: Experiments and optimization. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
|
24
|
Karimi M, Raofie F. Micronization of vincristine extracted from Catharanthus roseus by expansion of supercritical fluid solution. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
|
25
|
Xie M, Xu M, Chen X, Li Y. Recent Progress of Supercritical Carbon Dioxide in Producing Natural Nanomaterials. Mini Rev Med Chem 2019; 19:465-476. [PMID: 30324880 DOI: 10.2174/1389557518666181015152952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2017] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
Abstract
Natural medicines are widely utilized in human healthcare. Their beneficial effects have been attributed to the existence of natural active ingredients (NAI) with a positive impact on disease treatment and prevention. Public awareness about the side effects of synthetic chemical compounds increased the need for NAI as well. Clinical applications of NAI are limited by their instability and poor water solubility, while micronization is a major strategy to overcome these drawbacks. Supercritical carbon dioxide (sc-CO2) based nano techniques have drawn great attention in nanomedicinal area for many years, due to their unique characters such as fast mass transfer, near zero surface tension, effective solvents elimination, non-toxic, non-flammable, low cost and environmentally benign. In terms of functions of sc-CO2, many modified sc-CO2 based techniques are developed to produce NAI nanoparticles with high solubility, biological availability and stability. 5 types of promising methods, including gas-assisted melting atomization, CO2-assisted nebulization with a bubble dryer, supercritical fluidassisted atomization with a hydrodynamic cavitation mixer, supercritical CO2-based coating method and solution-enhanced dispersion by sc-CO2 process, are summarized in this article followed by a highlight of their fundamental synthesis principles and important medicinal applications.
Collapse
Affiliation(s)
- Maobin Xie
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Man Xu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoming Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Li
- School of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
26
|
Pessoa AS, Aguiar GPS, Vladimir Oliveira J, Bortoluzzi AJ, Paulino A, Lanza M. Precipitation of resveratrol-isoniazid and resveratrol-nicotinamide cocrystals by gas antisolvent. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
|
27
|
Sathisaran I, Dalvi SV. Engineering Cocrystals of PoorlyWater-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics 2018; 10:E108. [PMID: 30065221 PMCID: PMC6161265 DOI: 10.3390/pharmaceutics10030108] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 01/17/2023] Open
Abstract
Biopharmaceutics Classification System (BCS) Class II and IV drugs suffer from poor aqueous solubility and hence low bioavailability. Most of these drugs are hydrophobic and cannot be developed into a pharmaceutical formulation due to their poor aqueous solubility. One of the ways to enhance the aqueous solubility of poorlywater-soluble drugs is to use the principles of crystal engineering to formulate cocrystals of these molecules with water-soluble molecules (which are generally called coformers). Many researchers have shown that the cocrystals significantly enhance the aqueous solubility of poorly water-soluble drugs. In this review, we present a consolidated account of reports available in the literature related to the cocrystallization of poorly water-soluble drugs. The current practice to formulate new drug cocrystals with enhanced solubility involves a lot of empiricism. Therefore, in this work, attempts have been made to understand a general framework involved in successful (and unsuccessful) cocrystallization events which can yield different solid forms such as cocrystals, cocrystal polymorphs, cocrystal hydrates/solvates, salts, coamorphous solids, eutectics and solid solutions. The rationale behind screening suitable coformers for cocrystallization has been explained based on the rules of five i.e., hydrogen bonding, halogen bonding (and in general non-covalent bonding), length of carbon chain, molecular recognition points and coformer aqueous solubility. Different techniques to screen coformers for effective cocrystallization and methods to synthesize cocrystals have been discussed. Recent advances in technologies for continuous and solvent-free production of cocrystals have also been discussed. Furthermore, mechanisms involved in solubilization of these solid forms and the parameters influencing dissolution and stability of specific solid forms have been discussed. Overall, this review provides a consolidated account of the rationale for design of cocrystals, past efforts, recent developments and future perspectives for cocrystallization research which will be extremely useful for researchers working in pharmaceutical formulation development.
Collapse
Affiliation(s)
- Indumathi Sathisaran
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Sameer Vishvanath Dalvi
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
28
|
Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review. Adv Drug Deliv Rev 2018; 131:22-78. [PMID: 30026127 DOI: 10.1016/j.addr.2018.07.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Low drug bioavailability, which is mostly a result of poor aqueous drug solubilities and of inadequate drug dissolution rates, is one of the most significant challenges that pharmaceutical companies are currently facing, since this may limit the therapeutic efficacy of marketed drugs, or even result in the discard of potential highly effective drug candidates during developmental stages. Two of the main approaches that have been implemented in recent years to overcome poor drug solubility/dissolution issues have frequently involved drug particle size reduction (i.e., micronization/nanonization) and/or the modification of some of the physicochemical and structural properties of poorly water soluble drugs. A large number of particle engineering methodologies have been developed, tested, and applied in the synthesis and control of particle size/particle-size distributions, crystallinities, and polymorphic purities of drug micro- and nano-particles/crystals. In recent years pharmaceutical processing using supercritical fluids (SCF), in general, and supercritical carbon dioxide (scCO2), in particular, have attracted a great attention from the pharmaceutical industry. This is mostly due to the several well-known advantageous technical features of these processes, as well as to other increasingly important subjects for the pharmaceutical industry, namely their "green", sustainable, safe and "environmentally-friendly" intrinsic characteristics. In this work, it is presented a comprehensive state-of-the-art review on scCO2-based processes focused on the formation and on the control of the physicochemical, structural and morphological properties of amorphous/crystalline pure drug nanoparticles. It is presented and discussed the most relevant scCO2, scCO2-based fluids and drug physicochemical properties that are pertinent for the development of successful pharmaceutical products, namely those that are critical in the selection of an adequate scCO2-based method to produce pure drug nanoparticles/nanocrystals. scCO2-based nanoparticle formation methodologies are classified in three main families, and in terms of the most important role played by scCO2 in particle formation processes: as a solvent; as an antisolvent or a co-antisolvent; and as a "high mobility" additive (a solute, a co-solute, or a co-solvent). Specific particle formation methods belonging to each one of these families are presented, discussed and compared. Some selected amorphous/crystalline drug nanoparticles that were prepared by these methods are compiled and presented, namely those studied in the last 10-15 years. A special emphasis is given to the formation of drug cocrystals. It is also discussed the fundamental knowledge and the main mechanisms in which the scCO2-based particle formation methods rely on, as well as the current status and urgent needs in terms of reliable experimental data and of robust modeling approaches. Other addressed and discussed topics include the currently available and the most adequate physicochemical, morphological and biological characterization methods required for pure drug nanoparticles/nanocrystals, some of the current nanometrology and regulatory issues associated to the use of these methods, as well as some scale-up, post-processing and pharmaceutical regulatory subjects related to the industrial implementation of these scCO2-based processes. Finally, it is also discussed the current status of these techniques, as well as their future major perspectives and opportunities for industrial implementation in the upcoming years.
Collapse
|
29
|
Chen BQ, Kankala RK, Wang SB, Chen AZ. Continuous nanonization of lonidamine by modified-rapid expansion of supercritical solution process. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
|
30
|
Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics 2018; 10:pharmaceutics10010018. [PMID: 29370068 PMCID: PMC5874831 DOI: 10.3390/pharmaceutics10010018] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Cocrystals can be used as an alternative approach based on crystal engineering to enhance specific physicochemical and biopharmaceutical properties of active pharmaceutical ingredients (APIs) when the approaches to salt or polymorph formation do not meet the expected targets. In this article, an overview of pharmaceutical cocrystals will be presented, with an emphasis on the intermolecular interactions in cocrystals and the methods for their preparation. Furthermore, cocrystals of direct pharmaceutical interest, along with their in vitro properties and available in vivo data and characterization techniques are discussed, highlighting the potential of cocrystals as an attractive route for drug development.
Collapse
|
31
|
Emami S, Siahi-Shadbad M, Barzegar-Jalali M, Adibkia K. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals. Drug Dev Ind Pharm 2018; 44:1034-1047. [PMID: 29347850 DOI: 10.1080/03639045.2018.1430821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study employed electrospray deposition (ESD) for simultaneous synthesis and particle engineering of cocrystals. SIGNIFICANCE Exploring new methods for the efficient production of cocrystals with desired particle properties is an essential demand. METHODS The possibility of cocrystal formation by ESD was examined for indomethacin-saccharin, indomethacin-nicotinamide, naproxen-nicotinamide, and naproxen-iso-nicotinamide cocrystals. Solutions of the drug and coformer at stoichiometric ratios were sprayed to a high electric field which caused rapid evaporation of the solvent and the formation of fine particles. The phase purity, size, and morphology of products were compared with reference cocrystals. Experiments were performed to evaluate the effects of stoichiometric ratio, concentration and solvent type on the cocrystal formation. Physical stability and dissolution properties of the electrosprayed cocrystals were also compared with reference cocrystals. RESULTS ESD was found to be an efficient and rapid method to produce cocrystals for all studied systems other than indomethacin-nicotinamide. Pure cocrystals only formed at a specific drug:coformer ratio. The solvent type has a weak effect on the cocrystal formation and morphology. Electrosprayed cocrystals exhibited nano to micrometer sizes with distinct morphologies with comparable physical stability with reference cocrystals. Nanococrystals of indomethacin-saccharin with a mean size of 219 nm displayed a threefold higher dissolution rate than solvent evaporated cocrystal. CONCLUSION ESD successfully was utilized to produce pure cocrystals of poorly soluble drugs with different morphologies and sizes ranging from nano to micrometer sizes in one step. This study highlighted the usefulness of ESD for simultaneous preparation and particle engineering of pharmaceutical cocrystals.
Collapse
Affiliation(s)
- Shahram Emami
- a Drug Applied Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammadreza Siahi-Shadbad
- c Department of Pharmaceutical and Food Control, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Barzegar-Jalali
- d Biotechnology Research Center, and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Khosro Adibkia
- e Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy , Tabriz University of medical sciences , Tabriz , Iran
| |
Collapse
|
32
|
Kovaleva YS, Vedler AA, Karkhova VV. Micronization technology of in dermatology: therapeutic applications of azelaic acid. ACTA ACUST UNITED AC 2018. [DOI: 10.17116/klinderma20181706113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
|
33
|
Oliveira GE, Pinto JF. Evaluation of the Potential Use of Laminar Extrudates on Stabilizing Micronized Coumarin Particles by Supercritical Fluids (RESS)-Study of Different RESS Processing Variables and Mode of Operation. AAPS PharmSciTech 2017; 18:2792-2807. [PMID: 28382603 DOI: 10.1208/s12249-017-0760-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022] Open
Abstract
The study evaluates the ability of extrudates to deliver coumarin particles micronized by the rapid expansion of supercritical solutions (RESS). The RESS parameters were drug load (2-50 g), pressure (15-42 MPa) and temperature (40-60°C) in the extraction and pressure in the expansion (0.1-5 MPa) chambers in batch or continuous and CO2 flow rate in the continuous mode of operation. Particles were characterized for size (laser diffractometry, optical and electronic microscopies-19-61 μm), surface area (BET-0.282-0.423 m2/g), density (pycnometry-1.273-1.358 g/cm3) and yield (2-70%). Extrudates were characterized for the force of extrusion (4 kN), release of coumarin (100%/24 h) and mechanical properties (bending strength and stiffness increased, whereas elasticity decreased in storage) and X-ray diffractometry (micronized particles and extrudates have shown identical patterns) and calorimetry (DSC, enthalpies increased on storage). In the discontinuous mode of operation, increased loads in the extraction or increased pressure in the expansion chambers led to larger particles, whereas increased temperature and pressure in the extraction chamber led to smaller particles. In the continuous mode of operation, a decrease on the expansion pressure, load and CO2 flow rate led to increased yields. An increase on the flow rate led to a decrease on the particles' diameter, but an increase on coumarin load in the extraction chamber led to an increase in diameter. The study has identified the key parameters in RESS continuous and discontinuous modes of operation affecting the properties of the micronized coumarin particles and has proved the ability of extrudates with a laminar shape on delivering micronized particles.
Collapse
|
34
|
Advanced methodologies for cocrystal synthesis. Adv Drug Deliv Rev 2017; 117:178-195. [PMID: 28712924 DOI: 10.1016/j.addr.2017.07.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 11/21/2022]
Abstract
Pharmaceutical cocrystals are multicomponent systems composed of two or more molecules and held together by H-bonding. Currently, cocrystals provide exciting opportunities in the pharmaceutical industry for the development and manufacturing of new medicines by improving poor physical properties of Active Pharmaceutical Ingredients (APIs) such as processability, solubility, stability and bioavailability. According to the recent reclassification, cocrystals are considered as drug polymorph rather a new API which has a significant impact on drug development, regulatory submissions and intellectual property protection. This review summarizes recent trends and advances in synthesis, manufacturing and scale - up of cocrystals. The operational principles of several cocrystals manufacturing technologies are discussed including their advantages and disadvantages in terms of crystal quality, purity stability, throughput and limitations in large scale production.
Collapse
|
35
|
Duarte Í, Andrade R, Pinto JF, Temtem M. Green production of cocrystals using a new solvent-free approach by spray congealing. Int J Pharm 2016; 506:68-78. [DOI: 10.1016/j.ijpharm.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/29/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
|
36
|
Pando C, Cabañas A, Cuadra IA. Preparation of pharmaceutical co-crystals through sustainable processes using supercritical carbon dioxide: a review. RSC Adv 2016. [DOI: 10.1039/c6ra10917a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
The preparation of pharmaceutical co-crystals using supercritical CO2 (scCO2) is reviewed.
Collapse
Affiliation(s)
- Concepción Pando
- Dpto. de Química Física I
- Facultad C. Químicas
- Universidad Complutense
- E-28040 Madrid
- Spain
| | - Albertina Cabañas
- Dpto. de Química Física I
- Facultad C. Químicas
- Universidad Complutense
- E-28040 Madrid
- Spain
| | - Isaac A. Cuadra
- Dpto. de Química Física I
- Facultad C. Químicas
- Universidad Complutense
- E-28040 Madrid
- Spain
| |
Collapse
|
37
|
Maincent J, Williams RO. Precipitation Technologies for Nanoparticle Production. FORMULATING POORLY WATER SOLUBLE DRUGS 2016. [DOI: 10.1007/978-3-319-42609-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
|
38
|
Pawar Jaywant N, Amin Purnima D. Development of efavirenz cocrystals from stoichiometric solutions by spray drying technology. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.matpr.2016.04.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
39
|
Fattahi A, Karimi-Sabet J, Keshavarz A, Golzary A, Rafiee-Tehrani M, Dorkoosh FA. Preparation and characterization of simvastatin nanoparticles using rapid expansion of supercritical solution (RESS) with trifluoromethane. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
|